mirror of
				https://github.com/go-gitea/gitea.git
				synced 2025-10-31 11:35:03 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			702 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			702 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2009 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package flate
 | |
| 
 | |
| import (
 | |
| 	"io"
 | |
| )
 | |
| 
 | |
| const (
 | |
| 	// The largest offset code.
 | |
| 	offsetCodeCount = 30
 | |
| 
 | |
| 	// The special code used to mark the end of a block.
 | |
| 	endBlockMarker = 256
 | |
| 
 | |
| 	// The first length code.
 | |
| 	lengthCodesStart = 257
 | |
| 
 | |
| 	// The number of codegen codes.
 | |
| 	codegenCodeCount = 19
 | |
| 	badCode          = 255
 | |
| 
 | |
| 	// bufferFlushSize indicates the buffer size
 | |
| 	// after which bytes are flushed to the writer.
 | |
| 	// Should preferably be a multiple of 6, since
 | |
| 	// we accumulate 6 bytes between writes to the buffer.
 | |
| 	bufferFlushSize = 240
 | |
| 
 | |
| 	// bufferSize is the actual output byte buffer size.
 | |
| 	// It must have additional headroom for a flush
 | |
| 	// which can contain up to 8 bytes.
 | |
| 	bufferSize = bufferFlushSize + 8
 | |
| )
 | |
| 
 | |
| // The number of extra bits needed by length code X - LENGTH_CODES_START.
 | |
| var lengthExtraBits = []int8{
 | |
| 	/* 257 */ 0, 0, 0,
 | |
| 	/* 260 */ 0, 0, 0, 0, 0, 1, 1, 1, 1, 2,
 | |
| 	/* 270 */ 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
 | |
| 	/* 280 */ 4, 5, 5, 5, 5, 0,
 | |
| }
 | |
| 
 | |
| // The length indicated by length code X - LENGTH_CODES_START.
 | |
| var lengthBase = []uint32{
 | |
| 	0, 1, 2, 3, 4, 5, 6, 7, 8, 10,
 | |
| 	12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
 | |
| 	64, 80, 96, 112, 128, 160, 192, 224, 255,
 | |
| }
 | |
| 
 | |
| // offset code word extra bits.
 | |
| var offsetExtraBits = []int8{
 | |
| 	0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
 | |
| 	4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
 | |
| 	9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
 | |
| 	/* extended window */
 | |
| 	14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20,
 | |
| }
 | |
| 
 | |
| var offsetBase = []uint32{
 | |
| 	/* normal deflate */
 | |
| 	0x000000, 0x000001, 0x000002, 0x000003, 0x000004,
 | |
| 	0x000006, 0x000008, 0x00000c, 0x000010, 0x000018,
 | |
| 	0x000020, 0x000030, 0x000040, 0x000060, 0x000080,
 | |
| 	0x0000c0, 0x000100, 0x000180, 0x000200, 0x000300,
 | |
| 	0x000400, 0x000600, 0x000800, 0x000c00, 0x001000,
 | |
| 	0x001800, 0x002000, 0x003000, 0x004000, 0x006000,
 | |
| 
 | |
| 	/* extended window */
 | |
| 	0x008000, 0x00c000, 0x010000, 0x018000, 0x020000,
 | |
| 	0x030000, 0x040000, 0x060000, 0x080000, 0x0c0000,
 | |
| 	0x100000, 0x180000, 0x200000, 0x300000,
 | |
| }
 | |
| 
 | |
| // The odd order in which the codegen code sizes are written.
 | |
| var codegenOrder = []uint32{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
 | |
| 
 | |
| type huffmanBitWriter struct {
 | |
| 	// writer is the underlying writer.
 | |
| 	// Do not use it directly; use the write method, which ensures
 | |
| 	// that Write errors are sticky.
 | |
| 	writer io.Writer
 | |
| 
 | |
| 	// Data waiting to be written is bytes[0:nbytes]
 | |
| 	// and then the low nbits of bits.
