# Icinga 2 Features ## Logging Icinga 2 supports three different types of logging: * File logging * Syslog (on Linux/UNIX) * Console logging (`STDOUT` on tty) You can enable additional loggers using the `icinga2 feature enable` and `icinga2 feature disable` commands to configure loggers: Feature | Description ---------|------------ debuglog | Debug log (path: `/var/log/icinga2/debug.log`, severity: `debug` or higher) mainlog | Main log (path: `/var/log/icinga2/icinga2.log`, severity: `information` or higher) syslog | Syslog (severity: `warning` or higher) By default file the `mainlog` feature is enabled. When running Icinga 2 on a terminal log messages with severity `information` or higher are written to the console. Packages will install a configuration file for logrotate on supported platforms. This configuration ensures that the `icinga2.log`, `error.log` and `debug.log` files are rotated on a daily basis. ## DB IDO The IDO (Icinga Data Output) feature for Icinga 2 takes care of exporting all configuration and status information into a database. The IDO database is used by Icinga Web 2 as data backend. Details on the installation can be found in the [Configuring DB IDO](02-getting-started.md#configuring-db-ido-mysql) chapter. Details on the configuration can be found in the [IdoMysqlConnection](09-object-types.md#objecttype-idomysqlconnection) and [IdoPgsqlConnection](09-object-types.md#objecttype-idopgsqlconnection) object configuration documentation. The DB IDO feature supports [High Availability](06-distributed-monitoring.md#distributed-monitoring-high-availability-db-ido) in the Icinga 2 cluster. ### DB IDO Health If the monitoring health indicator is critical in Icinga Web 2, you can use the following queries to manually check whether Icinga 2 is actually updating the IDO database. Icinga 2 writes its current status to the `icinga_programstatus` table every 10 seconds. The query below checks 60 seconds into the past which is a reasonable amount of time -- adjust it for your requirements. If the condition is not met, the query returns an empty result. > **Tip** > > Use [check plugins](05-service-monitoring.md#service-monitoring-plugins) to monitor the backend. Replace the `default` string with your instance name if different. Example for MySQL: ``` # mysql -u root -p icinga -e "SELECT status_update_time FROM icinga_programstatus ps JOIN icinga_instances i ON ps.instance_id=i.instance_id WHERE (UNIX_TIMESTAMP(ps.status_update_time) > UNIX_TIMESTAMP(NOW())-60) AND i.instance_name='default';" +---------------------+ | status_update_time | +---------------------+ | 2014-05-29 14:29:56 | +---------------------+ ``` Example for PostgreSQL: ``` # export PGPASSWORD=icinga; psql -U icinga -d icinga -c "SELECT ps.status_update_time FROM icinga_programstatus AS ps JOIN icinga_instances AS i ON ps.instance_id=i.instance_id WHERE ((SELECT extract(epoch from status_update_time) FROM icinga_programstatus) > (SELECT extract(epoch from now())-60)) AND i.instance_name='default'"; status_update_time ------------------------ 2014-05-29 15:11:38+02 (1 Zeile) ``` A detailed list on the available table attributes can be found in the [DB IDO Schema documentation](24-appendix.md#schema-db-ido). ### DB IDO Tuning As with any application database, there are ways to optimize and tune the database performance. General tips for performance tuning: * [MariaDB KB](https://mariadb.com/kb/en/library/optimization-and-tuning/) * [PostgreSQL Wiki](https://wiki.postgresql.org/wiki/Performance_Optimization) Re-creation of indexes, changed column values, etc. will increase the database size. Ensure to add health checks for this, and monitor the trend in your Grafana dashboards. In order to optimize the tables, there are different approaches. Always keep in mind to have a current backup and schedule maintenance downtime for these kind of tasks! MySQL: ``` mariadb> OPTIMIZE TABLE icinga_statehistory; ``` > **Important** > > Tables might not support optimization at runtime. This can take a **long** time. > > `Table does not support optimize, doing recreate + analyze instead`. If you want to optimize all tables in a specified database, there is a script called `mysqlcheck`. This also allows to repair broken tables in the case of emergency. ``` mysqlcheck --optimize icinga ``` PostgreSQL: ``` icinga=# vacuum; VACUUM ``` > **Note** > > Don't use `VACUUM FULL` as this has a severe impact on performance. ## External Commands > **Note** > > Please use the [REST API](12-icinga2-api.md#icinga2-api) as modern and secure alternative > for external actions. Icinga 2 provides an external command pipe for processing commands triggering specific actions (for example rescheduling a service check through the web interface). In order to enable the `ExternalCommandListener` configuration use the following command and restart Icinga 2 afterwards: # icinga2 feature enable command Icinga 2 creates the command pipe file as `/var/run/icinga2/cmd/icinga2.cmd` using the default configuration. Web interfaces and other Icinga addons are able to send commands to Icinga 2 through the external command pipe, for example for rescheduling a forced service check: # /bin/echo "[`date +%s`] SCHEDULE_FORCED_SVC_CHECK;localhost;ping4;`date +%s`" >> /var/run/icinga2/cmd/icinga2.cmd # tail -f /var/log/messages Oct 17 15:01:25 icinga-server icinga2: Executing external command: [1382014885] SCHEDULE_FORCED_SVC_CHECK;localhost;ping4;1382014885 Oct 17 15:01:25 icinga-server icinga2: Rescheduling next check for service 'ping4' A list of currently supported external commands can be found [here](24-appendix.md#external-commands-list-detail). Detailed information on the commands and their required parameters can be found on the [Icinga 1.x documentation](https://docs.icinga.com/latest/en/extcommands2.html). ## Performance Data When a host or service check is executed plugins should provide so-called `performance data`. Next to that additional check performance data can be fetched using Icinga 2 runtime macros such as the check latency or the current service state (or additional custom attributes). The performance data can be passed to external applications which aggregate and store them in their backends. These tools usually generate graphs for historical reporting and trending. Well-known addons processing Icinga performance data are [PNP4Nagios](13-addons.md#addons-graphing-pnp), [Graphite](13-addons.md#addons-graphing-graphite) or [OpenTSDB](14-features.md#opentsdb-writer). ### Writing Performance Data Files PNP4Nagios and Graphios use performance data collector daemons to fetch the current performance files for their backend updates. Therefore the Icinga 2 [PerfdataWriter](09-object-types.md#objecttype-perfdatawriter) feature allows you to define the output template format for host and services helped with Icinga 2 runtime vars. host_format_template = "DATATYPE::HOSTPERFDATA\tTIMET::$icinga.timet$\tHOSTNAME::$host.name$\tHOSTPERFDATA::$host.perfdata$\tHOSTCHECKCOMMAND::$host.check_command$\tHOSTSTATE::$host.state$\tHOSTSTATETYPE::$host.state_type$" service_format_template = "DATATYPE::SERVICEPERFDATA\tTIMET::$icinga.timet$\tHOSTNAME::$host.name$\tSERVICEDESC::$service.name$\tSERVICEPERFDATA::$service.perfdata$\tSERVICECHECKCOMMAND::$service.check_command$\tHOSTSTATE::$host.state$\tHOSTSTATETYPE::$host.state_type$\tSERVICESTATE::$service.state$\tSERVICESTATETYPE::$service.state_type$" The default templates are already provided with the Icinga 2 feature configuration which can be enabled using # icinga2 feature enable perfdata By default all performance data files are rotated in a 15 seconds interval into the `/var/spool/icinga2/perfdata/` directory as `host-perfdata.` and `service-perfdata.`. External collectors need to parse the rotated performance data files and then remove the processed files. ### Graphite Carbon Cache Writer While there are some [Graphite](13-addons.md#addons-graphing-graphite) collector scripts and daemons like Graphios available for Icinga 1.x it's more reasonable to directly process the check and plugin performance in memory in Icinga 2. Once there are new metrics available, Icinga 2 will directly write them to the defined Graphite Carbon daemon tcp socket. You can enable the feature using # icinga2 feature enable graphite By default the [GraphiteWriter](09-object-types.md#objecttype-graphitewriter) feature expects the Graphite Carbon Cache to listen at `127.0.0.1` on TCP port `2003`. #### Current Graphite Schema The current naming schema is defined as follows. The [Icinga Web 2 Graphite module](https://github.com/icinga/icingaweb2-module-graphite) depends on this schema. The default prefix for hosts and services is configured using [runtime macros](03-monitoring-basics.md#runtime-macros)like this: icinga2.