mirror of
				https://github.com/go-gitea/gitea.git
				synced 2025-10-25 17:44:32 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			308 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			308 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2018 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| // This file provides the generic implementation of Sum and MAC. Other files
 | |
| // might provide optimized assembly implementations of some of this code.
 | |
| 
 | |
| package poly1305
 | |
| 
 | |
| import "encoding/binary"
 | |
| 
 | |
| // Poly1305 [RFC 7539] is a relatively simple algorithm: the authentication tag
 | |
| // for a 64 bytes message is approximately
 | |
| //
 | |
| //     s + m[0:16] * r⁴ + m[16:32] * r³ + m[32:48] * r² + m[48:64] * r  mod  2¹³⁰ - 5
 | |
| //
 | |
| // for some secret r and s. It can be computed sequentially like
 | |
| //
 | |
| //     for len(msg) > 0:
 | |
| //         h += read(msg, 16)
 | |
| //         h *= r
 | |
| //         h %= 2¹³⁰ - 5
 | |
| //     return h + s
 | |
| //
 | |
| // All the complexity is about doing performant constant-time math on numbers
 | |
| // larger than any available numeric type.
 | |
| 
 | |
| func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) {
 | |
| 	h := newMACGeneric(key)
 | |
| 	h.Write(msg)
 | |
| 	h.Sum(out)
 | |
| }
 | |
| 
 | |
| func newMACGeneric(key *[32]byte) (h macGeneric) {
 | |
| 	initialize(key, &h.r, &h.s)
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // macState holds numbers in saturated 64-bit little-endian limbs. That is,
 | |
| // the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸.
 | |
| type macState struct {
 | |
| 	// h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but
 | |
| 	// can grow larger during and after rounds.
 | |
| 	h [3]uint64
 | |
| 	// r and s are the private key components.
 | |
| 	r [2]uint64
 | |
| 	s [2]uint64
 | |
| }
 | |
| 
 | |
| type macGeneric struct {
 | |
| 	macState
 | |
| 
 | |
| 	buffer [TagSize]byte
 | |
| 	offset int
 | |
| }
 | |
| 
 | |
| // Write splits the incoming message into TagSize chunks, and passes them to
 | |
| // update. It buffers incomplete chunks.
 | |
| func (h *macGeneric) Write(p []byte) (int, error) {
 | |
| 	nn := len(p)
 | |
| 	if h.offset > 0 {
 | |
| 		n := copy(h.buffer[h.offset:], p)
 | |
| 		if h.offset+n < TagSize {
 | |
| 			h.offset += n
 | |
| 			return nn, nil
 | |
| 		}
 | |
| 		p = p[n:]
 | |
| 		h.offset = 0
 | |
| 		updateGeneric(&h.macState, h.buffer[:])
 | |
| 	}
 | |
| 	if n := len(p) - (len(p) % TagSize); n > 0 {
 | |
| 		updateGeneric(&h.macState, p[:n])
 | |
| 		p = p[n:]
 | |
| 	}
 | |
| 	if len(p) > 0 {
 | |
| 		h.offset += copy(h.buffer[h.offset:], p)
 | |
| 	}
 | |
| 	return nn, nil
 | |
| }
 | |
| 
 | |
| // Sum flushes the last incomplete chunk from the buffer, if any, and generates
 | |
| // the MAC output. It does not modify its state, in order to allow for multiple
 | |
| // calls to Sum, even if no Write is allowed after Sum.
 | |
| func (h *macGeneric) Sum(out *[TagSize]byte) {
 | |
| 	state := h.macState
 | |
| 	if h.offset > 0 {
 | |
| 		updateGeneric(&state, h.buffer[:h.offset])
 | |
| 	}
 | |
| 	finalize(out, &state.h, &state.s)
 | |
| }
 | |
| 
 | |
| // [rMask0, rMask1] is the specified Poly1305 clamping mask in little-endian. It
 | |
| // clears some bits of the secret coefficient to make it possible to implement
 | |
| // multiplication more efficiently.