 | |
| 	bits            uint64
 | |
| 	nbits           uint
 | |
| 	bytes           [bufferSize]byte
 | |
| 	codegenFreq     [codegenCodeCount]int32
 | |
| 	nbytes          int
 | |
| 	literalFreq     []int32
 | |
| 	offsetFreq      []int32
 | |
| 	codegen         []uint8
 | |
| 	literalEncoding *huffmanEncoder
 | |
| 	offsetEncoding  *huffmanEncoder
 | |
| 	codegenEncoding *huffmanEncoder
 | |
| 	err             error
 | |
| }
 | |
| 
 | |
| func newHuffmanBitWriter(w io.Writer) *huffmanBitWriter {
 | |
| 	return &huffmanBitWriter{
 | |
| 		writer:          w,
 | |
| 		literalFreq:     make([]int32, maxNumLit),
 | |
| 		offsetFreq:      make([]int32, offsetCodeCount),
 | |
| 		codegen:         make([]uint8, maxNumLit+offsetCodeCount+1),
 | |
| 		literalEncoding: newHuffmanEncoder(maxNumLit),
 | |
| 		codegenEncoding: newHuffmanEncoder(codegenCodeCount),
 | |
| 		offsetEncoding:  newHuffmanEncoder(offsetCodeCount),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (w *huffmanBitWriter) reset(writer io.Writer) {
 | |
| 	w.writer = writer
 | |
| 	w.bits, w.nbits, w.nbytes, w.err = 0, 0, 0, nil
 | |
| 	w.bytes = [bufferSize]byte{}
 | |
| }
 | |
| 
 | |
| func (w *huffmanBitWriter) flush() {
 | |
| 	if w.err != nil {
 | |
| 		w.nbits = 0
 | |
| 		return
 | |
| 	}
 | |
| 	n := w.nbytes
 | |
| 	for w.nbits != 0 {
 | |
| 		w.bytes[n] = byte(w.bits)
 | |
| 		w.bits >>= 8
 | |
| 		if w.nbits > 8 { // Avoid underflow
 | |
| 			w.nbits -= 8
 | |
| 		} else {
 | |
| 			w.nbits = 0
 | |
| 		}
 | |
| 		n++
 | |
| 	}
 | |
| 	w.bits = 0
 | |
| 	w.write(w.bytes[:n])
 | |
| 	w.nbytes = 0
 | |
| }
 | |
| 
 | |
| func (w *huffmanBitWriter) write(b []byte) {
 | |
| 	if w.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 	_, w.err = w.writer.Write(b)
 | |
| }
 | |
| 
 | |
| func (w *huffmanBitWriter) writeBits(b int32, nb uint) {
 | |
| 	if w.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 	w.bits |= uint64(b) << w.nbits
 | |
| 	w.nbits += nb
 | |
| 	if w.nbits >= 48 {
 | |
| 		bits := w.bits
 | |
| 		w.bits >>= 48
 | |
| 		w.nbits -= 48
 | |
| 		n := w.nbytes
 | |
| 		bytes := w.bytes[n : n+6]
 | |
| 		bytes[0] = byte(bits)
 | |
| 		bytes[1] = byte(bits >> 8)
 | |
| 		bytes[2] = byte(bits >> 16)
 | |
| 		bytes[3] = byte(bits >> 24)
 | |
| 		bytes[4] = byte(bits >> 32)
 | |
| 		bytes[5] = byte(bits >> 40)
 | |
| 		n += 6
 | |
| 		if n >= bufferFlushSize {
 | |
| 			w.write(w.bytes[:n])
 | |
| 			n = 0
 | |
| 		}
 | |
| 		w.nbytes = n
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (w *huffmanBitWriter) writeBytes(bytes []byte) {
 | |
| 	if w.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 	n := w.nbytes
 | |
| 	if w.nbits&7 != 0 {
 | |
| 		w.err = InternalError("writeBytes with unfinished bits")
 | |
| 		return
 | |
| 	}
 | |
| 	for w.nbits != 0 {
 | |
| 		w.bytes[n] = byte(w.bits)
 | |
| 		w.bits >>= 8
 | |
| 		w.nbits -= 8
 | |
| 		n++
 | |
| 	}
 | |
| 	if n != 0 {
 | |
| 		w.write(w.bytes[:n])
 | |
| 	}
 | |
| 	w.nbytes = 0
 | |
| 	w.write(bytes)
 | |
| }
 | |
| 
 | |
| // RFC 1951 3.2.7 specifies a special run-length encoding for specifying
 | |
| // the literal and offset lengths arrays (which are concatenated into a single
 | |
| // array).  This method generates that run-length encoding.
 | |
| //
 | |
| // The result is written into the codegen array, and the frequencies
 | |
| // of each code is written into the codegenFreq array.
