mirror of
				https://github.com/go-gitea/gitea.git
				synced 2025-11-04 05:25:15 +01:00 
			
		
		
		
	* Server-side syntax hilighting for all code This PR does a few things: * Remove all traces of highlight.js * Use chroma library to provide fast syntax hilighting directly on the server * Provide syntax hilighting for diffs * Re-style both unified and split diffs views * Add custom syntax hilighting styling for both regular and arc-green Fixes #7729 Fixes #10157 Fixes #11825 Fixes #7728 Fixes #3872 Fixes #3682 And perhaps gets closer to #9553 * fix line marker * fix repo search * Fix single line select * properly load settings * npm uninstall highlight.js * review suggestion * code review * forgot to call function * fix test * Apply suggestions from code review suggestions from @silverwind thanks Co-authored-by: silverwind <me@silverwind.io> * code review * copy/paste error * Use const for highlight size limit * Update web_src/less/_repository.less Co-authored-by: Lauris BH <lauris@nix.lv> * update size limit to 1MB and other styling tweaks * fix highlighting for certain diff sections * fix test * add worker back as suggested Co-authored-by: silverwind <me@silverwind.io> Co-authored-by: Lauris BH <lauris@nix.lv>
		
			
				
	
	
		
			897 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Go
		
	
	
	
		
			Vendored
		
	
	
	
			
		
		
	
	
			897 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Go
		
	
	
	
		
			Vendored
		
	
	
