icinga2/lib/base/process.cpp

1146 lines
27 KiB
C++

/* Icinga 2 | (c) 2012 Icinga GmbH | GPLv2+ */
#include "base/process.hpp"
#include "base/exception.hpp"
#include "base/convert.hpp"
#include "base/array.hpp"
#include "base/objectlock.hpp"
#include "base/utility.hpp"
#include "base/initialize.hpp"
#include "base/logger.hpp"
#include "base/utility.hpp"
#include "base/scriptglobal.hpp"
#include "base/json.hpp"
#include <boost/algorithm/string/join.hpp>
#include <boost/thread/once.hpp>
#include <thread>
#include <iostream>
#ifndef _WIN32
# include <execvpe.h>
# include <poll.h>
# include <string.h>
# ifndef __APPLE__
extern char **environ;
# else /* __APPLE__ */
# include <crt_externs.h>
# define environ (*_NSGetEnviron())
# endif /* __APPLE__ */
#endif /* _WIN32 */
using namespace icinga;
#define IOTHREADS 4
static boost::mutex l_ProcessMutex[IOTHREADS];
static std::map<Process::ProcessHandle, Process::Ptr> l_Processes[IOTHREADS];
#ifdef _WIN32
static HANDLE l_Events[IOTHREADS];
#else /* _WIN32 */
static int l_EventFDs[IOTHREADS][2];
static std::map<Process::ConsoleHandle, Process::ProcessHandle> l_FDs[IOTHREADS];
static boost::mutex l_ProcessControlMutex;
static int l_ProcessControlFD = -1;
static pid_t l_ProcessControlPID;
#endif /* _WIN32 */
static boost::once_flag l_ProcessOnceFlag = BOOST_ONCE_INIT;
static boost::once_flag l_SpawnHelperOnceFlag = BOOST_ONCE_INIT;
Process::Process(Process::Arguments arguments, Dictionary::Ptr extraEnvironment)
: m_Arguments(std::move(arguments)), m_ExtraEnvironment(std::move(extraEnvironment)), m_Timeout(600), m_AdjustPriority(false)
#ifdef _WIN32
, m_ReadPending(false), m_ReadFailed(false), m_Overlapped()
#endif /* _WIN32 */
{
#ifdef _WIN32
m_Overlapped.hEvent = CreateEvent(nullptr, TRUE, FALSE, nullptr);
#endif /* _WIN32 */
}
Process::~Process()
{
#ifdef _WIN32
CloseHandle(m_Overlapped.hEvent);
#endif /* _WIN32 */
}
#ifndef _WIN32
static Value ProcessSpawnImpl(struct msghdr *msgh, const Dictionary::Ptr& request)
{
struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
if (cmsg == nullptr || cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_len != CMSG_LEN(sizeof(int) * 3)) {
std::cerr << "Invalid 'spawn' request: FDs missing" << std::endl;
return Empty;
}
auto *fds = (int *)CMSG_DATA(cmsg);
Array::Ptr arguments = request->Get("arguments");
Dictionary::Ptr extraEnvironment = request->Get("extraEnvironment");
bool adjustPriority = request->Get("adjustPriority");
// build argv
auto **argv = new char *[arguments->GetLength() + 1];
for (unsigned int i = 0; i < arguments->GetLength(); i++) {
String arg = arguments->Get(i);
argv[i] = strdup(arg.CStr());
}
argv[arguments->GetLength()] = nullptr;
// build envp
int envc = 0;
/* count existing environment variables */
while (environ[envc])
envc++;
auto **envp = new char *[envc + (extraEnvironment ? extraEnvironment->GetLength() : 0) + 2];
const char* lcnumeric = "LC_NUMERIC=";
int j = 0;
for (int i = 0; i < envc; i++) {
if (strncmp(environ[i], lcnumeric, strlen(lcnumeric)) == 0) {
continue;
}
envp[j] = strdup(environ[i]);
++j;
}
if (extraEnvironment) {
ObjectLock olock(extraEnvironment);
for (const Dictionary::Pair& kv : extraEnvironment) {
String skv = kv.first + "=" + Convert::ToString(kv.second);
envp[j] = strdup(skv.CStr());
j++;
}
}
envp[j] = strdup("LC_NUMERIC=C");
envp[j + 1] = nullptr;
extraEnvironment.reset();
pid_t pid = fork();
int errorCode = 0;
if (pid < 0)
errorCode = errno;
if (pid == 0) {
// child process
(void)close(l_ProcessControlFD);
if (setsid() < 0) {
perror("setsid() failed");
_exit(128);
}
if (dup2(fds[0], STDIN_FILENO) < 0 || dup2(fds[1], STDOUT_FILENO) < 0 || dup2(fds[2], STDERR_FILENO) < 0) {
perror("dup2() failed");
_exit(128);
}
(void)close(fds[0]);
(void)close(fds[1]);
(void)close(fds[2]);
#ifdef HAVE_NICE
if (adjustPriority) {
// Cheating the compiler on "warning: ignoring return value of 'int nice(int)', declared with attribute warn_unused_result [-Wunused-result]".