 | |
| // Codes 0-15 are single byte codes. Codes 16-18 are followed by additional
 | |
| // information. Code badCode is an end marker
 | |
| //
 | |
| //  numLiterals      The number of literals in literalEncoding
 | |
| //  numOffsets       The number of offsets in offsetEncoding
 | |
| //  litenc, offenc   The literal and offset encoder to use
 | |
| func (w *huffmanBitWriter) generateCodegen(numLiterals int, numOffsets int, litEnc, offEnc *huffmanEncoder) {
 | |
| 	for i := range w.codegenFreq {
 | |
| 		w.codegenFreq[i] = 0
 | |
| 	}
 | |
| 	// Note that we are using codegen both as a temporary variable for holding
 | |
| 	// a copy of the frequencies, and as the place where we put the result.
 | |
| 	// This is fine because the output is always shorter than the input used
 | |
| 	// so far.
 | |
| 	codegen := w.codegen // cache
 | |
| 	// Copy the concatenated code sizes to codegen. Put a marker at the end.
 | |
| 	cgnl := codegen[:numLiterals]
 | |
| 	for i := range cgnl {
 | |
| 		cgnl[i] = uint8(litEnc.codes[i].len)
 | |
| 	}
 | |
| 
 | |
| 	cgnl = codegen[numLiterals : numLiterals+numOffsets]
 | |
| 	for i := range cgnl {
 | |
| 		cgnl[i] = uint8(offEnc.codes[i].len)
 | |
| 	}
 | |
| 	codegen[numLiterals+numOffsets] = badCode
 | |
| 
 | |
| 	size := codegen[0]
 | |
| 	count := 1
 | |
| 	outIndex := 0
 | |
| 	for inIndex := 1; size != badCode; inIndex++ {
 | |
| 		// INVARIANT: We have seen "count" copies of size that have not yet
 | |
| 		// had output generated for them.
 | |
| 		nextSize := codegen[inIndex]
 | |
| 		if nextSize == size {
 | |
| 			count++
 | |
| 			continue
 | |
| 		}
 | |
| 		// We need to generate codegen indicating "count" of size.
 | |
| 		if size != 0 {
 | |
| 			codegen[outIndex] = size
 | |
| 			outIndex++
 | |
| 			w.codegenFreq[size]++
 | |
| 			count--
 | |
| 			for count >= 3 {
 | |
| 				n := 6
 | |
| 				if n > count {
 | |
| 					n = count
 | |
| 				}
 | |
| 				codegen[outIndex] = 16
 | |
| 				outIndex++
 | |
| 				codegen[outIndex] = uint8(n - 3)
 | |
| 				outIndex++
 | |
| 				w.codegenFreq[16]++
 | |
| 				count -= n
 | |
| 			}
 | |
| 		} else {
 | |
| 			for count >= 11 {
 | |
| 				n := 138
 | |
| 				if n > count {
 | |
| 					n = count
 | |
| 				}
 | |
| 				codegen[outIndex] = 18
 | |
| 				outIndex++
 | |
| 				codegen[outIndex] = uint8(n - 11)
 | |
| 				outIndex++
 | |
| 				w.codegenFreq[18]++
 | |
| 				count -= n
 | |
| 			}
 | |
| 			if count >= 3 {
 | |
| 				// count >= 3 && count <= 10
 | |
| 				codegen[outIndex] = 17
 | |
| 				outIndex++
 | |
| 				codegen[outIndex] = uint8(count - 3)
 | |
| 				outIndex++
 | |
| 				w.codegenFreq[17]++
 | |
| 				count = 0
 | |
| 			}
 | |
| 		}
 | |
| 		count--
 | |
| 		for ; count >= 0; count-- {
 | |
| 			codegen[outIndex] = size
 | |
| 			outIndex++
 | |
| 			w.codegenFreq[size]++
 | |
| 		}
 | |
| 		// Set up invariant for next time through the loop.
 | |
| 		size = nextSize
 | |
| 		count = 1
 | |
| 	}
 | |
| 	// Marker indicating the end of the codegen.
 | |
| 	codegen[outIndex] = badCode
 | |
| }
 | |
| 
 | |
| // dynamicSize returns the size of dynamically encoded data in bits.
