# Monitoring Remote Systems ## Agent-less Checks If the remote service is available using a network protocol and port, and a [check plugin](#setting-up-check-plugins) is available, you don't necessarily need a local client installed. Rather choose a plugin and configure all parameters and thresholds. The [Icinga 2 Template Library](#itl) already ships various examples. ## Agent-based Checks If the remote services are not directly accessible through the network, a local agent installation exposing the results to check queries can become handy. ### SNMP The SNMP daemon runs on the remote system and answers SNMP queries by plugin binaries. The [Monitoring Plugins package](#setting-up-check-plugins) ships the `check_snmp` plugin binary, but there are plenty of [existing plugins](#integrate-additional-plugins) for specific use cases already around, for example monitoring Cisco routers. The following example uses the [SNMP ITL](#itl-snmp) `CheckCommand` and just overrides the `snmp_oid` custom attribute. A service is created for all hosts which have the `snmp-community` custom attribute. apply Service "uptime" { import "generic-service" check_command = "snmp" vars.snmp_oid = "1.3.6.1.2.1.1.3.0" assign where host.vars.snmp_community != "" } ### SSH Calling a plugin using the SSH protocol to execute a plugin on the remote server fetching its return code and output. The `by_ssh` command object is part of the built-in templates and requires the `check_by_ssh` check plugin which is available in the [Monitoring Plugins package](#setting-up-check-plugins). object CheckCommand "by_ssh_swap" { import "by_ssh" vars.by_ssh_command = "/usr/lib/nagios/plugins/check_swap -w $by_ssh_swap_warn$ -c $by_ssh_swap_crit$" vars.by_ssh_swap_warn = "75%" vars.by_ssh_swap_crit = "50%" } object Service "swap" { import "generic-service" host_name = "remote-ssh-host" check_command = "by_ssh_swap" vars.by_ssh_logname = "icinga" } ### NRPE [NRPE](http://docs.icinga.org/latest/en/nrpe.html) runs as daemon on the remote client including the required plugins and command definitions. Icinga 2 calls the `check_nrpe` plugin binary in order to query the configured command on the remote client. The NRPE daemon uses its own configuration format in nrpe.cfg while `check_nrpe` can be embedded into the Icinga 2 `CheckCommand` configuration syntax. You can use the `check_nrpe` plugin from the NRPE project to query the NRPE daemon. Icinga 2 provides the [nrpe check command](#plugin-check-command-nrpe) for this: Example: object Service "users" { import "generic-service" host_name = "remote-nrpe-host" check_command = "nrpe" vars.nrpe_command = "check_users" } nrpe.cfg: command[check_users]=/usr/local/icinga/libexec/check_users -w 5 -c 10 ### NSClient++ [NSClient++](http://nsclient.org) works on both Windows and Linux platforms and is well known for its magnificent Windows support. There are alternatives like the WMI interface, but using `NSClient++` will allow you to run local scripts similar to check plugins fetching the required output and performance counters. You can use the `check_nt` plugin from the Monitoring Plugins project to query NSClient++. Icinga 2 provides the [nscp check command](#plugin-check-command-nscp) for this: Example: object Service "disk" { import "generic-service" host_name = "remote-windows-host" check_command = "nscp" vars.nscp_variable = "USEDDISKSPACE" vars.nscp_params = "c" vars.nscp_warn = 70 vars.nscp_crit = 80 } For details on the `NSClient++` configuration please refer to the [official documentation](http://www.nsclient.org/nscp/wiki/doc/configuration/0.4.x). ### Icinga 2 Agent A dedicated Icinga 2 agent supporting all platforms and using the native Icinga 2 communication protocol supported with SSL certificates, IPv4/IPv6 support, etc. is on the [development roadmap](https://dev.icinga.org/projects/i2?jump=issues). Meanwhile remote checkers in a [cluster](#distributed-monitoring-high-availability) setup could act as immediate replacement, but without any local configuration - or pushing their standalone configuration back to the master node including their check result messages. > **Note** > > Remote checker instances are independent Icinga 2 instances which schedule > their checks and just synchronize them back to the defined master zone. ### Passive Check Results and SNMP Traps SNMP Traps can be received and filtered by using [SNMPTT](http://snmptt.sourceforge.net/) and specific trap handlers passing the check results to Icinga 2. > **Note** > > The host and service object configuration must be available on the Icinga 2 > server in order to process passive check results. ### NSCA-NG [NSCA-ng](http://www.nsca-ng.org) provides a client-server pair that allows the remote sender to push check results into the Icinga 2 `ExternalCommandListener` feature. > **Note** > > This addon works in a similar fashion like the Icinga 1.x distributed model. If you > are looking for a real distributed architecture with Icinga 2, scroll down. ## Distributed Monitoring and High Availability Building distributed environments with high availability included is fairly easy with Icinga 2. The cluster feature is built-in and