auto x (nice(5));
(void)x;
}
#endif /* HAVE_NICE */
sigset_t mask;
sigemptyset(&mask);
sigprocmask(SIG_SETMASK, &mask, nullptr);
if (icinga2_execvpe(argv[0], argv, envp) < 0) {
char errmsg[512];
strcpy(errmsg, "execvpe(");
strncat(errmsg, argv[0], sizeof(errmsg) - strlen(errmsg) - 1);
strncat(errmsg, ") failed", sizeof(errmsg) - strlen(errmsg) - 1);
errmsg[sizeof(errmsg) - 1] = '\0';
perror(errmsg);
_exit(128);
}
_exit(128);
}
(void)close(fds[0]);
(void)close(fds[1]);
(void)close(fds[2]);
// free arguments
for (int i = 0; argv[i]; i++)
free(argv[i]);
delete[] argv;
// free environment
for (int i = 0; envp[i]; i++)
free(envp[i]);
delete[] envp;
Dictionary::Ptr response = new Dictionary({
{ "rc", pid },
{ "errno", errorCode }
});
return response;
}
static Value ProcessKillImpl(struct msghdr *msgh, const Dictionary::Ptr& request)
{
pid_t pid = request->Get("pid");
int signum = request->Get("signum");
errno = 0;
kill(pid, signum);
int error = errno;
Dictionary::Ptr response = new Dictionary({
{ "errno", error }
});
return response;
}
static Value ProcessWaitPIDImpl(struct msghdr *msgh, const Dictionary::Ptr& request)
{
pid_t pid = request->Get("pid");
int status;
int rc = waitpid(pid, &status, 0);
Dictionary::Ptr response = new Dictionary({
{ "status", status },
{ "rc", rc }
});
return response;
}
static void ProcessHandler()
{
sigset_t mask;
sigfillset(&mask);
sigprocmask(SIG_SETMASK, &mask, nullptr);
rlimit rl;
if (getrlimit(RLIMIT_NOFILE, &rl) >= 0) {
rlim_t maxfds = rl.rlim_max;
if (maxfds == RLIM_INFINITY)
maxfds = 65536;
for (rlim_t i = 3; i < maxfds; i++)
if (i != static_cast<rlim_t>(l_ProcessControlFD))
(void)close(i);
}
for (;;) {
size_t length;
struct msghdr msg;
memset(&msg, 0, sizeof(msg));
struct iovec io;
io.iov_base = &length;
io.iov_len = sizeof(length);
msg.msg_iov = &io;
msg.msg_iovlen = 1;
char cbuf[4096];
msg.msg_control = cbuf;
msg.msg_controllen = sizeof(cbuf);
int rc = recvmsg(l_ProcessControlFD, &msg, 0);
if (rc <= 0) {
if (rc < 0 && (errno == EINTR || errno == EAGAIN))
continue;
break;
}
auto *mbuf = new char[length];
size_t count = 0;
while (count < length) {
rc = recv(l_ProcessControlFD, mbuf + count, length - count, 0);
if (rc <= 0) {
if (rc < 0 && (errno == EINTR || errno == EAGAIN))
continue;
delete [] mbuf;
_exit(0);
}
count += rc;
if (rc == 0)
break;
}
String jrequest = String(mbuf, mbuf + count);
delete [] mbuf;
Dictionary::Ptr request = JsonDecode(jrequest);
String command = request->Get("command");
Value response;
if (command == "spawn")
response = ProcessSpawnImpl(&msg, request);
else if (command == "waitpid")
response = ProcessWaitPIDImpl(&msg, request);
else if (command == "kill")
response = ProcessKillImpl(&msg, request);
else
response = Empty;
String jresponse = JsonEncode(response);
if (send(l_ProcessControlFD, jresponse.CStr(), jresponse.GetLength(), 0) < 0) {
BOOST_THROW_EXCEPTION(posix_error()
<< boost::errinfo_api_function("send")