 | |
| func (w *huffmanBitWriter) dynamicSize(litEnc, offEnc *huffmanEncoder, extraBits int) (size, numCodegens int) {
 | |
| 	numCodegens = len(w.codegenFreq)
 | |
| 	for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 {
 | |
| 		numCodegens--
 | |
| 	}
 | |
| 	header := 3 + 5 + 5 + 4 + (3 * numCodegens) +
 | |
| 		w.codegenEncoding.bitLength(w.codegenFreq[:]) +
 | |
| 		int(w.codegenFreq[16])*2 +
 | |
| 		int(w.codegenFreq[17])*3 +
 | |
| 		int(w.codegenFreq[18])*7
 | |
| 	size = header +
 | |
| 		litEnc.bitLength(w.literalFreq) +
 | |
| 		offEnc.bitLength(w.offsetFreq) +
 | |
| 		extraBits
 | |
| 
 | |
| 	return size, numCodegens
 | |
| }
 | |
| 
 | |
| // fixedSize returns the size of dynamically encoded data in bits.
 | |
| func (w *huffmanBitWriter) fixedSize(extraBits int) int {
 | |
| 	return 3 +
 | |
| 		fixedLiteralEncoding.bitLength(w.literalFreq) +
 | |
| 		fixedOffsetEncoding.bitLength(w.offsetFreq) +
 | |
| 		extraBits
 | |
| }
 | |
| 
 | |
| // storedSize calculates the stored size, including header.
 | |
| // The function returns the size in bits and whether the block
 | |
| // fits inside a single block.
 | |
| func (w *huffmanBitWriter) storedSize(in []byte) (int, bool) {
 | |
| 	if in == nil {
 | |
| 		return 0, false
 | |
| 	}
 | |
| 	if len(in) <= maxStoreBlockSize {
 | |
| 		return (len(in) + 5) * 8, true
 | |
| 	}
 | |
| 	return 0, false
 | |
| }
 | |
| 
 | |
| func (w *huffmanBitWriter) writeCode(c hcode) {
 | |
| 	if w.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 	w.bits |= uint64(c.code) << w.nbits
 | |
| 	w.nbits += uint(c.len)
 | |
| 	if w.nbits >= 48 {
 | |
| 		bits := w.bits
 | |
| 		w.bits >>= 48
 | |
| 		w.nbits -= 48
 | |
| 		n := w.nbytes
 | |
| 		bytes := w.bytes[n : n+6]
 | |
| 		bytes[0] = byte(bits)
 | |
| 		bytes[1] = byte(bits >> 8)
 | |
| 		bytes[2] = byte(bits >> 16)
 | |
| 		bytes[3] = byte(bits >> 24)
 | |
| 		bytes[4] = byte(bits >> 32)
 | |
| 		bytes[5] = byte(bits >> 40)
 | |
| 		n += 6
 | |
| 		if n >= bufferFlushSize {
 | |
| 			w.write(w.bytes[:n])
 | |
| 			n = 0
 | |
| 		}
 | |
| 		w.nbytes = n
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Write the header of a dynamic Huffman block to the output stream.
 | |
| //
 | |
| //  numLiterals  The number of literals specified in codegen
 | |
| //  numOffsets   The number of offsets specified in codegen
 | |
| //  numCodegens  The number of codegens used in codegen
 | |
| func (w *huffmanBitWriter) writeDynamicHeader(numLiterals int, numOffsets int, numCodegens int, isEof bool) {
 | |
| 	if w.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 	var firstBits int32 = 4
 | |
| 	if isEof {
 | |
| 		firstBits = 5
 | |
| 	}
 | |
| 	w.writeBits(firstBits, 3)
 | |
| 	w.writeBits(int32(numLiterals-257), 5)
 | |
| 	w.writeBits(int32(numOffsets-1), 5)
 | |
| 	w.writeBits(int32(numCodegens-4), 4)
 | |
| 
 | |
| 	for i := 0; i < numCodegens; i++ {
 | |
| 		value := uint(w.codegenEncoding.codes[codegenOrder[i]].len)
 | |
| 		w.writeBits(int32(value), 3)
 | |
| 	}
 | |
| 
 | |
| 	i := 0
 | |
| 	for {
 | |
| 		var codeWord int = int(w.codegen[i])
 | |
| 		i++
 | |
| 		if codeWord == badCode {
 | |
| 			break
 | |
| 		}
 | |
| 		w.writeCode(w.codegenEncoding.codes[uint32(codeWord)])
 | |
| 
 | |
| 		switch codeWord {
 | |
| 		case 16:
 | |
| 			w.writeBits(int32(w.codegen[i]), 2)
 | |
| 			i++
 | |
| 			break
 | |
| 		case 17:
 | |
| 			w.writeBits(int32(w.codegen[i]), 3)
 | |
| 			i++
 | |
| 			break
 | |
