/******************************************************************************
 * Icinga 2                                                                   *
 * Copyright (C) 2012-2013 Icinga Development Team (http://www.icinga.org/)   *
 *                                                                            *
 * This program is free software; you can redistribute it and/or              *
 * modify it under the terms of the GNU General Public License                *
 * as published by the Free Software Foundation; either version 2             *
 * of the License, or (at your option) any later version.                     *
 *                                                                            *
 * This program is distributed in the hope that it will be useful,            *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of             *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the              *
 * GNU General Public License for more details.                               *
 *                                                                            *
 * You should have received a copy of the GNU General Public License          *
 * along with this program; if not, write to the Free Software Foundation     *
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.             *
 ******************************************************************************/

#include "base/threadpool.h"
#include "base/logger_fwd.h"
#include "base/convert.h"
#include "base/debug.h"
#include "base/utility.h"
#include "base/application.h"
#include "base/exception.h"
#include <sstream>
#include <iostream>
#include <boost/bind.hpp>
#include <boost/foreach.hpp>

using namespace icinga;

int ThreadPool::m_NextID = 1;

ThreadPool::ThreadPool(int max_threads)
	: m_ID(m_NextID++), m_Stopped(false), m_MaxThreads(max_threads)
{
	if (m_MaxThreads != -1 && m_MaxThreads < sizeof(m_Queues) / sizeof(m_Queues[0]))
		m_MaxThreads = sizeof(m_Queues) / sizeof(m_Queues[0]);

	Start();
}

ThreadPool::~ThreadPool(void)
{
	Stop();
	Join(true);
}

void ThreadPool::Start(void)
{
	for (int i = 0; i < sizeof(m_Queues) / sizeof(m_Queues[0]); i++)
		m_Queues[i].SpawnWorker(m_ThreadGroup);

	m_ThreadGroup.create_thread(boost::bind(&ThreadPool::ManagerThreadProc, this));
	m_ThreadGroup.create_thread(boost::bind(&ThreadPool::StatsThreadProc, this));
}

void ThreadPool::Stop(void)
{
	for (int i = 0; i < sizeof(m_Queues) / sizeof(m_Queues[0]); i++) {
		boost::mutex::scoped_lock lock(m_Queues[i].Mutex);
		m_Queues[i].Stopped = true;
		m_Queues[i].CV.notify_all();
	}

	boost::mutex::scoped_lock lock(m_MgmtMutex);
	m_Stopped = true;
	m_MgmtCV.notify_all();
}

/**
 * Waits for all worker threads to finish.
 */
void ThreadPool::Join(bool wait_for_stop)
{
	if (wait_for_stop) {
		m_ThreadGroup.join_all();
		return;
	}

	for (int i = 0; i < sizeof(m_Queues) / sizeof(m_Queues[0]); i++) {
		boost::mutex::scoped_lock lock(m_Queues[i].Mutex);

		while (!m_Queues[i].Items.empty())
			m_Queues[i].CVStarved.wait(lock);
	}
}

/**
 * Waits for work items and processes them.
 */
void ThreadPool::WorkerThread::ThreadProc(Queue& queue)
{
	std::ostringstream idbuf;
	idbuf << "Q #" << &queue << " W #" << this;
	Utility::SetThreadName(idbuf.str());

	for (;;) {
		WorkItem wi;

		{
			boost::mutex::scoped_lock lock(queue.Mutex);

			UpdateUtilization(ThreadIdle);

			while (queue.Items.empty() && !queue.Stopped && !Zombie) {
				if (queue.Items.empty())
					queue.CVStarved.notify_all();

				queue.CV.wait(lock);
			}

			if (Zombie)
				break;

			if (queue.Items.empty() && queue.Stopped)
				break;

			wi = queue.Items.front();
			queue.Items.pop_front();

			UpdateUtilization(ThreadBusy);
		}

		double st = Utility::GetTime();;

#ifdef _DEBUG
#	ifdef RUSAGE_THREAD
		struct rusage usage_start, usage_end;

		(void) getrusage(RUSAGE_THREAD, &usage_start);
#	endif /* RUSAGE_THREAD */
#endif /* _DEBUG */

		try {
			wi.Callback();
		} catch (const std::exception& ex) {
			std::ostringstream msgbuf;
			msgbuf << "Exception thrown in event handler: " << std::endl
			       << DiagnosticInformation(ex);