 | |
| const (
 | |
| 	rMask0 = 0x0FFFFFFC0FFFFFFF
 | |
| 	rMask1 = 0x0FFFFFFC0FFFFFFC
 | |
| )
 | |
| 
 | |
| func initialize(key *[32]byte, r, s *[2]uint64) {
 | |
| 	r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0
 | |
| 	r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1
 | |
| 	s[0] = binary.LittleEndian.Uint64(key[16:24])
 | |
| 	s[1] = binary.LittleEndian.Uint64(key[24:32])
 | |
| }
 | |
| 
 | |
| // uint128 holds a 128-bit number as two 64-bit limbs, for use with the
 | |
| // bits.Mul64 and bits.Add64 intrinsics.
 | |
| type uint128 struct {
 | |
| 	lo, hi uint64
 | |
| }
 | |
| 
 | |
| func mul64(a, b uint64) uint128 {
 | |
| 	hi, lo := bitsMul64(a, b)
 | |
| 	return uint128{lo, hi}
 | |
| }
 | |
| 
 | |
| func add128(a, b uint128) uint128 {
 | |
| 	lo, c := bitsAdd64(a.lo, b.lo, 0)
 | |
| 	hi, c := bitsAdd64(a.hi, b.hi, c)
 | |
| 	if c != 0 {
 | |
| 		panic("poly1305: unexpected overflow")
 | |
| 	}
 | |
| 	return uint128{lo, hi}
 | |
| }
 | |
| 
 | |
| func shiftRightBy2(a uint128) uint128 {
 | |
| 	a.lo = a.lo>>2 | (a.hi&3)<<62
 | |
| 	a.hi = a.hi >> 2
 | |
| 	return a
 | |
| }
 | |
| 
 | |
| // updateGeneric absorbs msg into the state.h accumulator. For each chunk m of
 | |
| // 128 bits of message, it computes
 | |
| //
 | |
| //     h₊ = (h + m) * r  mod  2¹³⁰ - 5
 | |
| //
 | |
| // If the msg length is not a multiple of TagSize, it assumes the last
 | |
| // incomplete chunk is the final one.
 | |
| func updateGeneric(state *macState, msg []byte) {
 | |
| 	h0, h1, h2 := state.h[0], state.h[1], state.h[2]
 | |
| 	r0, r1 := state.r[0], state.r[1]
 | |
| 
 | |
| 	for len(msg) > 0 {
 | |
| 		var c uint64
 | |
| 
 | |
| 		// For the first step, h + m, we use a chain of bits.Add64 intrinsics.
 | |
| 		// The resulting value of h might exceed 2¹³⁰ - 5, but will be partially
 | |
| 		// reduced at the end of the multiplication below.
 | |
| 		//
 | |
| 		// The spec requires us to set a bit just above the message size, not to
 | |
| 		// hide leading zeroes. For full chunks, that's 1 << 128, so we can just
 | |
| 		// add 1 to the most significant (2¹²⁸) limb, h2.
 | |
| 		if len(msg) >= TagSize {
 | |
| 			h0, c = bitsAdd64(h0, binary.LittleEndian.Uint64(msg[0:8]), 0)
 | |
| 			h1, c = bitsAdd64(h1, binary.LittleEndian.Uint64(msg[8:16]), c)
 | |
| 			h2 += c + 1
 | |
| 
 | |
| 			msg = msg[TagSize:]
 | |
| 		} else {
 | |
| 			var buf [TagSize]byte
 | |
| 			copy(buf[:], msg)
 | |
| 			buf[len(msg)] = 1
 | |
| 
 | |
| 			h0, c = bitsAdd64(h0, binary.LittleEndian.Uint64(buf[0:8]), 0)
 | |
| 			h1, c = bitsAdd64(h1, binary.LittleEndian.Uint64(buf[8:16]), c)
 | |
| 			h2 += c
 | |
| 
 | |
| 			msg = nil
 | |
| 		}
 | |
| 
 | |
| 		// Multiplication of big number limbs is similar to elementary school
 | |
| 		// columnar multiplication. Instead of digits, there are 64-bit limbs.