| 		case 18:
 | |
| 			w.writeBits(int32(w.codegen[i]), 7)
 | |
| 			i++
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (w *huffmanBitWriter) writeStoredHeader(length int, isEof bool) {
 | |
| 	if w.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 	var flag int32
 | |
| 	if isEof {
 | |
| 		flag = 1
 | |
| 	}
 | |
| 	w.writeBits(flag, 3)
 | |
| 	w.flush()
 | |
| 	w.writeBits(int32(length), 16)
 | |
| 	w.writeBits(int32(^uint16(length)), 16)
 | |
| }
 | |
| 
 | |
| func (w *huffmanBitWriter) writeFixedHeader(isEof bool) {
 | |
| 	if w.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 	// Indicate that we are a fixed Huffman block
 | |
| 	var value int32 = 2
 | |
| 	if isEof {
 | |
| 		value = 3
 | |
| 	}
 | |
| 	w.writeBits(value, 3)
 | |
| }
 | |
| 
 | |
| // writeBlock will write a block of tokens with the smallest encoding.
 | |
| // The original input can be supplied, and if the huffman encoded data
 | |
| // is larger than the original bytes, the data will be written as a
 | |
| // stored block.
 | |
| // If the input is nil, the tokens will always be Huffman encoded.
 | |
| func (w *huffmanBitWriter) writeBlock(tokens []token, eof bool, input []byte) {
 | |
| 	if w.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	tokens = append(tokens, endBlockMarker)
 | |
| 	numLiterals, numOffsets := w.indexTokens(tokens)
 | |
| 
 | |
| 	var extraBits int
 | |
| 	storedSize, storable := w.storedSize(input)
 | |
| 	if storable {
 | |
| 		// We only bother calculating the costs of the extra bits required by
 | |
| 		// the length of offset fields (which will be the same for both fixed
 | |
| 		// and dynamic encoding), if we need to compare those two encodings
 | |
| 		// against stored encoding.
 | |
| 		for lengthCode := lengthCodesStart + 8; lengthCode < numLiterals; lengthCode++ {
 | |
| 			// First eight length codes have extra size = 0.
 | |
| 			extraBits += int(w.literalFreq[lengthCode]) * int(lengthExtraBits[lengthCode-lengthCodesStart])
 | |
| 		}
 | |
| 		for offsetCode := 4; offsetCode < numOffsets; offsetCode++ {
 | |
| 			// First four offset codes have extra size = 0.
 | |
| 			extraBits += int(w.offsetFreq[offsetCode]) * int(offsetExtraBits[offsetCode])
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Figure out smallest code.
 | |
| 	// Fixed Huffman baseline.
 | |
| 	var literalEncoding = fixedLiteralEncoding
 | |
| 	var offsetEncoding = fixedOffsetEncoding
 | |
| 	var size = w.fixedSize(extraBits)
 | |
| 
 | |
| 	// Dynamic Huffman?
 | |
| 	var numCodegens int
 | |
| 
 | |
| 	// Generate codegen and codegenFrequencies, which indicates how to encode
 | |
| 	// the literalEncoding and the offsetEncoding.
 | |
| 	w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
 | |
| 	w.codegenEncoding.generate(w.codegenFreq[:], 7)
 | |
| 	dynamicSize, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, extraBits)
 | |
| 
 | |
| 	if dynamicSize < size {
 | |
| 		size = dynamicSize
 | |
| 		literalEncoding = w.literalEncoding
 | |
| 		offsetEncoding = w.offsetEncoding
 | |
| 	}
 | |
| 
 | |
| 	// Stored bytes?
 | |
| 	if storable && storedSize < size {
 | |
| 		w.writeStoredHeader(len(input), eof)
 | |
| 		w.writeBytes(input)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// Huffman.
 | |
| 	if literalEncoding == fixedLiteralEncoding {
 | |
| 		w.writeFixedHeader(eof)
 | |
| 	} else {
 | |
| 		w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
 | |
| 	}
 | |
| 
 | |
| 	// Write the tokens.