allows you to build many scenarios based on your requirements: * [High Availability](#cluster-scenarios-high-availability). All instances in the `Zone` elect one active master and run as Active/Active cluster. * [Distributed Zones](#cluster-scenarios-distributed-zones). A master zone and one or more satellites in their zones. * [Load Distribution](#cluster-scenarios-load-distribution). A configuration master and multiple checker satellites. You can combine these scenarios into a global setup fitting your requirements. Each instance got their own event scheduler, and does not depend on a centralized master coordinating and distributing the events. In case of a cluster failure, all nodes continue to run independently. Be alarmed when your cluster fails and a Split-Brain-scenario is in effect - all alive instances continue to do their job, and history will begin to differ. > ** Note ** > > Before you start, make sure to read the [requirements](#distributed-monitoring-requirements). ### Cluster Requirements Before you start deploying, keep the following things in mind: * Your [SSL CA and certificates](#certificate-authority-certificates) are mandatory for secure communication * Get pen and paper or a drawing board and design your nodes and zones! * all nodes in a cluster zone are providing high availability functionality and trust each other * cluster zones can be built in a Top-Down-design where the child trusts the parent * communication between zones happens bi-directional which means that a DMZ-located node can still reach the master node, or vice versa * Update firewall rules and ACLs * Decide whether to use the built-in [configuration syncronization](#cluster-zone-config-sync) or use an external tool (Puppet, Ansible, Chef, Salt, etc) to manage the configuration deployment > **Tip** > > If you're looking for troubleshooting cluster problems, check the general > [troubleshooting](#troubleshooting-cluster) section. #### Cluster Naming Convention The SSL certificate common name (CN) will be used by the [ApiListener](#objecttype-apilistener) object to determine the local authority. This name must match the local [Endpoint](#objecttype-endpoint) object name. Example: # icinga2-build-key icinga2a ... Common Name (e.g. server FQDN or YOUR name) [icinga2a]: # vim cluster.conf object Endpoint "icinga2a" { host = "icinga2a.icinga.org" } The [Endpoint](#objecttype-endpoint) name is further referenced as `endpoints` attribute on the [Zone](objecttype-zone) object. object Endpoint "icinga2b" { host = "icinga2b.icinga.org" } object Zone "config-ha-master" { endpoints = [ "icinga2a", "icinga2b" ] } Specifying the local node name using the [NodeName](#configure-nodename) variable requires the same name as used for the endpoint name and common name above. If not set, the FQDN is used. const NodeName = "icinga2a" ### Certificate Authority and Certificates Icinga 2 ships two scripts assisting with CA and node certificate creation for your Icinga 2 cluster. > **Note** > > You're free to use your own method to generated a valid ca and signed client > certificates. Please make sure to export the environment variable `ICINGA_CA` pointing to an empty folder for the newly created CA files: # export ICINGA_CA="/root/icinga-ca" The scripts will put all generated data and the required certificates in there. The first step is the creation of the certificate authority (CA) running the following command: # icinga2-build-ca Now create a certificate and key file for each node running the following command (replace `icinga2a` with the required hostname): # icinga2-build-key icinga2a Repeat the step for all nodes in your cluster scenario. Save the CA key in a secure location in case you want to set up certificates for additional nodes at a later time. Navigate to the location of your newly generated certificate files, and manually copy/transfer them to `/etc/icinga2/pki` in your Icinga 2 configuration folder. > **Note** > > The certificate files must be readable by the user Icinga 2 is running as. Also, > the private key file must not be world-readable. Each node requires the following files in `/etc/icinga2/pki` (replace `fqdn-nodename` with the host's FQDN): * ca.crt * <fqdn-nodename>.crt * <fqdn-nodename>.key ### Cluster Configuration The following section describe which configuration must be updated/created in order to get your cluster running with basic functionality. * [configure the node name](#configure-nodename) * [configure the ApiListener object](#configure-apilistener-object) * [configure cluster endpoints](#configure-cluster-endpoints) * [configure cluster zones](#configure-cluster-zones) Once you're finished with the basic setup the following section will describe how to use [zone configuration synchronisation](#cluster-zone-config-sync) and configure [cluster scenarios](#cluster-scenarios). #### Configure the Icinga Node Name Instead of using the default FQDN as node name you can optionally set that value using the [NodeName](#global-constants) constant. > ** Note ** > > Skip this step if your FQDN already matches the default `NodeName` set > in `/etc/icinga2/constants.conf`. This setting must be unique