	
package syntax
 | 
						|
 | 
						|
import (
 | 
						|
	"bytes"
 | 
						|
	"fmt"
 | 
						|
	"strconv"
 | 
						|
	"unicode"
 | 
						|
	"unicode/utf8"
 | 
						|
)
 | 
						|
 | 
						|
type Prefix struct {
 | 
						|
	PrefixStr       []rune
 | 
						|
	PrefixSet       CharSet
 | 
						|
	CaseInsensitive bool
 | 
						|
}
 | 
						|
 | 
						|
// It takes a RegexTree and computes the set of chars that can start it.
 | 
						|
func getFirstCharsPrefix(tree *RegexTree) *Prefix {
 | 
						|
	s := regexFcd{
 | 
						|
		fcStack:  make([]regexFc, 32),
 | 
						|
		intStack: make([]int, 32),
 | 
						|
	}
 | 
						|
	fc := s.regexFCFromRegexTree(tree)
 | 
						|
 | 
						|
	if fc == nil || fc.nullable || fc.cc.IsEmpty() {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	fcSet := fc.getFirstChars()
 | 
						|
	return &Prefix{PrefixSet: fcSet, CaseInsensitive: fc.caseInsensitive}
 | 
						|
}
 | 
						|
 | 
						|
type regexFcd struct {
 | 
						|
	intStack        []int
 | 
						|
	intDepth        int
 | 
						|
	fcStack         []regexFc
 | 
						|
	fcDepth         int
 | 
						|
	skipAllChildren bool // don't process any more children at the current level
 | 
						|
	skipchild       bool // don't process the current child.
 | 
						|
	failed          bool
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The main FC computation. It does a shortcutted depth-first walk
 | 
						|
 * through the tree and calls CalculateFC to emits code before
 | 
						|
 * and after each child of an interior node, and at each leaf.
 | 
						|
 */
 | 
						|
func (s *regexFcd) regexFCFromRegexTree(tree *RegexTree) *regexFc {
 | 
						|
	curNode := tree.root
 | 
						|
	curChild := 0
 | 
						|
 | 
						|
	for {
 | 
						|
		if len(curNode.children) == 0 {
 | 
						|
			// This is a leaf node
 | 
						|
			s.calculateFC(curNode.t, curNode, 0)
 | 
						|
		} else if curChild < len(curNode.children) && !s.skipAllChildren {
 | 
						|
			// This is an interior node, and we have more children to analyze
 | 
						|
			s.calculateFC(curNode.t|beforeChild, curNode, curChild)
 | 
						|
 | 
						|
			if !s.skipchild {
 | 
						|
				curNode = curNode.children[curChild]
 | 
						|
				// this stack is how we get a depth first walk of the tree.
 | 
						|
				s.pushInt(curChild)
 | 
						|
				curChild = 0
 | 
						|
			} else {
 | 
						|
				curChild++
 | 
						|
				s.skipchild = false
 | 
						|
			}
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		// This is an interior node where we've finished analyzing all the children, or
 | 
						|
		// the end of a leaf node.
 | 
						|
		s.skipAllChildren = false
 | 
						|
 | 
						|
		if s.intIsEmpty() {
 | 
						|
			break
 | 
						|
		}
 | 
						|
 | 
						|
		curChild = s.popInt()
 | 
						|
		curNode = curNode.next
 | 
						|
 | 
						|
		s.calculateFC(curNode.t|afterChild, curNode, curChild)
 | 
						|
		if s.failed {
 | 
						|
			return nil
 | 
						|
		}
 | 
						|
 | 
						|
		curChild++
 | 
						|
	}
 | 
						|
 | 
						|
	if s.fcIsEmpty() {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
 | 
						|
	return s.popFC()
 | 
						|
}
 | 
						|
 | 
						|
// To avoid recursion, we use a simple integer stack.
 | 
						|
// This is the push.
 | 
						|
func (s *regexFcd) pushInt(I int) {
 | 
						|
	if s.intDepth >= len(s.intStack) {
 | 
						|
		expanded := make([]int, s.intDepth*2)
 | 
						|
		copy(expanded, s.intStack)
 | 
						|
		s.intStack = expanded
 | 
						|
	}
 | 
						|
 | 
						|
	s.intStack[s.intDepth] = I
 | 
						|
	s.intDepth++
 | 
						|
}
 | 
						|
 | 
						|
// True if the stack is empty.
 | 
						|
func (s *regexFcd) intIsEmpty() bool {
 | 
						|
	return s.intDepth == 0
 | 
						|
}
 | 
						|
 | 
						|
// This is the pop.
 | 
						|
func (s *regexFcd) popInt() int {
 | 
						|
	s.intDepth--
 | 
						|
	return s.intStack[s.intDepth]
 | 
						|
}
 | 
						|
 | 
						|
// We also use a stack of RegexFC objects.
 | 
						|
// This is the push.
 | 
						|
func (s *regexFcd) pushFC(fc regexFc) {
 | 
						|
	if s.fcDepth >= len(s.fcStack) {
 | 
						|
		expanded := make([]regexFc, s.fcDepth*2)
 | 
						|
		copy(expanded, s.fcStack)
 | 
						|
		s.fcStack = expanded
 | 
						|
	}
 | 
