icinga2/docs/icinga2-config-syntax.md

420 lines
9.1 KiB
Markdown
Raw Normal View History

2013-09-25 13:51:48 +02:00
Configuration Syntax
====================
Object Definition
-----------------
Icinga 2 features an object-based configuration format. In order to
define objects the *object* keyword is used:
object Host "host1.example.org" {
display_name = "host1",
check_interval = 30,
retry_interval = 15,
macros = {
address = "192.168.0.1"
}
}
> **Note**
>
> The Icinga 2 configuration format is agnostic to whitespaces and
> new-lines.
> **Note**
>
> Colons (:) are not permitted in object names.
Each object is uniquely identified by its type (*Host*) and name
(*host1.example.org*). Objects can contain a comma-separated list of
property declarations. The following data types are available for
property values:
### Numeric Literals
A floating-point number.
Example:
-27.3
### Duration Literal
Similar to floating-point numbers except for that fact that they support
suffixes to help with specifying time durations.
Example:
2.5m
Supported suffixes include ms (milliseconds), s (seconds), m (minutes)
and h (hours).
### String Literals
A string.
Example:
"Hello World!"
Certain characters need to be escaped. The following escape sequences
are supported:
------------------------------------ ------------------------------------
Character Escape sequence
" \\"
\<TAB\> \\t
\<CARRIAGE-RETURN\> \\r
\<LINE-FEED\> \\n
\<BEL\> \\b
\<FORM-FEED\> \\f
------------------------------------ ------------------------------------
In addition to these pre-defined escape sequences you can specify
arbitrary ASCII characters using the backslash character (\\) followed
by an ASCII character in octal encoding.
### Multiline String Literals
Strings spanning multiple lines can be specified by enclosing them in
{{{ and }}}.
Example.
{{{This
is
a multi-line
string.}}}
### Boolean Literals
The keywords *true* and *false* are equivalent to 1 and 0 respectively.
### Null Value
The *null* keyword can be used to specify an empty value.
### Dictionary
An unordered list of key-value pairs. Keys must be unique and are
compared in a case-insensitive manner.
Individual key-value pairs must be separated from each other with a
comma. The comma after the last key-value pair is optional.
Example:
{
address = "192.168.0.1",
port = 443
}
> **Note**
>
> Identifiers may not contain certain characters (e.g. space) or start
> with certain characters (e.g. digits). If you want to use a dictionary
> key that is not a valid identifier you can put the key in double
> quotes.
> **Note**
>
> Setting a dictionary key to null causes the key to be removed from the
> dictionary.
### Array
An ordered list of values.
Individual array elements must be separated from each other with a
comma. The comma after the last element is optional.
Example:
[
"hello",
"world",
42,
[ "a", "nested", "array" ]
]
> **Note**
>
> An array may simultaneously contain values of different types, e.g.
> strings and numbers.
Operators
---------
In addition to the *=* operator shown above a number of other operators
to manipulate configuration objects are supported. Heres a list of all
available operators:
### Operator *=*
Sets a dictionary element to the specified value.
Example:
{
a = 5,
a = 7
}
In this example a has the value 7 after both instructions are executed.
### Operator *+=*
Modifies a dictionary or array by adding new elements to it.
Example:
{
a = [ "hello" ],
a += [ "world" ]
}
In this example a contains both *"hello"* and *"world"*. This currently
only works for dictionaries and arrays. Support for numbers might be
added later on.
### Operator *-=*
Removes elements from a dictionary.
Example:
{
a = { "hello", "world" },
a -= { "world" }
}
In this example a contains *"hello"*. Trying to remove an item that does
not exist is not an error. Not implemented yet.
### Operator *\*=*
Multiplies an existing dictionary element with the specified number. If
the dictionary element does not already exist 0 is used as its value.
Example:
{
a = 60,
a *= 5
}
In this example a is 300. This only works for numbers. Not implemented
yet.
### Operator */=*
Divides an existing dictionary element by the specified number. If the
dictionary element does not already exist 0 is used as its value.
Example:
{
a = 300,
a /= 5
}
In this example a is 60. This only works for numbers. Not implemented
yet.
Attribute Shortcuts
-------------------
### Indexer Shortcut
Example:
{
hello["key"] = "world"
}
This is equivalent to writing:
{
hello += {
key = "world"
}
}
Specifiers
----------
Objects can have specifiers that have special meaning. The following
specifiers can be used (prefacing the *object* keyword):
### Specifier *abstract*
This specifier identifies the object as a template which can be used by
other object definitions. The object will not be instantiated on its
own.
Instead of using the *abstract* specifier you can use the *template*
keyword which is a shorthand for writing *abstract object*:
template Service "http" {
...
}
### Specifier *local*
This specifier disables replication for this object. The object will not
be sent to remote Icinga instances.
Inheritance
-----------
Objects can inherit attributes from one or more other objects.
Example:
template Host "default-host" {
check_interval = 30,
macros = {
color = "red"
}
}
template Host "test-host" inherits "default-host" {
macros += {
color = "blue"
}
}
object Host "localhost" inherits "test-host" {
macros += {
address = "127.0.0.1",
address6 = "::1"
}
}
> **Note**
>
> The *"default-host"* and *"test-host"* objects are marked as templates
> using the *abstract* keyword. Parent objects do not necessarily have
> to be *abstract* though in general they are.
> **Note**
>
> The += operator is used to insert additional properties into the
> macros dictionary. The final dictionary contains all 3 macros and the
> property *color* has the value *"blue"*.
Parent objects are resolved in the order theyre specified using the
*inherits* keyword.
Comments
--------
The Icinga 2 configuration format supports C/C++-style comments.
Example:
/*
This is a comment.
*/
object Host "localhost" {
check_interval = 30, // this is also a comment.
retry_interval = 15
}
Includes
--------
Other configuration files can be included using the *include* directive.
Paths must be relative to the configuration file that contains the
*include* directive.
Example:
include "some/other/file.conf"
include "conf.d/*.conf"
> **Note**
>
> Wildcard includes are not recursive.
Icinga also supports include search paths similar to how they work in a
C/C++ compiler:
include <itl/itl.conf>
Note the use of angle brackets instead of double quotes. This causes the
config compiler to search the include search paths for the specified
file. By default \$PREFIX/icinga2 is included in the list of search
paths.
Wildcards are not permitted when using angle brackets.
Library directive
-----------------
The *library* directive can be used to manually load additional
libraries. Upon loading these libraries may provide additional types or
methods.
Example:
library "snmphelper"
> **Note**
>
> The *icinga* library is automatically loaded at startup.
Type Definition
---------------
By default Icinga has no way of semantically verifying its configuration
objects. This is where type definitions come in. Using type definitions
you can specify which attributes are allowed in an object definition.
Example:
type Pizza {
%require "radius",
%attribute number "radius",
%attribute dictionary "ingredients" {
%validator "ValidateIngredients",
%attribute string "*",
%attribute dictionary "*" {
%attribute number "quantity",
%attribute string "name"
}
},
%attribute any "custom::*"
}
The Pizza definition provides the following validation rules:
- Pizza objects must contain an attribute *radius* which has to be a
number.
- Pizza objects may contain an attribute *ingredients* which has to be
a dictionary.
- Elements in the ingredients dictionary can be either a string or a
dictionary.
- If theyre a dictionary they may contain attributes *quantity* (of
type number) and *name* (of type string).
- The script function *ValidateIngredients* is run to perform further
validation of the ingredients dictionary.
- Pizza objects may contain attribute matching the pattern
*custom::\** of any type.
Valid types for type rules include: \* any \* number \* string \* scalar
(an alias for string) \* dictionary