for each node, and must also match the name of the local [Endpoint](#objecttype-endpoint) object and the SSL certificate common name as described in the [cluster naming convention](#cluster-naming-convention). vim /etc/icinga2/constants.conf /* Our local instance name. By default this is the server's hostname as returned by `hostname --fqdn`. * This should be the common name from the API certificate. */ const NodeName = "icinga2a" Read further about additional [naming conventions](#cluster-naming-convention). Not specifying the node name will make Icinga 2 using the FQDN. Make sure that all configured endpoint names and common names are in sync. #### Configure the ApiListener Object The [ApiListener](#objecttype-apilistener) object needs to be configured on every node in the cluster with the following settings: A sample config looks like: object ApiListener "api" { cert_path = SysconfDir + "/icinga2/pki/" + NodeName + ".crt" key_path = SysconfDir + "/icinga2/pki/" + NodeName + ".key" ca_path = SysconfDir + "/icinga2/pki/ca.crt" accept_config = true } You can simply enable the `api` feature using # icinga2-enable-feature api Edit `/etc/icinga2/features-enabled/api.conf` if you require the configuration synchronisation enabled for this node. Set the `accept_config` attribute to `true`. > **Note** > > The certificate files must be readable by the user Icinga 2 is running as. Also, > the private key file must not be world-readable. #### Configure Cluster Endpoints `Endpoint` objects specify the `host` and `port` settings for the cluster nodes. This configuration can be the same on all nodes in the cluster only containing connection information. A sample configuration looks like: /** * Configure config master endpoint */ object Endpoint "icinga2a" { host = "icinga2a.icinga.org" } If this endpoint object is reachable on a different port, you must configure the `ApiListener` on the local `Endpoint` object accordingly too. #### Configure Cluster Zones `Zone` objects specify the endpoints located in a zone. That way your distributed setup can be seen as zones connected together instead of multiple instances in that specific zone. Zones can be used for [high availability](#cluster-scenarios-high-availability), [distributed setups](#cluster-scenarios-distributed-zones) and [load distribution](#cluster-scenarios-load-distribution). Each Icinga 2 `Endpoint` must be put into its respective `Zone`. In this example, you will define the zone `config-ha-master` where the `icinga2a` and `icinga2b` endpoints are located. The `check-satellite` zone consists of `icinga2c` only, but more nodes could be added. The `config-ha-master` zone acts as High-Availability setup - the Icinga 2 instances elect one active master where all features are running on (for example `icinga2a`). In case of failure of the `icinga2a` instance, `icinga2b` will take over automatically. object Zone "config-ha-master" { endpoints = [ "icinga2a", "icinga2b" ] } The `check-satellite` zone is a separated location and only sends back their checkresults to the defined parent zone `config-ha-master`. object Zone "check-satellite" { endpoints = [ "icinga2c" ] parent = "config-ha-master" } ### Zone Configuration Synchronisation By default all objects for specific zones should be organized in /etc/icinga2/zones.d/ on the configuration master. Your child zones and endpoint members **must not** have their config copied to `zones.d`. The built-in configuration synchronisation takes care of that if your nodes accept configuration from the parent zone. You can define that in the [ApiListener](#configure-apilistener-object) object by configuring the `accept_config` attribute accordingly. You should remove the sample config included in `conf.d` by commenting the `recursive_include` statement in [icinga2.conf](#icinga2-conf): //include_recursive "conf.d" Better use a dedicated directory name like `cluster` or similar, and include that one if your nodes require local configuration not being synced to other nodes. That's useful for local [health checks](#cluster-health-check) for example. > **Note** > > In a [high availability](#cluster-scenarios-high-availability) > setup only one assigned node can act as configuration master. All other zone > member nodes **must not** have the `/etc/icinga2/zones.d` directory populated. These zone packages are then distributed to all nodes in the same zone, and to their respective target zone instances. Each configured zone must exist with the same directory name. The parent zone syncs the configuration to the child zones, if allowed using the `accept_config` attribute of the [ApiListener](#configure-apilistener-object) object. Config on node `icinga2a`: object Zone "master" { endpoints = [ "icinga2a" ] } object Zone "checker" { endpoints = [ "icinga2b" ] parent = "master" } /etc/icinga2/zones.d master health.conf checker health.conf demo.conf Config on node `icinga2b`: object Zone "master" { endpoints = [ "icinga2a" ] } object Zone "checker" { endpoints = [ "icinga2b" ] parent = "master" } /etc/icinga2/zones.d EMPTY_IF_CONFIG_SYNC_ENABLED If the local configuration is newer than the received update Icinga 2 will skip