						|
 | 
						|
	s.fcStack[s.fcDepth] = fc
 | 
						|
	s.fcDepth++
 | 
						|
}
 | 
						|
 | 
						|
// True if the stack is empty.
 | 
						|
func (s *regexFcd) fcIsEmpty() bool {
 | 
						|
	return s.fcDepth == 0
 | 
						|
}
 | 
						|
 | 
						|
// This is the pop.
 | 
						|
func (s *regexFcd) popFC() *regexFc {
 | 
						|
	s.fcDepth--
 | 
						|
	return &s.fcStack[s.fcDepth]
 | 
						|
}
 | 
						|
 | 
						|
// This is the top.
 | 
						|
func (s *regexFcd) topFC() *regexFc {
 | 
						|
	return &s.fcStack[s.fcDepth-1]
 | 
						|
}
 | 
						|
 | 
						|
// Called in Beforechild to prevent further processing of the current child
 | 
						|
func (s *regexFcd) skipChild() {
 | 
						|
	s.skipchild = true
 | 
						|
}
 | 
						|
 | 
						|
// FC computation and shortcut cases for each node type
 | 
						|
func (s *regexFcd) calculateFC(nt nodeType, node *regexNode, CurIndex int) {
 | 
						|
	//fmt.Printf("NodeType: %v, CurIndex: %v, Desc: %v\n", nt, CurIndex, node.description())
 | 
						|
	ci := false
 | 
						|
	rtl := false
 | 
						|
 | 
						|
	if nt <= ntRef {
 | 
						|
		if (node.options & IgnoreCase) != 0 {
 | 
						|
			ci = true
 | 
						|
		}
 | 
						|
		if (node.options & RightToLeft) != 0 {
 | 
						|
			rtl = true
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	switch nt {
 | 
						|
	case ntConcatenate | beforeChild, ntAlternate | beforeChild, ntTestref | beforeChild, ntLoop | beforeChild, ntLazyloop | beforeChild:
 | 
						|
		break
 | 
						|
 | 
						|
	case ntTestgroup | beforeChild:
 | 
						|
		if CurIndex == 0 {
 | 
						|
			s.skipChild()
 | 
						|
		}
 | 
						|
		break
 | 
						|
 | 
						|
	case ntEmpty:
 | 
						|
		s.pushFC(regexFc{nullable: true})
 | 
						|
		break
 | 
						|
 | 
						|
	case ntConcatenate | afterChild:
 | 
						|
		if CurIndex != 0 {
 | 
						|
			child := s.popFC()
 | 
						|
			cumul := s.topFC()
 | 
						|
 | 
						|
			s.failed = !cumul.addFC(*child, true)
 | 
						|
		}
 | 
						|
 | 
						|
		fc := s.topFC()
 | 
						|
		if !fc.nullable {
 | 
						|
			s.skipAllChildren = true
 | 
						|
		}
 | 
						|
		break
 | 
						|
 | 
						|
	case ntTestgroup | afterChild:
 | 
						|
		if CurIndex > 1 {
 | 
						|
			child := s.popFC()
 | 
						|
			cumul := s.topFC()
 | 
						|
 | 
						|
			s.failed = !cumul.addFC(*child, false)
 | 
						|
		}
 | 
						|
		break
 | 
						|
 | 
						|
	case ntAlternate | afterChild, ntTestref | afterChild:
 | 
						|
		if CurIndex != 0 {
 | 
						|
			child := s.popFC()
 | 
						|
			cumul := s.topFC()
 | 
						|
 | 
						|
			s.failed = !cumul.addFC(*child, false)
 | 
						|
		}
 | 
						|
		break
 | 
						|
 | 
						|
	case ntLoop | afterChild, ntLazyloop | afterChild:
 | 
						|
		if node.m == 0 {
 | 
						|
			fc := s.topFC()
 | 
						|
			fc.nullable = true
 | 
						|
		}
 | 
						|
		break
 | 
						|
 | 
						|
	case ntGroup | beforeChild, ntGroup | afterChild, ntCapture | beforeChild, ntCapture | afterChild, ntGreedy | beforeChild, ntGreedy | afterChild:
 | 
						|
		break
 | 
						|
 | 
						|
	case ntRequire | beforeChild, ntPrevent | beforeChild:
 | 
						|
		s.skipChild()
 | 
						|
		s.pushFC(regexFc{nullable: true})
 | 
						|
		break
 | 
						|
 | 
						|
	case ntRequire | afterChild, ntPrevent | afterChild:
 | 
						|
		break
 | 
						|
 | 
						|
	case ntOne, ntNotone:
 | 
						|
		s.pushFC(newRegexFc(node.ch, nt == ntNotone, false, ci))
 | 
						|
		break
 | 
						|
 | 
						|
	case ntOneloop, ntOnelazy:
 | 
						|
		s.pushFC(newRegexFc(node.ch, false, node.m == 0, ci))
 | 
						|
		break
 | 
						|
 | 
						|
	case ntNotoneloop, ntNotonelazy:
 | 
						|
		s.pushFC(newRegexFc(node.ch, true, node.m == 0, ci))
 | 
						|
		break
 | 
						|
 | 
						|
	case ntMulti:
 | 
						|
		if len(node.str) == 0 {
 | 
						|
			s.pushFC(regexFc{nullable: true})
 | 
						|
		} else if !rtl {
 | 
						|
			s.pushFC(newRegexFc(node.str[0], false, false, ci))
 | 
						|
		} else {
 | 
						|
			s.pushFC(newRegexFc(node.str[len(node.str)-1], false, false, ci))
 | 
						|
		}
 | 
						|
		break
 | 
						|
 | 
						|
	case ntSet:
 | 
						|
		s.pushFC(regexFc{cc: node.set.Copy(), nullable: false, caseInsensitive: ci})
 | 
						|
		break
