/* Icinga 2 | (c) 2012 Icinga GmbH | GPLv2+ */ #include "base/utility.hpp" #include "test/utils.hpp" #include #include #ifdef _WIN32 # include # include #endif /* _WIN32 */ using namespace icinga; BOOST_AUTO_TEST_SUITE(base_utility) BOOST_AUTO_TEST_CASE(parse_version) { BOOST_CHECK(Utility::ParseVersion("2.11.0-0.rc1.1") == "2.11.0"); BOOST_CHECK(Utility::ParseVersion("v2.10.5") == "2.10.5"); BOOST_CHECK(Utility::ParseVersion("r2.11.1") == "2.11.1"); BOOST_CHECK(Utility::ParseVersion("v2.11.0-rc1-58-g7c1f716da") == "2.11.0"); BOOST_CHECK(Utility::ParseVersion("v2.11butactually3.0") == "v2.11butactually3.0"); } BOOST_AUTO_TEST_CASE(compare_version) { BOOST_CHECK(Utility::CompareVersion("2.10.5", Utility::ParseVersion("v2.10.4")) < 0); BOOST_CHECK(Utility::CompareVersion("2.11.0", Utility::ParseVersion("2.11.0-0")) == 0); BOOST_CHECK(Utility::CompareVersion("2.10.5", Utility::ParseVersion("2.11.0-0.rc1.1")) > 0); } BOOST_AUTO_TEST_CASE(comparepasswords_works) { BOOST_CHECK(Utility::ComparePasswords("", "")); BOOST_CHECK(!Utility::ComparePasswords("x", "")); BOOST_CHECK(!Utility::ComparePasswords("", "x")); BOOST_CHECK(Utility::ComparePasswords("x", "x")); BOOST_CHECK(!Utility::ComparePasswords("x", "y")); BOOST_CHECK(Utility::ComparePasswords("abcd", "abcd")); BOOST_CHECK(!Utility::ComparePasswords("abc", "abcd")); BOOST_CHECK(!Utility::ComparePasswords("abcde", "abcd")); } BOOST_AUTO_TEST_CASE(comparepasswords_issafe) { using std::chrono::duration_cast; using std::chrono::microseconds; using std::chrono::steady_clock; String a, b; a.Append(200000001, 'a'); b.Append(200000002, 'b'); auto start1 (steady_clock::now()); Utility::ComparePasswords(a, a); auto duration1 (steady_clock::now() - start1); auto start2 (steady_clock::now()); Utility::ComparePasswords(a, b); auto duration2 (steady_clock::now() - start2); double diff = (double)duration_cast(duration1).count() / (double)duration_cast(duration2).count(); BOOST_WARN(0.9 <= diff && diff <= 1.1); } BOOST_AUTO_TEST_CASE(validateutf8) { BOOST_CHECK(Utility::ValidateUTF8("") == ""); BOOST_CHECK(Utility::ValidateUTF8("a") == "a"); BOOST_CHECK(Utility::ValidateUTF8("\xC3") == "\xEF\xBF\xBD"); BOOST_CHECK(Utility::ValidateUTF8("\xC3\xA4") == "\xC3\xA4"); } BOOST_AUTO_TEST_CASE(EscapeCreateProcessArg) { #ifdef _WIN32 using convert = std::wstring_convert, wchar_t>; std::vector testdata = { R"(foobar)", R"(foo bar)", R"(foo"bar)", R"("foo bar")", R"(" \" \\" \\\" \\\\")", R"( !"#$$%&'()*+,-./09:;<=>?@AZ[\]^_`az{|}~ " \" \\" \\\" \\\\")", "'foo\nbar'", }; for (const auto& t : testdata) { // Prepend some fake exec name as the first argument is handled differently. std::string escaped = "some.exe " + Utility::EscapeCreateProcessArg(t); int argc; std::shared_ptr argv(CommandLineToArgvW(convert{}.from_bytes(escaped.c_str()).data(), &argc), LocalFree); BOOST_CHECK_MESSAGE(argv != nullptr, "CommandLineToArgvW() should not return nullptr for " << t); BOOST_CHECK_MESSAGE(argc == 2, "CommandLineToArgvW() should find 2 arguments for " << t); if (argc >= 2) { std::string unescaped = convert{}.to_bytes(argv.get()[1]); BOOST_CHECK_MESSAGE(unescaped == t, "CommandLineToArgvW() should return original value for " << t << " (got: " << unescaped << ")"); } } #endif /* _WIN32 */ } BOOST_AUTO_TEST_CASE(TruncateUsingHash) { /* * Note: be careful when changing the output of TruncateUsingHash as it is used to derive file names that should not * change between versions or would need special handling if they do (/var/lib/icinga2/api/packages/_api). */ /* minimum allowed value for maxLength template parameter */ BOOST_CHECK_EQUAL(Utility::TruncateUsingHash<44>(std::string(64, 'a')), "a...0098ba824b5c16427bd7a1122a5a442a25ec644d"); BOOST_CHECK_EQUAL(Utility::TruncateUsingHash<80>(std::string(100, 'a')), std::string(37, 'a') + "...7f9000257a4918d7072655ea468540cdcbd42e0c"); /* short enough values should not be truncated */ BOOST_CHECK_EQUAL(Utility::TruncateUsingHash<80>(""), ""); BOOST_CHECK_EQUAL(Utility::TruncateUsingHash<80>(std::string(60, 'a')), std::string(60, 'a')); BOOST_CHECK_EQUAL(Utility::TruncateUsingHash<80>(std::string(79, 'a')), std::string(79, 'a')); /* inputs of maxLength are hashed to avoid collisions */ BOOST_CHECK_EQUAL(Utility::TruncateUsingHash<80>(std::string(80, 'a')), std::string(37, 'a') + "...86f33652fcffd7fa1443e246dd34fe5d00e25ffd"); } BOOST_AUTO_TEST_CASE(FormatDateTime) { using time_t_limit = std::numeric_limits; using double_limit = std::numeric_limits; using boost::numeric::negative_overflow; using boost::numeric::positive_overflow; // Helper to repeat a given string a number of times. auto repeat = [](const std::string& s, size_t n) { std::ostringstream stream; for (size_t i = 0; i < n; ++i) { stream << s; } return stream.str(); }; // Valid inputs. const double ts = 1136214245.0; // 2006-01-02 15:04:05 UTC BOOST_CHECK_EQUAL("2006-01-02 15:04:05", Utility::FormatDateTime("%F %T", ts)); BOOST_CHECK_EQUAL("2006", Utility::FormatDateTime("%Y", ts)); BOOST_CHECK_EQUAL("2006#2006", Utility::FormatDateTime("%Y#%Y", ts)); BOOST_CHECK_EQUAL("%", Utility::FormatDateTime("%%", ts)); BOOST_CHECK_EQUAL("%Y", Utility::FormatDateTime("%%Y", ts)); BOOST_CHECK_EQUAL("", Utility::FormatDateTime("", ts)); BOOST_CHECK_EQUAL("1970-01-01 00:00:00", Utility::FormatDateTime("%F %T", 0.0)); BOOST_CHECK_EQUAL("2038-01-19 03:14:07", Utility::FormatDateTime("%F %T", 2147483647.0)); // 2^31 - 1 if constexpr (sizeof(time_t) > sizeof(int32_t)) { BOOST_CHECK_EQUAL("2100-03-14 13:37:42", Utility::FormatDateTime("%F %T", 4108714662.0)); // Past year 2038 } else { BOOST_WARN_MESSAGE(false, "skipping test with past 2038 input due to 32 bit time_t"); } // Negative (pre-1970) timestamps. #ifdef _MSC_VER // localtime_s() on Windows doesn't seem to like them and always errors out. BOOST_CHECK_THROW(Utility::FormatDateTime("%F %T", -1.0), posix_error); BOOST_CHECK_THROW(Utility::FormatDateTime("%F %T", -2147483648.0), posix_error); // -2^31 #else /* _MSC_VER */ BOOST_CHECK_EQUAL("1969-12-31 23:59:59", Utility::FormatDateTime("%F %T", -1.0)); BOOST_CHECK_EQUAL("1901-12-13 20:45:52", Utility::FormatDateTime("%F %T", -2147483648.0)); // -2^31 #endif /* _MSC_VER */ // Values right at the limits of time_t. // // With 64 bit time_t, there may not be an exact double representation of its min/max value, std::nextafter() is // used to move the value towards 0 so that it's within the range of doubles that can be represented as time_t. // // These are expected to result in an error due to the intermediate struct tm not being able to represent these // timestamps, so localtime_r() returns EOVERFLOW which makes the implementation throw an exception. if constexpr (sizeof(time_t) > sizeof(int32_t)) { BOOST_CHECK_THROW(Utility::FormatDateTime("%Y", std::nextafter(time_t_limit::min(), 0)), posix_error); BOOST_CHECK_THROW(Utility::FormatDateTime("%Y", std::nextafter(time_t_limit::max(), 0)), posix_error); } else { BOOST_WARN_MESSAGE(false, "skipping test for struct tm overflow due to 32 bit time_t"); } // Excessive format strings can result