<< boost::errinfo_errno(errno));
}
}
_exit(0);
}
static void StartSpawnProcessHelper()
{
if (l_ProcessControlFD != -1) {
(void)close(l_ProcessControlFD);
int status;
(void)waitpid(l_ProcessControlPID, &status, 0);
}
int controlFDs[2];
if (socketpair(AF_UNIX, SOCK_STREAM, 0, controlFDs) < 0) {
BOOST_THROW_EXCEPTION(posix_error()
<< boost::errinfo_api_function("socketpair")
<< boost::errinfo_errno(errno));
}
pid_t pid = fork();
if (pid < 0) {
BOOST_THROW_EXCEPTION(posix_error()
<< boost::errinfo_api_function("fork")
<< boost::errinfo_errno(errno));
}
if (pid == 0) {
(void)close(controlFDs[1]);
l_ProcessControlFD = controlFDs[0];
ProcessHandler();
_exit(1);
}
(void)close(controlFDs[0]);
l_ProcessControlFD = controlFDs[1];
l_ProcessControlPID = pid;
}
static pid_t ProcessSpawn(const std::vector<String>& arguments, const Dictionary::Ptr& extraEnvironment, bool adjustPriority, int fds[3])
{
Dictionary::Ptr request = new Dictionary({
{ "command", "spawn" },
{ "arguments", Array::FromVector(arguments) },
{ "extraEnvironment", extraEnvironment },
{ "adjustPriority", adjustPriority }
});
String jrequest = JsonEncode(request);
size_t length = jrequest.GetLength();
boost::mutex::scoped_lock lock(l_ProcessControlMutex);
struct msghdr msg;
memset(&msg, 0, sizeof(msg));
struct iovec io;
io.iov_base = &length;
io.iov_len = sizeof(length);
msg.msg_iov = &io;
msg.msg_iovlen = 1;
char cbuf[CMSG_SPACE(sizeof(int) * 3)];
msg.msg_control = cbuf;
msg.msg_controllen = sizeof(cbuf);
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN(sizeof(int) * 3);
memcpy(CMSG_DATA(cmsg), fds, sizeof(int) * 3);
msg.msg_controllen = cmsg->cmsg_len;
do {
while (sendmsg(l_ProcessControlFD, &msg, 0) < 0) {
StartSpawnProcessHelper();
}
} while (send(l_ProcessControlFD, jrequest.CStr(), jrequest.GetLength(), 0) < 0);
char buf[4096];
ssize_t rc = recv(l_ProcessControlFD, buf, sizeof(buf), 0);
if (rc <= 0)
return -1;
String jresponse = String(buf, buf + rc);
Dictionary::Ptr response = JsonDecode(jresponse);
if (response->Get("rc") == -1)
errno = response->Get("errno");
return response->Get("rc");
}
static int ProcessKill(pid_t pid, int signum)
{
Dictionary::Ptr request = new Dictionary({
{ "command", "kill" },
{ "pid", pid },
{ "signum", signum }
});
String jrequest = JsonEncode(request);
size_t length = jrequest.GetLength();
boost::mutex::scoped_lock lock(l_ProcessControlMutex);
do {
while (send(l_ProcessControlFD, &length, sizeof(length), 0) < 0) {
StartSpawnProcessHelper();
}
} while (send(l_ProcessControlFD, jrequest.CStr(), jrequest.GetLength(), 0) < 0);
char buf[4096];
ssize_t rc = recv(l_ProcessControlFD, buf, sizeof(buf), 0);
if (rc <= 0)
return -1;
String jresponse = String(buf, buf + rc);
Dictionary::Ptr response = JsonDecode(jresponse);
return response->Get("errno");
}
static int ProcessWaitPID(pid_t pid, int *status)
{
Dictionary::Ptr request = new Dictionary({
{ "command", "waitpid" },
{ "pid", pid }
});
String jrequest = JsonEncode(request);