 | 
						|
 | 
						|
	case ntSetloop, ntSetlazy:
 | 
						|
		s.pushFC(regexFc{cc: node.set.Copy(), nullable: node.m == 0, caseInsensitive: ci})
 | 
						|
		break
 | 
						|
 | 
						|
	case ntRef:
 | 
						|
		s.pushFC(regexFc{cc: *AnyClass(), nullable: true, caseInsensitive: false})
 | 
						|
		break
 | 
						|
 | 
						|
	case ntNothing, ntBol, ntEol, ntBoundary, ntNonboundary, ntECMABoundary, ntNonECMABoundary, ntBeginning, ntStart, ntEndZ, ntEnd:
 | 
						|
		s.pushFC(regexFc{nullable: true})
 | 
						|
		break
 | 
						|
 | 
						|
	default:
 | 
						|
		panic(fmt.Sprintf("unexpected op code: %v", nt))
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
type regexFc struct {
 | 
						|
	cc              CharSet
 | 
						|
	nullable        bool
 | 
						|
	caseInsensitive bool
 | 
						|
}
 | 
						|
 | 
						|
func newRegexFc(ch rune, not, nullable, caseInsensitive bool) regexFc {
 | 
						|
	r := regexFc{
 | 
						|
		caseInsensitive: caseInsensitive,
 | 
						|
		nullable:        nullable,
 | 
						|
	}
 | 
						|
	if not {
 | 
						|
		if ch > 0 {
 | 
						|
			r.cc.addRange('\x00', ch-1)
 | 
						|
		}
 | 
						|
		if ch < 0xFFFF {
 | 
						|
			r.cc.addRange(ch+1, utf8.MaxRune)
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		r.cc.addRange(ch, ch)
 | 
						|
	}
 | 
						|
	return r
 | 
						|
}
 | 
						|
 | 
						|
func (r *regexFc) getFirstChars() CharSet {
 | 
						|
	if r.caseInsensitive {
 | 
						|
		r.cc.addLowercase()
 | 
						|
	}
 | 
						|
 | 
						|
	return r.cc
 | 
						|
}
 | 
						|
 | 
						|
func (r *regexFc) addFC(fc regexFc, concatenate bool) bool {
 | 
						|
	if !r.cc.IsMergeable() || !fc.cc.IsMergeable() {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
 | 
						|
	if concatenate {
 | 
						|
		if !r.nullable {
 | 
						|
			return true
 | 
						|
		}
 | 
						|
 | 
						|
		if !fc.nullable {
 | 
						|
			r.nullable = false
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		if fc.nullable {
 | 
						|
			r.nullable = true
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	r.caseInsensitive = r.caseInsensitive || fc.caseInsensitive
 | 
						|
	r.cc.addSet(fc.cc)
 | 
						|
 | 
						|
	return true
 | 
						|
}
 | 
						|
 | 
						|
// This is a related computation: it takes a RegexTree and computes the
 | 
						|
// leading substring if it sees one. It's quite trivial and gives up easily.
 | 
						|
func getPrefix(tree *RegexTree) *Prefix {
 | 
						|
	var concatNode *regexNode
 | 
						|
	nextChild := 0
 | 
						|
 | 
						|
	curNode := tree.root
 | 
						|
 | 
						|
	for {
 | 
						|
		switch curNode.t {
 | 
						|
		case ntConcatenate:
 | 
						|
			if len(curNode.children) > 0 {
 | 
						|
				concatNode = curNode
 | 
						|
				nextChild = 0
 | 
						|
			}
 | 
						|
 | 
						|
		case ntGreedy, ntCapture:
 | 
						|
			curNode = curNode.children[0]
 | 
						|
			concatNode = nil
 | 
						|
			continue
 | 
						|
 | 
						|
		case ntOneloop, ntOnelazy:
 | 
						|
			if curNode.m > 0 {
 | 
						|
				return &Prefix{
 | 
						|
					PrefixStr:       repeat(curNode.ch, curNode.m),
 | 
						|
					CaseInsensitive: (curNode.options & IgnoreCase) != 0,
 | 
						|
				}
 | 
						|
			}
 | 
						|
			return nil
 | 
						|
 | 
						|
		case ntOne:
 | 
						|
			return &Prefix{
 | 
						|
				PrefixStr:       []rune{curNode.ch},
 | 
						|
				CaseInsensitive: (curNode.options & IgnoreCase) != 0,
 | 
						|
			}
 | 
						|
 | 
						|
		case ntMulti:
 | 
						|
			return &Prefix{
 | 
						|
				PrefixStr:       curNode.str,
 | 
						|
				CaseInsensitive: (curNode.options & IgnoreCase) != 0,
 | 
						|
			}
 | 
						|
 | 
						|
		case ntBol, ntEol, ntBoundary, ntECMABoundary, ntBeginning, ntStart,
 | 
						|
			ntEndZ, ntEnd, ntEmpty, ntRequire, ntPrevent:
 | 
						|
 | 
						|
		default:
 | 
						|
			return nil
 | 
						|
		}
 | 
						|
 | 
						|
		if concatNode == nil || nextChild >= len(concatNode.children) {
 | 
						|
			return nil
 | 
						|
		}
 | 
						|
 | 
						|
		curNode = concatNode.children[nextChild]
 | 
						|
		nextChild++
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// repeat the rune r, c times... up to the max of MaxPrefixSize
 | 
						|
func repeat(r rune, c int) []rune {