 | |
| 	w.writeTokens(tokens, literalEncoding.codes, offsetEncoding.codes)
 | |
| }
 | |
| 
 | |
| // writeBlockDynamic encodes a block using a dynamic Huffman table.
 | |
| // This should be used if the symbols used have a disproportionate
 | |
| // histogram distribution.
 | |
| // If input is supplied and the compression savings are below 1/16th of the
 | |
| // input size the block is stored.
 | |
| func (w *huffmanBitWriter) writeBlockDynamic(tokens []token, eof bool, input []byte) {
 | |
| 	if w.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	tokens = append(tokens, endBlockMarker)
 | |
| 	numLiterals, numOffsets := w.indexTokens(tokens)
 | |
| 
 | |
| 	// Generate codegen and codegenFrequencies, which indicates how to encode
 | |
| 	// the literalEncoding and the offsetEncoding.
 | |
| 	w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding)
 | |
| 	w.codegenEncoding.generate(w.codegenFreq[:], 7)
 | |
| 	size, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, 0)
 | |
| 
 | |
| 	// Store bytes, if we don't get a reasonable improvement.
 | |
| 	if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
 | |
| 		w.writeStoredHeader(len(input), eof)
 | |
| 		w.writeBytes(input)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// Write Huffman table.
 | |
| 	w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
 | |
| 
 | |
| 	// Write the tokens.
 | |
| 	w.writeTokens(tokens, w.literalEncoding.codes, w.offsetEncoding.codes)
 | |
| }
 | |
| 
 | |
| // indexTokens indexes a slice of tokens, and updates
 | |
| // literalFreq and offsetFreq, and generates literalEncoding
 | |
| // and offsetEncoding.
 | |
| // The number of literal and offset tokens is returned.
 | |
| func (w *huffmanBitWriter) indexTokens(tokens []token) (numLiterals, numOffsets int) {
 | |
| 	for i := range w.literalFreq {
 | |
| 		w.literalFreq[i] = 0
 | |
| 	}
 | |
| 	for i := range w.offsetFreq {
 | |
| 		w.offsetFreq[i] = 0
 | |
| 	}
 | |
| 
 | |
| 	for _, t := range tokens {
 | |
| 		if t < matchType {
 | |
| 			w.literalFreq[t.literal()]++
 | |
| 			continue
 | |
| 		}
 | |
| 		length := t.length()
 | |
| 		offset := t.offset()
 | |
| 		w.literalFreq[lengthCodesStart+lengthCode(length)]++
 | |
| 		w.offsetFreq[offsetCode(offset)]++
 | |
| 	}
 | |
| 
 | |
| 	// get the number of literals
 | |
| 	numLiterals = len(w.literalFreq)
 | |
| 	for w.literalFreq[numLiterals-1] == 0 {
 | |
| 		numLiterals--
 | |
| 	}
 | |
| 	// get the number of offsets
 | |
| 	numOffsets = len(w.offsetFreq)
 | |
| 	for numOffsets > 0 && w.offsetFreq[numOffsets-1] == 0 {
 | |
| 		numOffsets--
 | |
| 	}
 | |
| 	if numOffsets == 0 {
 | |
| 		// We haven't found a single match. If we want to go with the dynamic encoding,
 | |
| 		// we should count at least one offset to be sure that the offset huffman tree could be encoded.
 | |
| 		w.offsetFreq[0] = 1
 | |
| 		numOffsets = 1
 | |
| 	}
 | |
| 	w.literalEncoding.generate(w.literalFreq, 15)
 | |
| 	w.offsetEncoding.generate(w.offsetFreq, 15)
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // writeTokens writes a slice of tokens to the output.
 | |
| // codes for literal and offset encoding must be supplied.
 | |
| func (w *huffmanBitWriter) writeTokens(tokens []token, leCodes, oeCodes []hcode) {
 | |
| 	if w.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 	for _, t := range tokens {
 | |
| 		if t < matchType {
 | |
| 			w.writeCode(leCodes[t.literal()])
 | |
| 			continue
 | |
| 		}
 | |
| 		// Write the length
 | |
| 		length := t.length()
 | |
| 		lengthCode := lengthCode(length)
 | |
| 		w.writeCode(leCodes[lengthCode+lengthCodesStart])
 | |
| 		extraLengthBits := uint(lengthExtraBits[lengthCode])
 | |
| 		if extraLengthBits > 0 {
 | |
| 			extraLength := int32(length - lengthBase[lengthCode])
 | |
| 			w.writeBits(extraLength, extraLengthBits)
 | |
| 		}
 | |
| 		// Write the offset
 | |
| 		offset := t.offset()
 | |
| 		offsetCode := offsetCode(offset)
 | |
| 		w.writeCode(oeCodes[offsetCode])
 | |
| 		extraOffsetBits := uint(offsetExtraBits[offsetCode])
 | |
| 		if extraOffsetBits > 0 {
 | |
| 			extraOffset := int32(offset - offsetBase[offsetCode])
 | |
| 			w.writeBits(extraOffset, extraOffsetBits)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // huffOffset is a static offset encoder used for huffman only encoding.