$host.name$.host.$host.check_command$ icinga2.$host.name$.services.$service.name$.$service.check_command$ You can customize the prefix name by using the `host_name_template` and `service_name_template` configuration attributes. The additional levels will allow fine granular filters and also template capabilities, e.g. by using the check command `disk` for specific graph templates in web applications rendering the Graphite data. The following characters are escaped in prefix labels: Character | Escaped character --------------|-------------------------- whitespace | _ . | _ \ | _ / | _ Metric values are stored like this: .perfdata..value The following characters are escaped in perfdata labels: Character | Escaped character --------------|-------------------------- whitespace | _ \ | _ / | _ :: | . Note that perfdata labels may contain dots (`.`) allowing to add more subsequent levels inside the Graphite tree. `::` adds support for [multi performance labels](http://my-plugin.de/wiki/projects/check_multi/configuration/performance) and is therefore replaced by `.`. By enabling `enable_send_thresholds` Icinga 2 automatically adds the following threshold metrics: .perfdata..min .perfdata..max .perfdata..warn .perfdata..crit By enabling `enable_send_metadata` Icinga 2 automatically adds the following metadata metrics: .metadata.current_attempt .metadata.downtime_depth .metadata.acknowledgement .metadata.execution_time .metadata.latency .metadata.max_check_attempts .metadata.reachable .metadata.state .metadata.state_type Metadata metric overview: metric | description -------------------|------------------------------------------ current_attempt | current check attempt max_check_attempts | maximum check attempts until the hard state is reached reachable | checked object is reachable downtime_depth | number of downtimes this object is in acknowledgement | whether the object is acknowledged or not execution_time | check execution time latency | check latency state | current state of the checked object state_type | 0=SOFT, 1=HARD state The following example illustrates how to configure the storage schemas for Graphite Carbon Cache. [icinga2_default] # intervals like PNP4Nagios uses them per default pattern = ^icinga2\. retentions = 1m:2d,5m:10d,30m:90d,360m:4y ### InfluxDB Writer Once there are new metrics available, Icinga 2 will directly write them to the defined InfluxDB HTTP API. You can enable the feature using # icinga2 feature enable influxdb By default the [InfluxdbWriter](09-object-types.md#objecttype-influxdbwriter) feature expects the InfluxDB daemon to listen at `127.0.0.1` on port `8086`. Measurement names and tags are fully configurable by the end user. The InfluxdbWriter object will automatically add a `metric` tag to each data point. This correlates to the perfdata label. Fields (value, warn, crit, min, max, unit) are created from data if available and the configuration allows it. If a value associated with a tag is not able to be resolved, it will be dropped and not sent to the target host. Backslashes are allowed in tag keys, tag values and field keys, however they are also escape characters when followed by a space or comma, but cannot be escaped themselves. As a result all trailling slashes in these fields are replaced with an underscore. This predominantly affects Windows paths e.g. `C:\` becomes `C:_`. The database is assumed to exist so this object will make no attempt to create it currently. More configuration details can be found [here](09-object-types.md#objecttype-influxdbwriter). #### Instance Tagging Consider the following service check: ``` apply Service "disk" for (disk => attributes in host.vars.disks) { import "generic-service" check_command = "disk" display_name = "Disk " + disk vars.disk_partitions = disk assign where host.vars.disks } ``` This is a typical pattern for checking individual disks, NICs, SSL certificates etc associated with a host. What would be useful is to have the data points tagged with the specific instance for that check. This would allow you to query time series data for a check on a host and for a specific instance e.g. /dev/sda. To do this quite simply