the synchronisation process. > **Note** > > `zones.d` must not be included in [icinga2.conf](#icinga2-conf). Icinga 2 automatically > determines the required include directory. This can be overridden using the > [global constant](#global-constants) `ZonesDir`. #### Global Configuration Zone for Templates If your zone configuration setup shares the same templates, groups, commands, timeperiods, etc. you would have to duplicate quite a lot of configuration objects making the merged configuration on your configuration master unique. > ** Note ** > > Only put templates, groups, etc into this zone. DO NOT add checkable objects such as > hosts or services here. If they are checked by all instances globally, this will lead > into duplicated check results and unclear state history. Not easy to troubleshoot too - > you've been warned. That is not necessary by defining a global zone shipping all those templates. By setting `global = true` you ensure that this zone serving common configuration templates will be synchronized to all involved nodes (only if they accept configuration though). Config on configuration master: /etc/icinga2/zones.d global-templates/ templates.conf groups.conf master health.conf checker health.conf demo.conf In this example, the global zone is called `global-templates` and must be defined in your zone configuration visible to all nodes. object Zone "global-templates" { global = true } > **Note** > > If the remote node does not have this zone configured, it will ignore the configuration > update, if it accepts synchronized configuration. If you don't require any global configuration, skip this setting. #### Zone Configuration Synchronisation Permissions Each [ApiListener](#objecttype-apilistener) object must have the `accept_config` attribute set to `true` to receive configuration from the parent `Zone` members. Default value is `false`. object ApiListener "api" { cert_path = SysconfDir + "/icinga2/pki/" + NodeName + ".crt" key_path = SysconfDir + "/icinga2/pki/" + NodeName + ".key" ca_path = SysconfDir + "/icinga2/pki/ca.crt" accept_config = true } If `accept_config` is set to `false`, this instance won't accept configuration from remote master instances anymore. > ** Tip ** > > Look into the [troubleshooting guides](#troubleshooting-cluster-config-sync) for debugging > problems with the configuration synchronisation. ### Cluster Health Check The Icinga 2 [ITL](#itl) ships an internal check command checking all configured `EndPoints` in the cluster setup. The check result will become critical if one or more configured nodes are not connected. Example: object Service "cluster" { check_command = "cluster" check_interval = 5s retry_interval = 1s host_name = "icinga2a" } Each cluster node should execute its own local cluster health check to get an idea about network related connection problems from different points of view. Additionally you can monitor the connection from the local zone to the remote connected zones. Example for the `checker` zone checking the connection to the `master` zone: object Service "cluster-zone-master" { check_command = "cluster-zone" check_interval = 5s retry_interval = 1s vars.cluster_zone = "master" host_name = "icinga2b" } ### Cluster Scenarios All cluster nodes are full-featured Icinga 2 instances. You only need to enabled the features for their role (for example, a `Checker` node only requires the `checker` feature enabled, but not `notification` or `ido-mysql` features). #### Security in Cluster Scenarios While there are certain capabilities to ensure the safe communication between all nodes (firewalls, policies, software hardening, etc) the Icinga 2 cluster also provides additional security itself: * [SSL certificates](#certificate-authority-certificates) are mandatory for cluster communication. * Child zones only receive event updates (check results, commands, etc) for their configured updates. * Zones cannot influence/interfere other zones. Each checked object is assigned to only one zone. * All nodes in a zone trust each other. * [Configuration sync](#zone-config-sync-permissions) is disabled by default. #### Features in Cluster Zones Each cluster zone may use all available features. If you have multiple locations or departments, they may write to their local database, or populate graphite. Even further all commands are distributed amongst connected nodes. For example, you could re-schedule a check or acknowledge a problem on the master, and it gets replicated to the actual slave checker node. DB IDO on the left, graphite on the right side - works (if you disable [DB IDO HA](#high-availability-db-ido)). Icinga Web 2 on the left, checker and notifications on the right side - works too. Everything on the left and on the right side - make sure to deal with [load-balanced notifications and checks](#high-availability-features) in a [HA zone](#cluster-scenarios-high-availability). configure-cluster-zones #### Distributed Zones That scenario fits if your instances are spread over the globe and they all report to a master instance. Their network connection only works towards the master master (or the master is able to connect, depending on firewall