 | |
| 		//
 | |
| 		// We are multiplying a 3 limbs number, h, by a 2 limbs number, r.
 | |
| 		//
 | |
| 		//                        h2    h1    h0  x
 | |
| 		//                              r1    r0  =
 | |
| 		//                       ----------------
 | |
| 		//                      h2r0  h1r0  h0r0     <-- individual 128-bit products
 | |
| 		//            +   h2r1  h1r1  h0r1
 | |
| 		//               ------------------------
 | |
| 		//                 m3    m2    m1    m0      <-- result in 128-bit overlapping limbs
 | |
| 		//               ------------------------
 | |
| 		//         m3.hi m2.hi m1.hi m0.hi           <-- carry propagation
 | |
| 		//     +         m3.lo m2.lo m1.lo m0.lo
 | |
| 		//        -------------------------------
 | |
| 		//           t4    t3    t2    t1    t0      <-- final result in 64-bit limbs
 | |
| 		//
 | |
| 		// The main difference from pen-and-paper multiplication is that we do
 | |
| 		// carry propagation in a separate step, as if we wrote two digit sums
 | |
| 		// at first (the 128-bit limbs), and then carried the tens all at once.
 | |
| 
 | |
| 		h0r0 := mul64(h0, r0)
 | |
| 		h1r0 := mul64(h1, r0)
 | |
| 		h2r0 := mul64(h2, r0)
 | |
| 		h0r1 := mul64(h0, r1)
 | |
| 		h1r1 := mul64(h1, r1)
 | |
| 		h2r1 := mul64(h2, r1)
 | |
| 
 | |
| 		// Since h2 is known to be at most 7 (5 + 1 + 1), and r0 and r1 have their
 | |
| 		// top 4 bits cleared by rMask{0,1}, we know that their product is not going
 | |
| 		// to overflow 64 bits, so we can ignore the high part of the products.
 | |
| 		//
 | |
| 		// This also means that the product doesn't have a fifth limb (t4).
 | |
| 		if h2r0.hi != 0 {
 | |
| 			panic("poly1305: unexpected overflow")
 | |
| 		}
 | |
| 		if h2r1.hi != 0 {
 | |
| 			panic("poly1305: unexpected overflow")
 | |
| 		}
 | |
| 
 | |
| 		m0 := h0r0
 | |
| 		m1 := add128(h1r0, h0r1) // These two additions don't overflow thanks again
 | |
| 		m2 := add128(h2r0, h1r1) // to the 4 masked bits at the top of r0 and r1.
 | |
| 		m3 := h2r1
 | |
| 
 | |
| 		t0 := m0.lo
 | |
| 		t1, c := bitsAdd64(m1.lo, m0.hi, 0)
 | |
| 		t2, c := bitsAdd64(m2.lo, m1.hi, c)
 | |
| 		t3, _ := bitsAdd64(m3.lo, m2.hi, c)
 | |
| 
 | |
| 		// Now we have the result as 4 64-bit limbs, and we need to reduce it
 | |
| 		// modulo 2¹³⁰ - 5. The special shape of this Crandall prime lets us do
 | |
| 		// a cheap partial reduction according to the reduction identity
 | |
| 		//
 | |
| 		//     c * 2¹³⁰ + n  =  c * 5 + n  mod  2¹³⁰ - 5
 | |
| 		//
 | |
| 		// because 2¹³⁰ = 5 mod 2¹³⁰ - 5. Partial reduction since the result is
 | |
| 		// likely to be larger than 2¹³⁰ - 5, but still small enough to fit the
 | |
| 		// assumptions we make about h in the rest of the code.
 | |
| 		//
 | |
| 		// See also https://speakerdeck.com/gtank/engineering-prime-numbers?slide=23
 | |
| 
 | |
| 		// We split the final result at the 2¹³⁰ mark into h and cc, the carry.