			Log(LogCritical, "base", msgbuf.str());
		} catch (...) {
			Log(LogCritical, "base", "Exception of unknown type thrown in event handler.");
		}

		double et = Utility::GetTime();
		double latency = st - wi.Timestamp;

		{
			boost::mutex::scoped_lock lock(queue.Mutex);

			queue.WaitTime += latency;
			queue.ServiceTime += et - st;
			queue.TaskCount++;
		}

#ifdef _DEBUG
#	ifdef RUSAGE_THREAD
		(void) getrusage(RUSAGE_THREAD, &usage_end);

		double duser = (usage_end.ru_utime.tv_sec - usage_start.ru_utime.tv_sec) +
		    (usage_end.ru_utime.tv_usec - usage_start.ru_utime.tv_usec) / 1000000.0;

		double dsys = (usage_end.ru_stime.tv_sec - usage_start.ru_stime.tv_sec) +
		    (usage_end.ru_stime.tv_usec - usage_start.ru_stime.tv_usec) / 1000000.0;

		double dwait = (et - st) - (duser + dsys);

		int dminfaults = usage_end.ru_minflt - usage_start.ru_minflt;
		int dmajfaults = usage_end.ru_majflt - usage_start.ru_majflt;

		int dvctx = usage_end.ru_nvcsw - usage_start.ru_nvcsw;
		int divctx = usage_end.ru_nivcsw - usage_start.ru_nivcsw;
#	endif /* RUSAGE_THREAD */
		if (et - st > 0.5) {
			std::ostringstream msgbuf;
#	ifdef RUSAGE_THREAD
			msgbuf << "Event call took user:" << duser << "s, system:" << dsys << "s, wait:" << dwait << "s, minor_faults:" << dminfaults << ", major_faults:" << dmajfaults << ", voluntary_csw:" << dvctx << ", involuntary_csw:" << divctx;
#	else
			msgbuf << "Event call took " << (et - st) << "s";
#	endif /* RUSAGE_THREAD */

			Log(LogWarning, "base", msgbuf.str());
		}
#endif /* _DEBUG */
	}

	boost::mutex::scoped_lock lock(queue.Mutex);
	UpdateUtilization(ThreadDead);
	Zombie = false;
}

/**
 * Appends a work item to the work queue. Work items will be processed in FIFO order.
 *
 * @param callback The callback function for the work item.
 * @returns true if the item was queued, false otherwise.
 */
bool ThreadPool::Post(const ThreadPool::WorkFunction& callback)
{
	WorkItem wi;
	wi.Callback = callback;
	wi.Timestamp = Utility::GetTime();

	Queue& queue = m_Queues[Utility::Random() % (sizeof(m_Queues) / sizeof(m_Queues[0]))];

	{
		boost::mutex::scoped_lock lock(queue.Mutex);

		if (queue.Stopped)
			return false;

		queue.Items.push_back(wi);
		queue.CV.notify_one();
	}

	return true;
}

void ThreadPool::ManagerThreadProc(void)
{
	std::ostringstream idbuf;
	idbuf << "TP #" << m_ID << " Manager";
	Utility::SetThreadName(idbuf.str());

	for (;;) {
		size_t total_pending = 0, total_alive = 0;
		double total_avg_latency = 0;
		double total_utilization = 0;

		{
			boost::mutex::scoped_lock lock(m_MgmtMutex);

			if (!m_Stopped)
				m_MgmtCV.timed_wait(lock, boost::posix_time::seconds(5));

			if (m_Stopped)
				break;
		}

		for (int i = 0; i < sizeof(m_Queues) / sizeof(m_Queues[0]); i++) {
			size_t pending, alive = 0;
			double avg_latency;
			double utilization = 0;

			Queue& queue = m_Queues[i];

			boost::mutex::scoped_lock lock(queue.Mutex);

			pending = queue.Items.size();

			for (size_t i = 0; i < sizeof(queue.Threads) / sizeof(queue.Threads[0]); i++) {
				if (queue.Threads[i].State != ThreadDead && !queue.Threads[i].Zombie) {
					alive++;
					utilization += queue.Threads[i].Utilization * 100;
				}
			}

			utilization /= alive;

			if (queue.TaskCount > 0)
				avg_latency = queue.WaitTime / (queue.TaskCount * 1.0);
			else
				avg_latency = 0;

			if (utilization < 60 || utilization > 80 || alive < 8) {
				double wthreads = ceil((utilization * alive) / 80.0);

				int tthreads = wthreads - alive;

				/* Don't ever kill the last threads. */
				if (alive + tthreads < 2)
					tthreads = 2 - alive;