size_t length = jrequest.GetLength();
boost::mutex::scoped_lock lock(l_ProcessControlMutex);
do {
while (send(l_ProcessControlFD, &length, sizeof(length), 0) < 0) {
StartSpawnProcessHelper();
}
} while (send(l_ProcessControlFD, jrequest.CStr(), jrequest.GetLength(), 0) < 0);
char buf[4096];
ssize_t rc = recv(l_ProcessControlFD, buf, sizeof(buf), 0);
if (rc <= 0)
return -1;
String jresponse = String(buf, buf + rc);
Dictionary::Ptr response = JsonDecode(jresponse);
*status = response->Get("status");
return response->Get("rc");
}
void Process::InitializeSpawnHelper()
{
if (l_ProcessControlFD == -1)
StartSpawnProcessHelper();
}
#endif /* _WIN32 */
static void InitializeProcess()
{
#ifdef _WIN32
for (auto& event : l_Events) {
event = CreateEvent(nullptr, TRUE, FALSE, nullptr);
}
#else /* _WIN32 */
for (auto& eventFD : l_EventFDs) {
# ifdef HAVE_PIPE2
if (pipe2(eventFD, O_CLOEXEC) < 0) {
if (errno == ENOSYS) {
# endif /* HAVE_PIPE2 */
if (pipe(eventFD) < 0) {
BOOST_THROW_EXCEPTION(posix_error()
<< boost::errinfo_api_function("pipe")
<< boost::errinfo_errno(errno));
}
Utility::SetCloExec(eventFD[0]);
Utility::SetCloExec(eventFD[1]);
# ifdef HAVE_PIPE2
} else {
BOOST_THROW_EXCEPTION(posix_error()
<< boost::errinfo_api_function("pipe2")
<< boost::errinfo_errno(errno));
}
}
# endif /* HAVE_PIPE2 */
}
#endif /* _WIN32 */
}
INITIALIZE_ONCE(InitializeProcess);
void Process::ThreadInitialize()
{
/* Note to self: Make sure this runs _after_ we've daemonized. */
for (int tid = 0; tid < IOTHREADS; tid++) {
std::thread t(std::bind(&Process::IOThreadProc, tid));
t.detach();
}
}
Process::Arguments Process::PrepareCommand(const Value& command)
{
#ifdef _WIN32
String args;
#else /* _WIN32 */
std::vector<String> args;
#endif /* _WIN32 */
if (command.IsObjectType<Array>()) {
Array::Ptr arguments = command;
ObjectLock olock(arguments);
for (const Value& argument : arguments) {
#ifdef _WIN32
if (args != "")
args += " ";
args += Utility::EscapeCreateProcessArg(argument);
#else /* _WIN32 */
args.push_back(argument);
#endif /* _WIN32 */
}
return args;
}
#ifdef _WIN32
return command;
#else /* _WIN32 */
return { "sh", "-c", command };
#endif
}
void Process::SetTimeout(double timeout)
{
m_Timeout = timeout;
}
double Process::GetTimeout() const
{
return m_Timeout;
}
void Process::SetAdjustPriority(bool adjust)
{
m_AdjustPriority = adjust;
}
bool Process::GetAdjustPriority() const
{
return m_AdjustPriority;
}
void Process::IOThreadProc(int tid)
{
#ifdef _WIN32
HANDLE *handles = nullptr;
HANDLE *fhandles = nullptr;
#else /* _WIN32 */
pollfd *pfds = nullptr;
#endif /* _WIN32 */
int count = 0;
double now;
Utility::SetThreadName("ProcessIO");
for (;;) {
double timeout = -1;
now = Utility::GetTime();
{
boost::mutex::scoped_lock lock(l_ProcessMutex[tid]);
count = 1 + l_Processes[tid].size();
#ifdef _WIN32
handles = reinterpret_cast<HANDLE *>(realloc(handles, sizeof(HANDLE) * count));