add the instance to the service variables: ``` apply Service "disk" for (disk => attributes in host.vars.disks) { ... vars.instance = disk ... } ``` Then modify your writer configuration to add this tag to your data points if the instance variable is associated with the service: ``` object InfluxdbWriter "influxdb" { ... service_template = { measurement = "$service.check_command$" tags = { hostname = "$host.name$" service = "$service.name$" instance = "$service.vars.instance$" } } ... } ``` ### Elastic Stack Integration [Icingabeat](https://github.com/icinga/icingabeat) is an Elastic Beat that fetches data from the Icinga 2 API and sends it either directly to [Elasticsearch](https://www.elastic.co/products/elasticsearch) or [Logstash](https://www.elastic.co/products/logstash). More integrations: * [Logstash output](https://github.com/Icinga/logstash-output-icinga) for the Icinga 2 API. * [Logstash Grok Pattern](https://github.com/Icinga/logstash-grok-pattern) for Icinga 2 logs. #### Elasticsearch Writer This feature forwards check results, state changes and notification events to an [Elasticsearch](https://www.elastic.co/products/elasticsearch) installation over its HTTP API. The check results include parsed performance data metrics if enabled. > **Note** > > Elasticsearch 5.x is required. This feature has been successfully tested with Elasticsearch 5.6.4. Enable the feature and restart Icinga 2. ``` # icinga2 feature enable elasticsearch ``` The default configuration expects an Elasticsearch instance running on `localhost` on port `9200 and writes to an index called `icinga2`. More configuration details can be found [here](09-object-types.md#objecttype-elasticsearchwriter). #### Current Elasticsearch Schema The following event types are written to Elasticsearch: * icinga2.event.checkresult * icinga2.event.statechange * icinga2.event.notification Performance data metrics must be explicitly enabled with the `enable_send_perfdata` attribute. Metric values are stored like this: check_result.perfdata..value The following characters are escaped in perfdata labels: Character | Escaped character --------------|-------------------------- whitespace | _ \ | _ / | _ :: | . Note that perfdata labels may contain dots (`.`) allowing to add more subsequent levels inside the tree. `::` adds support for [multi performance labels](http://my-plugin.de/wiki/projects/check_multi/configuration/performance) and is therefore replaced by `.`. Icinga 2 automatically adds the following threshold metrics if existing: check_result.perfdata..min check_result.perfdata..max check_result.perfdata..warn check_result.perfdata..crit ### Graylog Integration #### GELF Writer The `Graylog Extended Log Format` (short: [GELF](http://docs.graylog.org/en/latest/pages/gelf.html)) can be used to send application logs directly to a TCP socket. While it has been specified by the [Graylog](https://www.graylog.org) project as their [input resource standard](http://docs.graylog.org/en/latest/pages/sending_data.html), other tools such as [Logstash](https://www.elastic.co/products/logstash) also support `GELF` as [input type](https://www.elastic.co/guide/en/logstash/current/plugins-inputs-gelf.html). You can enable the feature using # icinga2 feature enable gelf By default the `GelfWriter` object expects the GELF receiver to listen at `127.0.0.1` on TCP port `12201`. The default `source` attribute is set to `icinga2`. You can customize that for your needs if required. Currently these events are processed: * Check results * State changes * Notifications ### OpenTSDB Writer While there are some OpenTSDB collector scripts and daemons like tcollector available for Icinga 1.x it's more reasonable to directly process the check and plugin performance in memory in Icinga 2. Once there are new metrics available, Icinga 2 will directly write them to the defined TSDB TCP socket. You can enable the feature using # icinga2 feature enable opentsdb By default the `OpenTsdbWriter` object expects the TSD to listen at `127.0.0.1` on port `4242`. The current naming schema is icinga.host. icinga.service.. for host and service checks. The tag host is always applied. To make sure Icinga 2 writes a valid metric into OpenTSDB some characters are replaced with `_` in the target name: \ (and space) The resulting name in