/****************************************************************************** * Icinga 2 * * Copyright (C) 2012-2018 Icinga Development Team (https://www.icinga.com/) * * * * This program is free software; you can redistribute it and/or * * modify it under the terms of the GNU General Public License * * as published by the Free Software Foundation; either version 2 * * of the License, or (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the Free Software Foundation * * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. * ******************************************************************************/ #include "base/workqueue.hpp" #include "base/utility.hpp" #include "base/logger.hpp" #include "base/convert.hpp" #include "base/application.hpp" #include "base/exception.hpp" #include #include using namespace icinga; std::atomic WorkQueue::m_NextID(1); boost::thread_specific_ptr l_ThreadWorkQueue; WorkQueue::WorkQueue(size_t maxItems, int threadCount) : m_ID(m_NextID++), m_ThreadCount(threadCount), m_MaxItems(maxItems), m_TaskStats(15 * 60) { /* Initialize logger. */ m_StatusTimerTimeout = Utility::GetTime(); m_StatusTimer = new Timer(); m_StatusTimer->SetInterval(10); m_StatusTimer->OnTimerExpired.connect(std::bind(&WorkQueue::StatusTimerHandler, this)); m_StatusTimer->Start(); } WorkQueue::~WorkQueue() { m_StatusTimer->Stop(true); Join(true); } void WorkQueue::SetName(const String& name) { m_Name = name; } String WorkQueue::GetName() const { return m_Name; } boost::mutex::scoped_lock WorkQueue::AcquireLock() { return boost::mutex::scoped_lock(m_Mutex); } /** * Enqueues a task. Tasks are guaranteed to be executed in the order * they were enqueued in except if there is more than one worker thread. */ void WorkQueue::EnqueueUnlocked(boost::mutex::scoped_lock& lock, std::function&& function, WorkQueuePriority priority) { if (!m_Spawned) { Log(LogNotice, "WorkQueue") << "Spawning WorkQueue threads for '" << m_Name << "'"; for (int i = 0; i < m_ThreadCount; i++) { m_Threads.create_thread(std::bind(&WorkQueue::WorkerThreadProc, this)); } m_Spawned = true; } bool wq_thread = IsWorkerThread(); if (!wq_thread) { while (m_Tasks.size() >= m_MaxItems && m_MaxItems != 0) m_CVFull.wait(lock); } m_Tasks.emplace(std::move(function), priority, ++m_NextTaskID); m_CVEmpty.notify_one(); } /** * Enqueues a task. Tasks are guaranteed to be executed in the order * they were enqueued in except if there is more than one worker thread or when * allowInterleaved is true in which case the new task might be run * immediately if it's being enqueued from within the WorkQueue thread. */ void WorkQueue::Enqueue(std::function&& function, WorkQueuePriority priority, bool allowInterleaved) { bool wq_thread = IsWorkerThread(); if (wq_thread && allowInterleaved) { function(); return; } auto lock = AcquireLock(); EnqueueUnlocked(lock, std::move(function), priority); } /** * Waits until all currently enqueued tasks have completed. This only works reliably * when no other thread is enqueuing new tasks when this method is called. * * @param stop Whether to stop the worker threads */ void WorkQueue::Join(bool stop) { boost::mutex::scoped_lock lock(m_Mutex); while (m_Processing || !m_Tasks.empty()) m_CVStarved.wait(lock); if (stop) { m_Stopped = true; m_CVEmpty.notify_all(); lock.unlock(); m_Threads.join_all(); m_Spawned = false; Log(LogNotice, "WorkQueue") << "Stopped WorkQueue threads for '" << m_Name << "'"; } } /** * Checks whether the calling thread is one of the worker threads * for this work queue. * * @returns true if called from one of the worker threads, false otherwise */ bool WorkQueue::IsWorkerThread() const { WorkQueue **pwq = l_ThreadWorkQueue.get(); if (!pwq) return false; return *pwq == this; } void WorkQueue::SetExceptionCallback(const ExceptionCallback& callback) { m_ExceptionCallback = callback; } /** * Checks whether any exceptions have occurred while executing tasks for this * work queue. When a custom exception callback is set this method will always * return false. */ bool WorkQueue::HasExceptions() const { boost::mutex::scoped_lock lock(m_Mutex); return !m_Exceptions.empty(); } /** * Returns all exceptions which have occurred for tasks in this work queue. When a * custom exception callback is set this method will always return an empty list. */ std::vector WorkQueue::GetExceptions() const { boost::mutex::scoped_lock lock(m_Mutex); return m_Exceptions; } void WorkQueue::ReportExceptions(const String& facility) const { std::vector exceptions = GetExceptions(); for (const auto& eptr : exceptions) { Log(LogCritical, facility) << DiagnosticInformation(eptr); } Log(LogCritical, facility) << exceptions.size() << " error" << (exceptions.size() != 1 ? "s" : ""); } size_t WorkQueue::GetLength() const { boost::mutex::scoped_lock lock(m_Mutex); return m_Tasks.size(); } void WorkQueue::StatusTimerHandler() { boost::mutex::scoped_lock lock(m_Mutex); ASSERT(!m_Name.IsEmpty()); size_t pending = m_Tasks.size(); double now = Utility::GetTime(); double gradient = (pending - m_PendingTasks) / (now - m_PendingTasksTimestamp); double timeToZero = pending / gradient; String timeInfo; if (pending > GetTaskCount(5)) { timeInfo = " empty in "; if (timeToZero < 0 || std::isinf(timeToZero)) timeInfo += "infinite time, your task handler isn't able to keep up"; else timeInfo += Utility::FormatDuration(timeToZero); } m_PendingTasks = pending; m_PendingTasksTimestamp = now; /* Log if there are pending items, or 5 minute timeout is reached. */ if (pending > 0 || m_StatusTimerTimeout < now) { Log(LogInformation, "WorkQueue") << "#" << m_ID << " (" << m_Name << ") " << "items: " << pending << ", " << "rate: " << std::setw(2) << GetTaskCount(60) / 60.0 << "/s " << "(" << GetTaskCount(60) << "/min " << GetTaskCount(60 * 5) << "/5min " << GetTaskCount(60 * 15) << "/15min);" << timeInfo; } /* Reschedule next log entry in 5 minutes. */ if (m_StatusTimerTimeout < now) { m_StatusTimerTimeout = now + 60 * 5; } } void WorkQueue::RunTaskFunction(const TaskFunction& func) { try { func(); } catch (const std::exception&) { boost::exception_ptr eptr = boost::current_exception(); { boost::mutex::scoped_lock mutex(m_Mutex); if (!m_ExceptionCallback) m_Exceptions.push_back(eptr); } if (m_ExceptionCallback) m_ExceptionCallback(eptr); } } void WorkQueue::WorkerThreadProc() { std::ostringstream idbuf; idbuf << "WQ #" << m_ID; Utility::SetThreadName(idbuf.str()); l_ThreadWorkQueue.reset(new WorkQueue *(this)); boost::mutex::scoped_lock lock(m_Mutex); for (;;) { while (m_Tasks.empty() && !m_Stopped) m_CVEmpty.wait(lock); if (m_Stopped) break; if (m_Tasks.size() >= m_MaxItems && m_MaxItems != 0) m_CVFull.notify_all(); Task task = m_Tasks.top(); m_Tasks.pop(); m_Processing++; lock.unlock(); RunTaskFunction(task.Function); /* clear the task so whatever other resources it holds are released _before_ we re-acquire the mutex */ task = Task(); IncreaseTaskCount(); lock.lock(); m_Processing--; if (m_Tasks.empty()) m_CVStarved.notify_all(); } } void WorkQueue::IncreaseTaskCount() { m_TaskStats.InsertValue(Utility::GetTime(), 1); } size_t WorkQueue::GetTaskCount(RingBuffer::SizeType span) { return m_TaskStats.UpdateAndGetValues(Utility::GetTime(), span); } bool icinga::operator<(const Task& a, const Task& b) { if (a.Priority < b.Priority) return true; if (a.Priority == b.Priority) { if (a.ID > b.ID) return true; else return false; } return false; }