fhandles = reinterpret_cast<HANDLE *>(realloc(fhandles, sizeof(HANDLE) * count));
fhandles[0] = l_Events[tid];
#else /* _WIN32 */
pfds = reinterpret_cast<pollfd *>(realloc(pfds, sizeof(pollfd) * count));
pfds[0].fd = l_EventFDs[tid][0];
pfds[0].events = POLLIN;
pfds[0].revents = 0;
#endif /* _WIN32 */
int i = 1;
typedef std::pair<ProcessHandle, Process::Ptr> kv_pair;
for (const kv_pair& kv : l_Processes[tid]) {
const Process::Ptr& process = kv.second;
#ifdef _WIN32
handles[i] = kv.first;
if (!process->m_ReadPending) {
process->m_ReadPending = true;
BOOL res = ReadFile(process->m_FD, process->m_ReadBuffer, sizeof(process->m_ReadBuffer), 0, &process->m_Overlapped);
if (res || GetLastError() != ERROR_IO_PENDING) {
process->m_ReadFailed = !res;
SetEvent(process->m_Overlapped.hEvent);
}
}
fhandles[i] = process->m_Overlapped.hEvent;
#else /* _WIN32 */
pfds[i].fd = process->m_FD;
pfds[i].events = POLLIN;
pfds[i].revents = 0;
#endif /* _WIN32 */
if (process->m_Timeout != 0) {
double delta = process->m_Timeout - (now - process->m_Result.ExecutionStart);
if (timeout == -1 || delta < timeout)
timeout = delta;
}
i++;
}
}
if (timeout < 0.01)
timeout = 0.5;
timeout *= 1000;
#ifdef _WIN32
DWORD rc = WaitForMultipleObjects(count, fhandles, FALSE, timeout == -1 ? INFINITE : static_cast<DWORD>(timeout));
#else /* _WIN32 */
int rc = poll(pfds, count, timeout);
if (rc < 0)
continue;
#endif /* _WIN32 */
now = Utility::GetTime();
{
boost::mutex::scoped_lock lock(l_ProcessMutex[tid]);
#ifdef _WIN32
if (rc == WAIT_OBJECT_0)
ResetEvent(l_Events[tid]);
#else /* _WIN32 */
if (pfds[0].revents & (POLLIN | POLLHUP | POLLERR)) {
char buffer[512];
if (read(l_EventFDs[tid][0], buffer, sizeof(buffer)) < 0)
Log(LogCritical, "base", "Read from event FD failed.");
}
#endif /* _WIN32 */
for (int i = 1; i < count; i++) {
#ifdef _WIN32
auto it = l_Processes[tid].find(handles[i]);
#else /* _WIN32 */
auto it2 = l_FDs[tid].find(pfds[i].fd);
if (it2 == l_FDs[tid].end())
continue; /* This should never happen. */
auto it = l_Processes[tid].find(it2->second);
#endif /* _WIN32 */
if (it == l_Processes[tid].end())
continue; /* This should never happen. */
bool is_timeout = false;
if (it->second->m_Timeout != 0) {
double timeout = it->second->m_Result.ExecutionStart + it->second->m_Timeout;
if (timeout < now)
is_timeout = true;
}
#ifdef _WIN32
if (rc == WAIT_OBJECT_0 + i || is_timeout) {
#else /* _WIN32 */
if (pfds[i].revents & (POLLIN | POLLHUP | POLLERR) || is_timeout) {
#endif /* _WIN32 */
if (!it->second->DoEvents()) {
#ifdef _WIN32
CloseHandle(it->first);
CloseHandle(it->second->m_FD);
#else /* _WIN32 */
l_FDs[tid].erase(it->second->m_FD);
(void)close(it->second->m_FD);
#endif /* _WIN32 */
l_Processes[tid].erase(it);
}
}
}
}
}
}
String Process::PrettyPrintArguments(const Process::Arguments& arguments)
{
#ifdef _WIN32
return "'" + arguments + "'";
#else /* _WIN32 */
return "'" + boost::algorithm::join(arguments, "' '") + "'";
#endif /* _WIN32 */
}
#ifdef _WIN32