policies) which means remote instances won't see each/connect to each other. All events (check results, downtimes, comments, etc) are synced to the master node, but the remote nodes can still run local features such as a web interface, reporting, graphing, etc. in their own specified zone. Imagine the following example with a master node in Nuremberg, and two remote DMZ based instances in Berlin and Vienna. Additonally you'll specify [global templates](#zone-global-config-templates) available in all zones. The configuration tree on the master instance `nuremberg` could look like this: zones.d global-templates/ templates.conf groups.conf nuremberg/ local.conf berlin/ hosts.conf vienna/ hosts.conf The configuration deployment will take care of automatically synchronising the child zone configuration: * The master node sends `zones.d/berlin` to the `berlin` child zone. * The master node sends `zones.d/vienna` to the `vienna` child zone. * The master node sends `zones.d/global-templates` to the `vienna` and `berlin` child zones. The endpoint configuration would look like: object Endpoint "nuremberg-master" { host = "nuremberg.icinga.org" } object Endpoint "berlin-satellite" { host = "berlin.icinga.org" } object Endpoint "vienna-satellite" { host = "vienna.icinga.org" } The zones would look like: object Zone "nuremberg" { endpoints = [ "nuremberg-master" ] } object Zone "berlin" { endpoints = [ "berlin-satellite" ] parent = "nuremberg" } object Zone "vienna" { endpoints = [ "vienna-satellite" ] parent = "nuremberg" } object Zone "global-templates" { global = true } The `nuremberg-master` zone will only execute local checks, and receive check results from the satellite nodes in the zones `berlin` and `vienna`. > **Note** > > The child zones `berlin` and `vienna` will get their configuration synchronised > from the configuration master 'nuremberg'. The endpoints in the child > zones **must not** have their `zones.d` directory populated if this endpoint > [accepts synced configuration](#zone-config-sync-permissions). #### Load Distribution If you are planning to off-load the checks to a defined set of remote workers you can achieve that by: * Deploying the configuration on all nodes. * Let Icinga 2 distribute the load amongst all available nodes. That way all remote check instances will receive the same configuration but only execute their part. The master instance located in the `master` zone can also execute checks, but you may also disable the `Checker` feature. Configuration on the master node: zones.d/ global-templates/ master/ checker/ If you are planning to have some checks executed by a specific set of checker nodes you have to define additional zones and define these check objects there. Endpoints: object Endpoint "master-node" { host = "master.icinga.org" } object Endpoint "checker1-node" { host = "checker1.icinga.org" } object Endpoint "checker2-node" { host = "checker2.icinga.org" } Zones: object Zone "master" { endpoints = [ "master-node" ] } object Zone "checker" { endpoints = [ "checker1-node", "checker2-node" ] parent = "master" } object Zone "global-templates" { global = true } > **Note** > > The child zones `checker` will get its configuration synchronised > from the configuration master 'master'. The endpoints in the child > zone **must not** have their `zones.d` directory populated if this endpoint > [accepts synced configuration](#zone-config-sync-permissions). #### Cluster High Availability High availability with Icinga 2 is possible by putting multiple nodes into a dedicated [zone](#configure-cluster-zones). All nodes will elect one active master, and retry an election once the current active master is down. Selected features provide advanced [HA functionality](#high-availability-features). Checks and notifications are load-balanced between nodes in the high availability zone. Connections from other zones will be accepted by all active and passive nodes but all are forwarded to the current active master dealing with the check results, commands, etc. object Zone "config-ha-master" { endpoints = [ "icinga2a", "icinga2b", "icinga2c" ] } Two or more nodes in a high availability setup require an [initial cluster sync](#initial-cluster-sync). > **Note** > > Keep in mind that **only one node acts as configuration master** having the > configuration files in the `zones.d` directory. All other nodes **must not** > have that directory populated. Instead they are required to > [accept synced configuration](#zone-config-sync-permissions). > Details in the [Configuration Sync Chapter](#cluster-zone-config-sync). #### Multiple Hierachies Your master zone collects all check results for reporting and graphing and also does some sort of additional notifications. The customers got their own instances in their local DMZ zones. They are limited to read/write only their services, but replicate all events back to the master instance. Within each DMZ there are additional check instances also serving interfaces for local departments. The customers instances will collect all results, but also send them back to your master instance. Additionally the customers instance on the second level in the