in something too large for the buffer, errors out to the empty string. // Note: both returning the proper result or throwing an exception would be fine too, unfortunately, that's // not really possible due to limitations in strftime() error handling, see comment in the implementation. BOOST_CHECK_EQUAL("", Utility::FormatDateTime(repeat("%Y", 1000).c_str(), ts)); // Invalid format strings. for (const char* format : {"%", "x % y", "x %! y"}) { std::string result = Utility::FormatDateTime(format, ts); // Implementations of strftime() seem to either keep invalid format specifiers and return them in the output, or // treat them as an error which our implementation currently maps to the empty string due to strftime() not // properly reporting errors. If this limitation of our implementation is lifted, other behavior like throwing // an exception would also be valid. std::string percentLessOutput(format); // `strftime(3)` seems to return the provided invalid format specifiers on all Platforms as documented above, // i.e. even on macOS, but the macOS/*BSD libc implementations of `strftime(3)` appears to behave differently // and causes the `%` character not to be populated into the results buffer if invalid format specifiers such // as `"x %! y"` are given. If such specifiers are provided, the output will contain `x ! y` instead of the // given invalid format specifiers. percentLessOutput.erase(std::remove(percentLessOutput.begin(), percentLessOutput.end(), '%'), percentLessOutput.end()); BOOST_CHECK_MESSAGE(result.empty() || result == format || result == percentLessOutput, "FormatDateTime(" << std::quoted(format) << ", " << ts << ") = " << std::quoted(result) << " should be one of [\"\", " << std::quoted(format) << "]"); } // Out of range timestamps. // // At the limits of a 64 bit time_t, doubles can no longer represent each integer value, so a simple x+1 or x-1 can // have x as the result, hence std::nextafter() is used to get the next representable value. However, around the // limits of a 32 bit time_t, doubles still can represent decimal places and less than 1 is added or subtracted by // std::nextafter() and casting back to time_t simply results in the limit again, so std::ceil()/std::floor() is // used to round it to the next integer value that is actually out of range. double negative_out_of_range = std::floor(std::nextafter(time_t_limit::min(), -double_limit::infinity())); double positive_out_of_range = std::ceil(std::nextafter(time_t_limit::max(), +double_limit::infinity())); BOOST_CHECK_THROW(Utility::FormatDateTime("%Y", negative_out_of_range), negative_overflow); BOOST_CHECK_THROW(Utility::FormatDateTime("%Y", positive_out_of_range), positive_overflow); } BOOST_AUTO_TEST_CASE(NormalizeTm) { GlobalTimezoneFixture tz(GlobalTimezoneFixture::TestTimezoneWithDST); auto normalize = [](const std::string_view& input) { tm t = make_tm(std::string(input)); return Utility::NormalizeTm(&t); }; auto is_dst = [](const std::string_view& input) { tm t = make_tm(std::string(input)); Utility::NormalizeTm(&t); BOOST_CHECK_GE(t.tm_isdst, 0); return t.tm_isdst > 0; }; // The whole day 2021-01-01 uses PST (24h day) BOOST_CHECK(!is_dst("2021-01-01 10:00:00")); BOOST_CHECK_EQUAL(normalize("2021-01-01 10:00:00"), 1609524000); BOOST_CHECK_EQUAL(normalize("2021-01-01 10:00:00 PST"), 1609524000); BOOST_CHECK_EQUAL(normalize("2021-01-01 11:00:00 PDT"), 1609524000); // normalized to 10:00 PST BOOST_CHECK_EQUAL(normalize("2021-01-02 00:00:00") - normalize("2021-01-01 00:00:00"), 24*60*60); // The