OpenTSDB might look like: www-01 / http-cert / response time icinga.http_cert.response_time In addition to the performance data retrieved from the check plugin, Icinga 2 sends internal check statistic data to OpenTSDB: metric | description -------------------|------------------------------------------ current_attempt | current check attempt max_check_attempts | maximum check attempts until the hard state is reached reachable | checked object is reachable downtime_depth | number of downtimes this object is in acknowledgement | whether the object is acknowledged or not execution_time | check execution time latency | check latency state | current state of the checked object state_type | 0=SOFT, 1=HARD state While reachable, state and state_type are metrics for the host or service the other metrics follow the current naming schema icinga.check. with the following tags tag | description --------|------------------------------------------ type | the check type, one of [host, service] host | hostname, the check ran on service | the service name (if type=service) > **Note** > > You might want to set the tsd.core.auto_create_metrics setting to `true` > in your opentsdb.conf configuration file. ## Livestatus The [MK Livestatus](https://mathias-kettner.de/checkmk_livestatus.html) project implements a query protocol that lets users query their Icinga instance for status information. It can also be used to send commands. The Livestatus component that is distributed as part of Icinga 2 is a re-implementation of the Livestatus protocol which is compatible with MK Livestatus. > **Tip** > > Only install the Livestatus feature if your web interface or addon requires > you to do so. > [Icinga Web 2](02-getting-started.md#setting-up-icingaweb2) does not need > Livestatus. Details on the available tables and attributes with Icinga 2 can be found in the [Livestatus Schema](24-appendix.md#schema-livestatus) section. You can enable Livestatus using icinga2 feature enable: # icinga2 feature enable livestatus After that you will have to restart Icinga 2: # systemctl restart icinga2 By default the Livestatus socket is available in `/var/run/icinga2/cmd/livestatus`. In order for queries and commands to work you will need to add your query user (e.g. your web server) to the `icingacmd` group: # usermod -a -G icingacmd www-data The Debian packages use `nagios` as the user and group name. Make sure to change `icingacmd` to `nagios` if you're using Debian. Change `www-data` to the user you're using to run queries. In order to use the historical tables provided by the livestatus feature (for example, the `log` table) you need to have the `CompatLogger` feature enabled. By default these logs are expected to be in `/var/log/icinga2/compat`. A different path can be set using the `compat_log_path` configuration attribute. # icinga2 feature enable compatlog ### Livestatus Sockets Other to the Icinga 1.x Addon, Icinga 2 supports two socket types * Unix socket (default) * TCP socket Details on the configuration can be found in the [LivestatusListener](09-object-types.md#objecttype-livestatuslistener) object configuration. ### Livestatus GET Queries > **Note** > > All Livestatus queries require an additional empty line as query end identifier. > The `nc` tool (`netcat`) provides the `-U` parameter to communicate using > a unix socket. There also is a Perl module available in CPAN for accessing the Livestatus socket programmatically: [Monitoring::Livestatus](http://search.cpan.org/~nierlein/Monitoring-Livestatus-0.74/) Example using the unix socket: # echo -e "GET services\n" | /usr/bin/nc -U /var/run/icinga2/cmd/livestatus Example using the tcp socket listening on port `6558`: # echo -e 'GET services\n' | netcat 127.0.0.1 6558 # cat servicegroups < A list of available external commands and their parameters can be found [here](24-appendix.md#external-commands-list-detail) $ echo -e 'COMMAND ' | netcat 127.0.0.1 6558 ### Livestatus Filters and, or, negate Operator | Negate | Description ----------|------------------------ = | != | Equality ~ | !~ | Regex match =~ | !=~ | Equality ignoring case ~~ | !