middle prohibits you from sending commands to the subjacent department nodes. You're only allowed to receive the results, and a subset of each customers configuration too. Your master zone will generate global reports, aggregate alert notifications, and check additional dependencies (for example, the customers internet uplink and bandwidth usage). The customers zone instances will only check a subset of local services and delegate the rest to each department. Even though it acts as configuration master with a master dashboard for all departments managing their configuration tree which is then deployed to all department instances. Furthermore the master NOC is able to see what's going on. The instances in the departments will serve a local interface, and allow the administrators to reschedule checks or acknowledge problems for their services. ### High Availability for Icinga 2 features All nodes in the same zone require the same features enabled for High Availability (HA) amongst them. By default the following features provide advanced HA functionality: * [Checks](#high-availability-checks) (load balanced, automated failover) * [Notifications](#high-availability-notifications) (load balanced, automated failover) * [DB IDO](#high-availability-db-ido) (Run-Once, automated failover) #### High Availability with Checks All nodes in the same zone load-balance the check execution. When one instance fails the other nodes will automatically take over the reamining checks. > **Note** > > If a node should not check anything, disable the `checker` feature explicitely and > reload Icinga 2. # icinga2-disable-feature checker # service icinga2 reload #### High Availability with Notifications Notifications are load balanced amongst all nodes in a zone. By default this functionality is enabled. If your nodes should notify independent from any other nodes (this will cause duplicated notifications if not properly handled!), you can set `enable_ha = false` in the [NotificationComponent](#objecttype-notificationcomponent) feature. #### High Availability with DB IDO All instances within the same zone (e.g. the `master` zone as HA cluster) must have the DB IDO feature enabled. Example DB IDO MySQL: # icinga2-enable-feature ido-mysql The feature 'ido-mysql' is already enabled. By default the DB IDO feature only runs on the elected zone master. All other passive nodes disable the active IDO database connection at runtime. > **Note** > > The DB IDO HA feature can be disabled by setting the `enable_ha` attribute to `false` > for the [IdoMysqlConnection](#objecttype-idomysqlconnection) or > [IdoPgsqlConnection](#objecttype-idopgsqlconnection) object on all nodes in the > same zone. > > All endpoints will enable the DB IDO feature then, connect to the configured > database and dump configuration, status and historical data on their own. If the instance with the active DB IDO connection dies, the HA functionality will re-enable the DB IDO connection on the newly elected zone master. The DB IDO feature will try to determine which cluster endpoint is currently writing to the database and bail out if another endpoint is active. You can manually verify that by running the following query: icinga=> SELECT status_update_time, endpoint_name FROM icinga_programstatus; status_update_time | endpoint_name ------------------------+--------------- 2014-08-15 15:52:26+02 | icinga2a (1 Zeile) This is useful when the cluster connection between endpoints breaks, and prevents data duplication in split-brain-scenarios. The failover timeout can be set for the `failover_timeout` attribute, but not lower than 60 seconds. ### Add a new cluster endpoint These steps are required for integrating a new cluster endpoint: * generate a new [SSL client certificate](#certificate-authority-certificates) * identify its location in the zones * update the `zones.conf` file on each involved node ([endpoint](#configure-cluster-endpoints), [zones](#configure-cluster-zones)) * a new slave zone node requires updates for the master and slave zones * verify if this endpoints requires [configuration synchronisation](#cluster-zone-config-sync) enabled * if the node requires the existing zone history: [initial cluster sync](#initial-cluster-sync) * add a [cluster health check](#cluster-health-check) #### Initial Cluster Sync In order to make sure that all of your cluster nodes have the same state you will have to pick one of the nodes as your initial "master" and copy its state file to all the other nodes. You can find the state file in `/var/lib/icinga2/icinga2.state`. Before copying the state file you should make sure that all your cluster nodes are properly shut down. ### Host With Multiple Cluster Nodes Special scenarios might require multiple cluster nodes running on a single host. By default Icinga 2 and its features will place their runtime data below the prefix `LocalStateDir`. By default packages will set that path to `/var`. You can either set that variable as constant configuration definition in [icinga2.conf](#icinga2-conf) or pass it as runtime variable to the Icinga 2 daemon. # icinga2 -c /etc/icinga2/node1/icinga2.conf -DLocalStateDir=/opt/node1/var