 | 
						|
	if c > MaxPrefixSize {
 | 
						|
		c = MaxPrefixSize
 | 
						|
	}
 | 
						|
 | 
						|
	ret := make([]rune, c)
 | 
						|
 | 
						|
	// binary growth using copy for speed
 | 
						|
	ret[0] = r
 | 
						|
	bp := 1
 | 
						|
	for bp < len(ret) {
 | 
						|
		copy(ret[bp:], ret[:bp])
 | 
						|
		bp *= 2
 | 
						|
	}
 | 
						|
 | 
						|
	return ret
 | 
						|
}
 | 
						|
 | 
						|
// BmPrefix precomputes the Boyer-Moore
 | 
						|
// tables for fast string scanning. These tables allow
 | 
						|
// you to scan for the first occurrence of a string within
 | 
						|
// a large body of text without examining every character.
 | 
						|
// The performance of the heuristic depends on the actual
 | 
						|
// string and the text being searched, but usually, the longer
 | 
						|
// the string that is being searched for, the fewer characters
 | 
						|
// need to be examined.
 | 
						|
type BmPrefix struct {
 | 
						|
	positive        []int
 | 
						|
	negativeASCII   []int
 | 
						|
	negativeUnicode [][]int
 | 
						|
	pattern         []rune
 | 
						|
	lowASCII        rune
 | 
						|
	highASCII       rune
 | 
						|
	rightToLeft     bool
 | 
						|
	caseInsensitive bool
 | 
						|
}
 | 
						|
 | 
						|
func newBmPrefix(pattern []rune, caseInsensitive, rightToLeft bool) *BmPrefix {
 | 
						|
 | 
						|
	b := &BmPrefix{
 | 
						|
		rightToLeft:     rightToLeft,
 | 
						|
		caseInsensitive: caseInsensitive,
 | 
						|
		pattern:         pattern,
 | 
						|
	}
 | 
						|
 | 
						|
	if caseInsensitive {
 | 
						|
		for i := 0; i < len(b.pattern); i++ {
 | 
						|
			// We do the ToLower character by character for consistency.  With surrogate chars, doing
 | 
						|
			// a ToLower on the entire string could actually change the surrogate pair.  This is more correct
 | 
						|
			// linguistically, but since Regex doesn't support surrogates, it's more important to be
 | 
						|
			// consistent.
 | 
						|
 | 
						|
			b.pattern[i] = unicode.ToLower(b.pattern[i])
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	var beforefirst, last, bump int
 | 
						|
	var scan, match int
 | 
						|
 | 
						|
	if !rightToLeft {
 | 
						|
		beforefirst = -1
 | 
						|
		last = len(b.pattern) - 1
 | 
						|
		bump = 1
 | 
						|
	} else {
 | 
						|
		beforefirst = len(b.pattern)
 | 
						|
		last = 0
 | 
						|
		bump = -1
 | 
						|
	}
 | 
						|
 | 
						|
	// PART I - the good-suffix shift table
 | 
						|
	//
 | 
						|
	// compute the positive requirement:
 | 
						|
	// if char "i" is the first one from the right that doesn't match,
 | 
						|
	// then we know the matcher can advance by _positive[i].
 | 
						|
	//
 | 
						|
	// This algorithm is a simplified variant of the standard
 | 
						|
	// Boyer-Moore good suffix calculation.
 | 
						|
 | 
						|
	b.positive = make([]int, len(b.pattern))
 | 
						|
 | 
						|
	examine := last
 | 
						|
	ch := b.pattern[examine]
 | 
						|
	b.positive[examine] = bump
 | 
						|
	examine -= bump
 | 
						|
 | 
						|
Outerloop:
 | 
						|
	for {
 | 
						|
		// find an internal char (examine) that matches the tail
 | 
						|
 | 
						|
		for {
 | 
						|
			if examine == beforefirst {
 | 
						|
				break Outerloop
 | 
						|
			}
 | 
						|
			if b.pattern[examine] == ch {
 | 
						|
				break
 | 
						|
			}
 | 
						|
			examine -= bump
 | 
						|
		}
 | 
						|
 | 
						|
		match = last
 | 
						|
		scan = examine
 | 
						|
 | 
						|
		// find the length of the match
 | 
						|
		for {
 | 
						|
			if scan == beforefirst || b.pattern[match] != b.pattern[scan] {
 | 
						|
				// at the end of the match, note the difference in _positive
 | 
						|
				// this is not the length of the match, but the distance from the internal match
 | 
						|
				// to the tail suffix.
 | 
						|
				if b.positive[match] == 0 {
 | 
						|
					b.positive[match] = match - scan
 | 
						|
				}
 | 
						|
 | 
						|
				// System.Diagnostics.Debug.WriteLine("Set positive[" + match + "] to " + (match - scan));
 | 
						|
 | 
						|
				break
 | 
						|
			}
 | 
						|
 | 
						|
			scan -= bump
 | 
						|
			match -= bump
 | 
						|
		}
 | 
						|
 | 
						|
		examine -= bump