~~ | Regex ignoring case < | | Less than > | | Greater than <= | | Less than or equal >= | | Greater than or equal ### Livestatus Stats Schema: "Stats: aggregatefunction aggregateattribute" Aggregate Function | Description -------------------|-------------- sum |   min |   max |   avg | sum / count std | standard deviation suminv | sum (1 / value) avginv | suminv / count count | ordinary default for any stats query if not aggregate function defined Example: GET hosts Filter: has_been_checked = 1 Filter: check_type = 0 Stats: sum execution_time Stats: sum latency Stats: sum percent_state_change Stats: min execution_time Stats: min latency Stats: min percent_state_change Stats: max execution_time Stats: max latency Stats: max percent_state_change OutputFormat: json ResponseHeader: fixed16 ### Livestatus Output * CSV CSV output uses two levels of array separators: The members array separator is a comma (1st level) while extra info and host|service relation separator is a pipe (2nd level). Separators can be set using ASCII codes like: Separators: 10 59 44 124 * JSON Default separators. ### Livestatus Error Codes Code | Description ----------|-------------- 200 | OK 404 | Table does not exist 452 | Exception on query ### Livestatus Tables Table | Join |Description --------------|-----------|---------------------------- hosts |   | host config and status attributes, services counter hostgroups |   | hostgroup config, status attributes and host/service counters services | hosts | service config and status attributes servicegroups |   | servicegroup config, status attributes and service counters contacts |   | contact config and status attributes contactgroups |   | contact config, members commands |   | command name and line status |   | programstatus, config and stats comments | services | status attributes downtimes | services | status attributes timeperiods |   | name and is inside flag endpoints |   | config and status attributes log | services, hosts, contacts, commands | parses [compatlog](09-object-types.md#objecttype-compatlogger) and shows log attributes statehist | hosts, services | parses [compatlog](09-object-types.md#objecttype-compatlogger) and aggregates state change attributes hostsbygroup | hostgroups | host attributes grouped by hostgroup and its attributes servicesbygroup | servicegroups | service attributes grouped by servicegroup and its attributes servicesbyhostgroup | hostgroups | service attributes grouped by hostgroup and its attributes The `commands` table is populated with `CheckCommand`, `EventCommand` and `NotificationCommand` objects. A detailed list on the available table attributes can be found in the [Livestatus Schema documentation](24-appendix.md#schema-livestatus). ## Status Data Files Icinga 1.x writes object configuration data and status data in a cyclic interval to its `objects.cache` and `status.dat` files. Icinga 2 provides the `StatusDataWriter` object which dumps all configuration objects and status updates in a regular interval. # icinga2 feature enable statusdata If you are not using any web interface or addon which uses these files, you can safely disable this feature. ## Compat Log Files The Icinga 1.x log format is considered being the `Compat Log` in Icinga 2 provided with the `CompatLogger` object. These logs are used for informational representation in external web interfaces parsing the logs, but also to generate SLA reports and trends. The [Livestatus](14-features.md#setting-up-livestatus) feature uses these logs for answering queries to historical tables. The `CompatLogger` object can be enabled with # icinga2 feature enable compatlog By default, the Icinga 1.x log file called `icinga.log` is located in `/var/log/icinga2/compat`. Rotated log files are moved into `var/log/icinga2/compat/archives`. ## Check Result Files Icinga 1.x writes its check result files to a temporary spool directory where they are processed in a regular interval. While this is extremely inefficient in performance regards it has been rendered useful for passing passive check results directly into Icinga 1.x skipping the external command pipe. Several clustered/distributed environments and check-aggregation addons use that method. In order to support step-by-step migration of these environments, Icinga 2 supports the `CheckResultReader` object. There is no feature configuration available, but it must be defined on-demand in your Icinga 2 objects configuration. object CheckResultReader "reader" { spool_dir = "/data/check-results" }