static BOOL CreatePipeOverlapped(HANDLE *outReadPipe, HANDLE *outWritePipe,
SECURITY_ATTRIBUTES *securityAttributes, DWORD size, DWORD readMode, DWORD writeMode)
{
static LONG pipeIndex = 0;
if (size == 0)
size = 8192;
LONG currentIndex = InterlockedIncrement(&pipeIndex);
char pipeName[128];
sprintf(pipeName, "\\\\.\\Pipe\\OverlappedPipe.%d.%d", (int)GetCurrentProcessId(), (int)currentIndex);
*outReadPipe = CreateNamedPipe(pipeName, PIPE_ACCESS_INBOUND | readMode,
PIPE_TYPE_BYTE | PIPE_WAIT, 1, size, size, 60 * 1000, securityAttributes);
if (*outReadPipe == INVALID_HANDLE_VALUE)
return FALSE;
*outWritePipe = CreateFile(pipeName, GENERIC_WRITE, 0, securityAttributes, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL | writeMode, nullptr);
if (*outWritePipe == INVALID_HANDLE_VALUE) {
DWORD error = GetLastError();
CloseHandle(*outReadPipe);
SetLastError(error);
return FALSE;
}
return TRUE;
}
#endif /* _WIN32 */
void Process::Run(const std::function<void(const ProcessResult&)>& callback)
{
#ifndef _WIN32
boost::call_once(l_SpawnHelperOnceFlag, &Process::InitializeSpawnHelper);
#endif /* _WIN32 */
boost::call_once(l_ProcessOnceFlag, &Process::ThreadInitialize);
m_Result.ExecutionStart = Utility::GetTime();
#ifdef _WIN32
SECURITY_ATTRIBUTES sa = {};
sa.nLength = sizeof(sa);
sa.bInheritHandle = TRUE;
HANDLE outReadPipe, outWritePipe;
if (!CreatePipeOverlapped(&outReadPipe, &outWritePipe, &sa, 0, FILE_FLAG_OVERLAPPED, 0))
BOOST_THROW_EXCEPTION(win32_error()
<< boost::errinfo_api_function("CreatePipe")
<< errinfo_win32_error(GetLastError()));
if (!SetHandleInformation(outReadPipe, HANDLE_FLAG_INHERIT, 0))
BOOST_THROW_EXCEPTION(win32_error()
<< boost::errinfo_api_function("SetHandleInformation")
<< errinfo_win32_error(GetLastError()));
HANDLE outWritePipeDup;
if (!DuplicateHandle(GetCurrentProcess(), outWritePipe, GetCurrentProcess(),
&outWritePipeDup, 0, TRUE, DUPLICATE_SAME_ACCESS))
BOOST_THROW_EXCEPTION(win32_error()
<< boost::errinfo_api_function("DuplicateHandle")
<< errinfo_win32_error(GetLastError()));
/* LPPROC_THREAD_ATTRIBUTE_LIST lpAttributeList;
SIZE_T cbSize;
if (!InitializeProcThreadAttributeList(nullptr, 1, 0, &cbSize) && GetLastError() != ERROR_INSUFFICIENT_BUFFER)
BOOST_THROW_EXCEPTION(win32_error()
<< boost::errinfo_api_function("InitializeProcThreadAttributeList")
<< errinfo_win32_error(GetLastError()));
lpAttributeList = reinterpret_cast<LPPROC_THREAD_ATTRIBUTE_LIST>(new char[cbSize]);
if (!InitializeProcThreadAttributeList(lpAttributeList, 1, 0, &cbSize))
BOOST_THROW_EXCEPTION(win32_error()
<< boost::errinfo_api_function("InitializeProcThreadAttributeList")
<< errinfo_win32_error(GetLastError()));
HANDLE rgHandles[3];
rgHandles[0] = outWritePipe;
rgHandles[1] = outWritePipeDup;
rgHandles[2] = GetStdHandle(STD_INPUT_HANDLE);
if (!UpdateProcThreadAttribute(lpAttributeList, 0, PROC_THREAD_ATTRIBUTE_HANDLE_LIST,
rgHandles, sizeof(rgHandles), nullptr, nullptr))