 | 
						|
	}
 | 
						|
 | 
						|
	match = last - bump
 | 
						|
 | 
						|
	// scan for the chars for which there are no shifts that yield a different candidate
 | 
						|
 | 
						|
	// The inside of the if statement used to say
 | 
						|
	// "_positive[match] = last - beforefirst;"
 | 
						|
	// This is slightly less aggressive in how much we skip, but at worst it
 | 
						|
	// should mean a little more work rather than skipping a potential match.
 | 
						|
	for match != beforefirst {
 | 
						|
		if b.positive[match] == 0 {
 | 
						|
			b.positive[match] = bump
 | 
						|
		}
 | 
						|
 | 
						|
		match -= bump
 | 
						|
	}
 | 
						|
 | 
						|
	// PART II - the bad-character shift table
 | 
						|
	//
 | 
						|
	// compute the negative requirement:
 | 
						|
	// if char "ch" is the reject character when testing position "i",
 | 
						|
	// we can slide up by _negative[ch];
 | 
						|
	// (_negative[ch] = str.Length - 1 - str.LastIndexOf(ch))
 | 
						|
	//
 | 
						|
	// the lookup table is divided into ASCII and Unicode portions;
 | 
						|
	// only those parts of the Unicode 16-bit code set that actually
 | 
						|
	// appear in the string are in the table. (Maximum size with
 | 
						|
	// Unicode is 65K; ASCII only case is 512 bytes.)
 | 
						|
 | 
						|
	b.negativeASCII = make([]int, 128)
 | 
						|
 | 
						|
	for i := 0; i < len(b.negativeASCII); i++ {
 | 
						|
		b.negativeASCII[i] = last - beforefirst
 | 
						|
	}
 | 
						|
 | 
						|
	b.lowASCII = 127
 | 
						|
	b.highASCII = 0
 | 
						|
 | 
						|
	for examine = last; examine != beforefirst; examine -= bump {
 | 
						|
		ch = b.pattern[examine]
 | 
						|
 | 
						|
		switch {
 | 
						|
		case ch < 128:
 | 
						|
			if b.lowASCII > ch {
 | 
						|
				b.lowASCII = ch
 | 
						|
			}
 | 
						|
 | 
						|
			if b.highASCII < ch {
 | 
						|
				b.highASCII = ch
 | 
						|
			}
 | 
						|
 | 
						|
			if b.negativeASCII[ch] == last-beforefirst {
 | 
						|
				b.negativeASCII[ch] = last - examine
 | 
						|
			}
 | 
						|
		case ch <= 0xffff:
 | 
						|
			i, j := ch>>8, ch&0xFF
 | 
						|
 | 
						|
			if b.negativeUnicode == nil {
 | 
						|
				b.negativeUnicode = make([][]int, 256)
 | 
						|
			}
 | 
						|
 | 
						|
			if b.negativeUnicode[i] == nil {
 | 
						|
				newarray := make([]int, 256)
 | 
						|
 | 
						|
				for k := 0; k < len(newarray); k++ {
 | 
						|
					newarray[k] = last - beforefirst
 | 
						|
				}
 | 
						|
 | 
						|
				if i == 0 {
 | 
						|
					copy(newarray, b.negativeASCII)
 | 
						|
					//TODO: this line needed?
 | 
						|
					b.negativeASCII = newarray
 | 
						|
				}
 | 
						|
 | 
						|
				b.negativeUnicode[i] = newarray
 | 
						|
			}
 | 
						|
 | 
						|
			if b.negativeUnicode[i][j] == last-beforefirst {
 | 
						|
				b.negativeUnicode[i][j] = last - examine
 | 
						|
			}
 | 
						|
		default:
 | 
						|
			// we can't do the filter because this algo doesn't support
 | 
						|
			// unicode chars >0xffff
 | 
						|
			return nil
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return b
 | 
						|
}
 | 
						|
 | 
						|
func (b *BmPrefix) String() string {
 | 
						|
	return string(b.pattern)
 | 
						|
}
 | 
						|
 | 
						|
// Dump returns the contents of the filter as a human readable string
 | 
						|
func (b *BmPrefix) Dump(indent string) string {
 | 
						|
	buf := &bytes.Buffer{}
 | 
						|
 | 
						|
	fmt.Fprintf(buf, "%sBM Pattern: %s\n%sPositive: ", indent, string(b.pattern), indent)
 | 
						|
	for i := 0; i < len(b.positive); i++ {
 | 
						|
		buf.WriteString(strconv.Itoa(b.positive[i]))
 | 
						|
		buf.WriteRune(' ')
 | 
						|
	}
 | 
						|
	buf.WriteRune('\n')
 | 
						|
 | 
						|
	if b.negativeASCII != nil {
 | 
						|
		buf.WriteString(indent)
 | 
						|
		buf.WriteString("Negative table\n")
 | 
						|
		for i := 0; i < len(b.negativeASCII); i++ {
 | 
						|
			if b.negativeASCII[i] != len(b.pattern) {
 | 
						|
				fmt.Fprintf(buf, "%s  %s %s\n", indent, Escape(string(rune(i))), strconv.Itoa(b.negativeASCII[i]))
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return buf.String()
 | 
						|
}
 | 
						|
 | 
						|
// Scan uses the Boyer-Moore algorithm to find the first occurrence