whole day 2021-07-01 uses PDT (24h day) BOOST_CHECK(is_dst("2021-07-01 10:00:00")); BOOST_CHECK_EQUAL(normalize("2021-07-01 10:00:00"), 1625158800); BOOST_CHECK_EQUAL(normalize("2021-07-01 10:00:00 PDT"), 1625158800); BOOST_CHECK_EQUAL(normalize("2021-07-01 09:00:00 PST"), 1625158800); // normalized to 10:00 PDT BOOST_CHECK_EQUAL(normalize("2021-07-02 00:00:00") - normalize("2021-07-01 00:00:00"), 24*60*60); // On 2021-03-14, PST changes to PDT (23h day) BOOST_CHECK(!is_dst("2021-03-14 00:00:00")); BOOST_CHECK(is_dst("2021-03-14 23:59:59")); BOOST_CHECK_EQUAL(normalize("2021-03-15 00:00:00") - normalize("2021-03-14 00:00:00"), 23*60*60); BOOST_CHECK_EQUAL(normalize("2021-03-14 01:59:59 PST"), 1615715999); // The following three times do not exist on that day in that timezone. // They are interpreted as UTC-8, which is the offset of PST. BOOST_CHECK_EQUAL(normalize("2021-03-14 02:00:00 PST"), 1615716000); BOOST_CHECK_EQUAL(normalize("2021-03-14 02:30:00 PST"), 1615717800); BOOST_CHECK_EQUAL(normalize("2021-03-14 03:00:00 PST"), 1615719600); BOOST_CHECK_EQUAL(normalize("2021-03-14 03:00:00 PDT"), 1615716000); // The following three times do not exist on that day in that timezone. // They are interpreted as UTC-7, which is the offset of PDT. BOOST_CHECK_EQUAL(normalize("2021-03-14 01:59:59 PDT"), 1615712399); BOOST_CHECK_EQUAL(normalize("2021-03-14 02:00:00 PDT"), 1615712400); BOOST_CHECK_EQUAL(normalize("2021-03-14 02:30:00 PDT"), 1615714200); BOOST_CHECK_EQUAL(normalize("2021-03-14 01:59:59"), 1615715999); BOOST_CHECK_EQUAL(normalize("2021-03-14 03:00:00"), 1615716000); // The following two times don't exist on that day, they are within the hour that is skipped. // They are interpreted as UTC-8 (offset of PST) and then normalized to PDT. BOOST_CHECK_EQUAL(normalize("2021-03-14 02:00:00"), 1615716000); BOOST_CHECK_EQUAL(normalize("2021-03-14 02:30:00"), 1615717800); // On 2021-11-07, PDT changes to PST (25h day) BOOST_CHECK(is_dst("2021-11-07 00:00:00")); BOOST_CHECK(!is_dst("2021-11-07 23:59:59")); BOOST_CHECK_EQUAL(normalize("2021-11-08 00:00:00") - normalize("2021-11-07 00:00:00"), 25*60*60); BOOST_CHECK_EQUAL(normalize("2021-11-07 00:59:59 PDT"), 1636271999); BOOST_CHECK_EQUAL(normalize("2021-11-07 01:00:00 PDT"), 1636272000); BOOST_CHECK_EQUAL(normalize("2021-11-07 01:30:00 PDT"), 1636273800); BOOST_CHECK_EQUAL(normalize("2021-11-07 01:59:59 PDT"), 1636275599); // The following time does not exist on that day in that timezone, it's interpreted as 01:00:00 PST. BOOST_CHECK_EQUAL(normalize("2021-11-07 02:00:00 PDT"), 1636275600); // The following time does not exist on that day in that timezone, it's interpreted as 01:59:59 PDT. BOOST_CHECK_EQUAL(normalize("2021-11-07 00:59:59 PST"), 1636275599); BOOST_CHECK_EQUAL(normalize("2021-11-07 01:00:00 PST"), 1636275600); BOOST_CHECK_EQUAL(normalize("2021-11-07 01:30:00 PST"), 1636277400); BOOST_CHECK_EQUAL(normalize("2021-11-07 01:59:59 PST"), 1636279199); BOOST_CHECK_EQUAL(normalize("2021-11-07 02:00:00 PST"), 1636279200); BOOST_CHECK_EQUAL(normalize("2021-11-07 00:59:59"), 1636271999); // unambiguous: PDT BOOST_CHECK_EQUAL(normalize("2021-11-07 01:00:00"), 1636272000); // exists twice, interpreted as PDT BOOST_CHECK_EQUAL(normalize("2021-11-07 01:30:00"), 1636273800); // exists twice, interpreted as PDT BOOST_CHECK_EQUAL(normalize("2021-11-07 01:59:59"), 1636275599); // exists twice, interpreted as PDT BOOST_CHECK_EQUAL(normalize("2021-11-07 02:00:00"), 1636279200); // unambiguous: PST } BOOST_AUTO_TEST_SUITE_END()