 | |
| 		// Note that the carry bits are effectively shifted left by 2, in other
 | |
| 		// words, cc = c * 4 for the c in the reduction identity.
 | |
| 		h0, h1, h2 = t0, t1, t2&maskLow2Bits
 | |
| 		cc := uint128{t2 & maskNotLow2Bits, t3}
 | |
| 
 | |
| 		// To add c * 5 to h, we first add cc = c * 4, and then add (cc >> 2) = c.
 | |
| 
 | |
| 		h0, c = bitsAdd64(h0, cc.lo, 0)
 | |
| 		h1, c = bitsAdd64(h1, cc.hi, c)
 | |
| 		h2 += c
 | |
| 
 | |
| 		cc = shiftRightBy2(cc)
 | |
| 
 | |
| 		h0, c = bitsAdd64(h0, cc.lo, 0)
 | |
| 		h1, c = bitsAdd64(h1, cc.hi, c)
 | |
| 		h2 += c
 | |
| 
 | |
| 		// h2 is at most 3 + 1 + 1 = 5, making the whole of h at most
 | |
| 		//
 | |
| 		//     5 * 2¹²⁸ + (2¹²⁸ - 1) = 6 * 2¹²⁸ - 1
 | |
| 	}
 | |
| 
 | |
| 	state.h[0], state.h[1], state.h[2] = h0, h1, h2
 | |
| }
 | |
| 
 | |
| const (
 | |
| 	maskLow2Bits    uint64 = 0x0000000000000003
 | |
| 	maskNotLow2Bits uint64 = ^maskLow2Bits
 | |
| )
 | |
| 
 | |
| // select64 returns x if v == 1 and y if v == 0, in constant time.
 | |
| func select64(v, x, y uint64) uint64 { return ^(v-1)&x | (v-1)&y }
 | |
| 
 | |
| // [p0, p1, p2] is 2¹³⁰ - 5 in little endian order.
 | |
| const (
 | |
| 	p0 = 0xFFFFFFFFFFFFFFFB
 | |
| 	p1 = 0xFFFFFFFFFFFFFFFF
 | |
| 	p2 = 0x0000000000000003
 | |
| )
 | |
| 
 | |
| // finalize completes the modular reduction of h and computes
 | |
| //
 | |
| //     out = h + s  mod  2¹²⁸
 | |
| //
 | |
| func finalize(out *[TagSize]byte, h *[3]uint64, s *[2]uint64) {
 | |
| 	h0, h1, h2 := h[0], h[1], h[2]
 | |
| 
 | |
| 	// After the partial reduction in updateGeneric, h might be more than
 | |
| 	// 2¹³⁰ - 5, but will be less than 2 * (2¹³⁰ - 5). To complete the reduction
 | |
| 	// in constant time, we compute t = h - (2¹³⁰ - 5), and select h as the
 | |
| 	// result if the subtraction underflows, and t otherwise.
 | |
| 
 | |
| 	hMinusP0, b := bitsSub64(h0, p0, 0)
 | |
| 	hMinusP1, b := bitsSub64(h1, p1, b)
 | |
| 	_, b = bitsSub64(h2, p2, b)
 | |
| 
 | |
| 	// h = h if h < p else h - p
 | |
| 	h0 = select64(b, h0, hMinusP0)
 | |
| 	h1 = select64(b, h1, hMinusP1)
 | |
| 
 | |
| 	// Finally, we compute the last Poly1305 step
 | |
| 	//
 | |
| 	//     tag = h + s  mod  2¹²⁸
 | |
| 	//
 | |
| 	// by just doing a wide addition with the 128 low bits of h and discarding
 | |
| 	// the overflow.
 | |
| 	h0, c := bitsAdd64(h0, s[0], 0)
 | |
| 	h1, _ = bitsAdd64(h1, s[1], c)
 | |
| 
 | |
| 	binary.LittleEndian.PutUint64(out[0:8], h0)
 | |
| 	binary.LittleEndian.PutUint64(out[8:16], h1)
 | |
| }
 |