				/* Don't kill more than 8 threads at once. */
				if (tthreads < -8)
					tthreads = -8;

				/* Spawn more workers if there are outstanding work items. */
				if (tthreads > 0 && pending > 0)
					tthreads = 8;

				if (m_MaxThreads != -1 && (alive + tthreads) * (sizeof(m_Queues) / sizeof(m_Queues[0])) > m_MaxThreads)
					tthreads = m_MaxThreads / (sizeof(m_Queues) / sizeof(m_Queues[0])) - alive;

				std::ostringstream msgbuf;
				msgbuf << "Thread pool; current: " << alive << "; adjustment: " << tthreads;
				Log(LogDebug, "base", msgbuf.str());

				for (int i = 0; i < -tthreads; i++)
					queue.KillWorker(m_ThreadGroup);

				for (int i = 0; i < tthreads; i++)
					queue.SpawnWorker(m_ThreadGroup);
			}

			queue.WaitTime = 0;
			queue.ServiceTime = 0;
			queue.TaskCount = 0;

			total_pending += pending;
			total_alive += alive;
			total_avg_latency += avg_latency;
			total_utilization += utilization;
		}

		std::ostringstream msgbuf;
		msgbuf << "Pool #" << m_ID << ": Pending tasks: " << total_pending << "; Average latency: "
		    << (long)(total_avg_latency * 1000 / (sizeof(m_Queues) / sizeof(m_Queues[0]))) << "ms"
		    << "; Threads: " << total_alive
		    << "; Pool utilization: " << (total_utilization / (sizeof(m_Queues) / sizeof(m_Queues[0])))  << "%";
		Log(LogInformation, "base", msgbuf.str());
	}
}

/**
 * Note: Caller must hold m_Mutex
 */
void ThreadPool::Queue::SpawnWorker(boost::thread_group& group)
{
	for (size_t i = 0; i < sizeof(Threads) / sizeof(Threads[0]); i++) {
		if (Threads[i].State == ThreadDead) {
			Log(LogDebug, "debug", "Spawning worker thread.");

			Threads[i] = WorkerThread(ThreadIdle);
			Threads[i].Thread = group.create_thread(boost::bind(&ThreadPool::WorkerThread::ThreadProc, boost::ref(Threads[i]), boost::ref(*this)));

			break;
		}
	}
}

/**
 * Note: Caller must hold Mutex.
 */
void ThreadPool::Queue::KillWorker(boost::thread_group& group)
{
	for (size_t i = 0; i < sizeof(Threads) / sizeof(Threads[0]); i++) {
		if (Threads[i].State == ThreadIdle && !Threads[i].Zombie) {
			Log(LogDebug, "base", "Killing worker thread.");

			group.remove_thread(Threads[i].Thread);
			Threads[i].Thread->detach();
			delete Threads[i].Thread;

			Threads[i].Zombie = true;
			CV.notify_all();

			break;
		}
	}
}

void ThreadPool::StatsThreadProc(void)
{
	std::ostringstream idbuf;
	idbuf << "TP #" << m_ID << " Stats";
	Utility::SetThreadName(idbuf.str());

	for (;;) {
		{
			boost::mutex::scoped_lock lock(m_MgmtMutex);

			if (!m_Stopped)
				m_MgmtCV.timed_wait(lock, boost::posix_time::milliseconds(250));

			if (m_Stopped)
				break;
		}

		for (int i = 0; i < sizeof(m_Queues) / sizeof(m_Queues[0]); i++) {
			Queue& queue = m_Queues[i];

			boost::mutex::scoped_lock lock(queue.Mutex);

			for (size_t i = 0; i < sizeof(queue.Threads) / sizeof(queue.Threads[0]); i++)
				queue.Threads[i].UpdateUtilization();
		}
	}
}

/**
 * Note: Caller must hold queue Mutex.
 */
void ThreadPool::WorkerThread::UpdateUtilization(ThreadState state)
{
	double utilization;

	switch (State) {
		case ThreadDead:
			return;
		case ThreadIdle:
			utilization = 0;
			break;
		case ThreadBusy:
			utilization = 1;
			break;
		default:
			ASSERT(0);
	}

	double now = Utility::GetTime();
	double time = now - LastUpdate;

	const double avg_time = 5.0;

	if (time > avg_time)
		time = avg_time;

	Utilization = (Utilization * (avg_time - time) + utilization * time) / avg_time;
	LastUpdate = now;

	if (state != ThreadUnspecified)
		State = state;
}