 | 
						|
// of the specified string within text, beginning at index, and
 | 
						|
// constrained within beglimit and endlimit.
 | 
						|
//
 | 
						|
// The direction and case-sensitivity of the match is determined
 | 
						|
// by the arguments to the RegexBoyerMoore constructor.
 | 
						|
func (b *BmPrefix) Scan(text []rune, index, beglimit, endlimit int) int {
 | 
						|
	var (
 | 
						|
		defadv, test, test2         int
 | 
						|
		match, startmatch, endmatch int
 | 
						|
		bump, advance               int
 | 
						|
		chTest                      rune
 | 
						|
		unicodeLookup               []int
 | 
						|
	)
 | 
						|
 | 
						|
	if !b.rightToLeft {
 | 
						|
		defadv = len(b.pattern)
 | 
						|
		startmatch = len(b.pattern) - 1
 | 
						|
		endmatch = 0
 | 
						|
		test = index + defadv - 1
 | 
						|
		bump = 1
 | 
						|
	} else {
 | 
						|
		defadv = -len(b.pattern)
 | 
						|
		startmatch = 0
 | 
						|
		endmatch = -defadv - 1
 | 
						|
		test = index + defadv
 | 
						|
		bump = -1
 | 
						|
	}
 | 
						|
 | 
						|
	chMatch := b.pattern[startmatch]
 | 
						|
 | 
						|
	for {
 | 
						|
		if test >= endlimit || test < beglimit {
 | 
						|
			return -1
 | 
						|
		}
 | 
						|
 | 
						|
		chTest = text[test]
 | 
						|
 | 
						|
		if b.caseInsensitive {
 | 
						|
			chTest = unicode.ToLower(chTest)
 | 
						|
		}
 | 
						|
 | 
						|
		if chTest != chMatch {
 | 
						|
			if chTest < 128 {
 | 
						|
				advance = b.negativeASCII[chTest]
 | 
						|
			} else if chTest < 0xffff && len(b.negativeUnicode) > 0 {
 | 
						|
				unicodeLookup = b.negativeUnicode[chTest>>8]
 | 
						|
				if len(unicodeLookup) > 0 {
 | 
						|
					advance = unicodeLookup[chTest&0xFF]
 | 
						|
				} else {
 | 
						|
					advance = defadv
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				advance = defadv
 | 
						|
			}
 | 
						|
 | 
						|
			test += advance
 | 
						|
		} else { // if (chTest == chMatch)
 | 
						|
			test2 = test
 | 
						|
			match = startmatch
 | 
						|
 | 
						|
			for {
 | 
						|
				if match == endmatch {
 | 
						|
					if b.rightToLeft {
 | 
						|
						return test2 + 1
 | 
						|
					} else {
 | 
						|
						return test2
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				match -= bump
 | 
						|
				test2 -= bump
 | 
						|
 | 
						|
				chTest = text[test2]
 | 
						|
 | 
						|
				if b.caseInsensitive {
 | 
						|
					chTest = unicode.ToLower(chTest)
 | 
						|
				}
 | 
						|
 | 
						|
				if chTest != b.pattern[match] {
 | 
						|
					advance = b.positive[match]
 | 
						|
					if (chTest & 0xFF80) == 0 {
 | 
						|
						test2 = (match - startmatch) + b.negativeASCII[chTest]
 | 
						|
					} else if chTest < 0xffff && len(b.negativeUnicode) > 0 {
 | 
						|
						unicodeLookup = b.negativeUnicode[chTest>>8]
 | 
						|
						if len(unicodeLookup) > 0 {
 | 
						|
							test2 = (match - startmatch) + unicodeLookup[chTest&0xFF]
 | 
						|
						} else {
 | 
						|
							test += advance
 | 
						|
							break
 | 
						|
						}
 | 
						|
					} else {
 | 
						|
						test += advance
 | 
						|
						break
 | 
						|
					}
 | 
						|
 | 
						|
					if b.rightToLeft {
 | 
						|
						if test2 < advance {
 | 
						|
							advance = test2
 | 
						|
						}
 | 
						|
					} else if test2 > advance {
 | 
						|
						advance = test2
 | 
						|
					}
 | 
						|
 | 
						|
					test += advance
 | 
						|
					break
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// When a regex is anchored, we can do a quick IsMatch test instead of a Scan
 | 
						|
func (b *BmPrefix) IsMatch(text []rune, index, beglimit, endlimit int) bool {
 | 
						|
	if !b.rightToLeft {
 | 
						|
		if index < beglimit || endlimit-index < len(b.pattern) {
 | 
						|
			return false
 | 
						|
		}
 | 
						|
 | 
						|
		return b.matchPattern(text, index)
 | 
						|
	} else {
 | 
						|
		if index > endlimit || index-beglimit < len(b.pattern) {
 | 
						|
			return false
 | 
						|
		}
 | 
						|
 | 
						|
		return b.matchPattern(text, index-len(b.pattern))
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (b *BmPrefix) matchPattern(text []rune, index int) bool {
 | 