 | |
| // It can be reused since we will not be encoding offset values.
 | |
| var huffOffset *huffmanEncoder
 | |
| 
 | |
| func init() {
 | |
| 	w := newHuffmanBitWriter(nil)
 | |
| 	w.offsetFreq[0] = 1
 | |
| 	huffOffset = newHuffmanEncoder(offsetCodeCount)
 | |
| 	huffOffset.generate(w.offsetFreq, 15)
 | |
| }
 | |
| 
 | |
| // writeBlockHuff encodes a block of bytes as either
 | |
| // Huffman encoded literals or uncompressed bytes if the
 | |
| // results only gains very little from compression.
 | |
| func (w *huffmanBitWriter) writeBlockHuff(eof bool, input []byte) {
 | |
| 	if w.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// Clear histogram
 | |
| 	for i := range w.literalFreq {
 | |
| 		w.literalFreq[i] = 0
 | |
| 	}
 | |
| 
 | |
| 	// Add everything as literals
 | |
| 	histogram(input, w.literalFreq)
 | |
| 
 | |
| 	w.literalFreq[endBlockMarker] = 1
 | |
| 
 | |
| 	const numLiterals = endBlockMarker + 1
 | |
| 	const numOffsets = 1
 | |
| 
 | |
| 	w.literalEncoding.generate(w.literalFreq, 15)
 | |
| 
 | |
| 	// Figure out smallest code.
 | |
| 	// Always use dynamic Huffman or Store
 | |
| 	var numCodegens int
 | |
| 
 | |
| 	// Generate codegen and codegenFrequencies, which indicates how to encode
 | |
| 	// the literalEncoding and the offsetEncoding.
 | |
| 	w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, huffOffset)
 | |
| 	w.codegenEncoding.generate(w.codegenFreq[:], 7)
 | |
| 	size, numCodegens := w.dynamicSize(w.literalEncoding, huffOffset, 0)
 | |
| 
 | |
| 	// Store bytes, if we don't get a reasonable improvement.
 | |
| 	if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) {
 | |
| 		w.writeStoredHeader(len(input), eof)
 | |
| 		w.writeBytes(input)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	// Huffman.
 | |
| 	w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
 | |
| 	encoding := w.literalEncoding.codes[:257]
 | |
| 	n := w.nbytes
 | |
| 	for _, t := range input {
 | |
| 		// Bitwriting inlined, ~30% speedup
 | |
| 		c := encoding[t]
 | |
| 		w.bits |= uint64(c.code) << w.nbits
 | |
| 		w.nbits += uint(c.len)
 | |
| 		if w.nbits < 48 {
 | |
| 			continue
 | |
| 		}
 | |
| 		// Store 6 bytes
 | |
| 		bits := w.bits
 | |
| 		w.bits >>= 48
 | |
| 		w.nbits -= 48
 | |
| 		bytes := w.bytes[n : n+6]
 | |
| 		bytes[0] = byte(bits)
 | |
| 		bytes[1] = byte(bits >> 8)
 | |
| 		bytes[2] = byte(bits >> 16)
 | |
| 		bytes[3] = byte(bits >> 24)
 | |
| 		bytes[4] = byte(bits >> 32)
 | |
| 		bytes[5] = byte(bits >> 40)
 | |
| 		n += 6
 | |
| 		if n < bufferFlushSize {
 | |
| 			continue
 | |
| 		}
 | |
| 		w.write(w.bytes[:n])
 | |
| 		if w.err != nil {
 | |
| 			return // Return early in the event of write failures
 | |
| 		}
 | |
| 		n = 0
 | |
| 	}
 | |
| 	w.nbytes = n
 | |
| 	w.writeCode(encoding[endBlockMarker])
 | |
| }
 |