						|
	if len(text)-index < len(b.pattern) {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
 | 
						|
	if b.caseInsensitive {
 | 
						|
		for i := 0; i < len(b.pattern); i++ {
 | 
						|
			//Debug.Assert(textinfo.ToLower(_pattern[i]) == _pattern[i], "pattern should be converted to lower case in constructor!");
 | 
						|
			if unicode.ToLower(text[index+i]) != b.pattern[i] {
 | 
						|
				return false
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return true
 | 
						|
	} else {
 | 
						|
		for i := 0; i < len(b.pattern); i++ {
 | 
						|
			if text[index+i] != b.pattern[i] {
 | 
						|
				return false
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return true
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
type AnchorLoc int16
 | 
						|
 | 
						|
// where the regex can be pegged
 | 
						|
const (
 | 
						|
	AnchorBeginning    AnchorLoc = 0x0001
 | 
						|
	AnchorBol                    = 0x0002
 | 
						|
	AnchorStart                  = 0x0004
 | 
						|
	AnchorEol                    = 0x0008
 | 
						|
	AnchorEndZ                   = 0x0010
 | 
						|
	AnchorEnd                    = 0x0020
 | 
						|
	AnchorBoundary               = 0x0040
 | 
						|
	AnchorECMABoundary           = 0x0080
 | 
						|
)
 | 
						|
 | 
						|
func getAnchors(tree *RegexTree) AnchorLoc {
 | 
						|
 | 
						|
	var concatNode *regexNode
 | 
						|
	nextChild, result := 0, AnchorLoc(0)
 | 
						|
 | 
						|
	curNode := tree.root
 | 
						|
 | 
						|
	for {
 | 
						|
		switch curNode.t {
 | 
						|
		case ntConcatenate:
 | 
						|
			if len(curNode.children) > 0 {
 | 
						|
				concatNode = curNode
 | 
						|
				nextChild = 0
 | 
						|
			}
 | 
						|
 | 
						|
		case ntGreedy, ntCapture:
 | 
						|
			curNode = curNode.children[0]
 | 
						|
			concatNode = nil
 | 
						|
			continue
 | 
						|
 | 
						|
		case ntBol, ntEol, ntBoundary, ntECMABoundary, ntBeginning,
 | 
						|
			ntStart, ntEndZ, ntEnd:
 | 
						|
			return result | anchorFromType(curNode.t)
 | 
						|
 | 
						|
		case ntEmpty, ntRequire, ntPrevent:
 | 
						|
 | 
						|
		default:
 | 
						|
			return result
 | 
						|
		}
 | 
						|
 | 
						|
		if concatNode == nil || nextChild >= len(concatNode.children) {
 | 
						|
			return result
 | 
						|
		}
 | 
						|
 | 
						|
		curNode = concatNode.children[nextChild]
 | 
						|
		nextChild++
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func anchorFromType(t nodeType) AnchorLoc {
 | 
						|
	switch t {
 | 
						|
	case ntBol:
 | 
						|
		return AnchorBol
 | 
						|
	case ntEol:
 | 
						|
		return AnchorEol
 | 
						|
	case ntBoundary:
 | 
						|
		return AnchorBoundary
 | 
						|
	case ntECMABoundary:
 | 
						|
		return AnchorECMABoundary
 | 
						|
	case ntBeginning:
 | 
						|
		return AnchorBeginning
 | 
						|
	case ntStart:
 | 
						|
		return AnchorStart
 | 
						|
	case ntEndZ:
 | 
						|
		return AnchorEndZ
 | 
						|
	case ntEnd:
 | 
						|
		return AnchorEnd
 | 
						|
	default:
 | 
						|
		return 0
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// anchorDescription returns a human-readable description of the anchors
 | 
						|
func (anchors AnchorLoc) String() string {
 | 
						|
	buf := &bytes.Buffer{}
 | 
						|
 | 
						|
	if 0 != (anchors & AnchorBeginning) {
 | 
						|
		buf.WriteString(", Beginning")
 | 
						|
	}
 | 
						|
	if 0 != (anchors & AnchorStart) {
 | 
						|
		buf.WriteString(", Start")
 | 
						|
	}
 | 
						|
	if 0 != (anchors & AnchorBol) {
 | 
						|
		buf.WriteString(", Bol")
 | 
						|
	}
 | 
						|
	if 0 != (anchors & AnchorBoundary) {
 | 
						|
		buf.WriteString(", Boundary")
 | 
						|
	}
 | 
						|
	if 0 != (anchors & AnchorECMABoundary) {
 | 
						|
		buf.WriteString(", ECMABoundary")
 | 
						|
	}
 | 
						|
	if 0 != (anchors & AnchorEol) {
 | 
						|
		buf.WriteString(", Eol")
 | 
						|
	}
 | 
						|
	if 0 != (anchors & AnchorEnd) {
 | 
						|
		buf.WriteString(", End")
 | 
						|
	}
 | 
						|
	if 0 != (anchors & AnchorEndZ) {
 | 
						|
		buf.WriteString(", EndZ")
 | 
						|
	}
 | 
						|
 | 
						|
	// trim off comma
 | 
						|
	if buf.Len() >= 2 {
 | 
						|
		return buf.String()[2:]
 | 
						|
	}
 | 
						|
	return "None"
 | 
						|
}
 |