BOOST_THROW_EXCEPTION(win32_error()
<< boost::errinfo_api_function("UpdateProcThreadAttribute")
<< errinfo_win32_error(GetLastError()));
*/
STARTUPINFOEX si = {};
si.StartupInfo.cb = sizeof(si);
si.StartupInfo.hStdError = outWritePipe;
si.StartupInfo.hStdOutput = outWritePipeDup;
si.StartupInfo.hStdInput = GetStdHandle(STD_INPUT_HANDLE);
si.StartupInfo.dwFlags = STARTF_USESTDHANDLES;
// si.lpAttributeList = lpAttributeList;
PROCESS_INFORMATION pi;
char *args = new char[m_Arguments.GetLength() + 1];
strncpy(args, m_Arguments.CStr(), m_Arguments.GetLength() + 1);
args[m_Arguments.GetLength()] = '\0';
LPCH pEnvironment = GetEnvironmentStrings();
size_t ioffset = 0, offset = 0;
char *envp = nullptr;
for (;;) {
size_t len = strlen(pEnvironment + ioffset);
if (len == 0)
break;
char *eqp = strchr(pEnvironment + ioffset, '=');
if (eqp && m_ExtraEnvironment && m_ExtraEnvironment->Contains(String(pEnvironment + ioffset, eqp))) {
ioffset += len + 1;
continue;
}
envp = static_cast<char *>(realloc(envp, offset + len + 1));
if (!envp)
BOOST_THROW_EXCEPTION(std::bad_alloc());
strcpy(envp + offset, pEnvironment + ioffset);
offset += len + 1;
ioffset += len + 1;
}
FreeEnvironmentStrings(pEnvironment);
if (m_ExtraEnvironment) {
ObjectLock olock(m_ExtraEnvironment);
for (const Dictionary::Pair& kv : m_ExtraEnvironment) {
String skv = kv.first + "=" + Convert::ToString(kv.second);
envp = static_cast<char *>(realloc(envp, offset + skv.GetLength() + 1));
if (!envp)
BOOST_THROW_EXCEPTION(std::bad_alloc());
strcpy(envp + offset, skv.CStr());
offset += skv.GetLength() + 1;
}
}
envp = static_cast<char *>(realloc(envp, offset + 1));
if (!envp)
BOOST_THROW_EXCEPTION(std::bad_alloc());
envp[offset] = '\0';
if (!CreateProcess(nullptr, args, nullptr, nullptr, TRUE,
0 /*EXTENDED_STARTUPINFO_PRESENT*/, envp, nullptr, &si.StartupInfo, &pi)) {
DWORD error = GetLastError();
CloseHandle(outWritePipe);
CloseHandle(outWritePipeDup);
free(envp);
/* DeleteProcThreadAttributeList(lpAttributeList);
delete [] reinterpret_cast<char *>(lpAttributeList); */
m_Result.PID = 0;
m_Result.ExecutionEnd = Utility::GetTime();
m_Result.ExitStatus = 127;
m_Result.Output = "Command " + String(args) + " failed to execute: " + Utility::FormatErrorNumber(error);
delete [] args;
if (callback)
Utility::QueueAsyncCallback(std::bind(callback, m_Result));
return;
}
delete [] args;
free(envp);
/* DeleteProcThreadAttributeList(lpAttributeList);
delete [] reinterpret_cast<char *>(lpAttributeList); */
CloseHandle(outWritePipe);
CloseHandle(outWritePipeDup);
CloseHandle(pi.hThread);
m_Process = pi.hProcess;
m_FD = outReadPipe;
m_PID = pi.dwProcessId;
Log(LogNotice, "Process")
<< "Running command " << PrettyPrintArguments(m_Arguments) << ": PID " << m_PID;
#else /* _WIN32 */
int outfds[2];
#ifdef HAVE_PIPE2
if (pipe2(outfds, O_CLOEXEC) < 0) {
if (errno == ENOSYS) {
#endif /* HAVE_PIPE2 */
if (pipe(outfds) < 0) {
BOOST_THROW_EXCEPTION(posix_error()
<< boost::errinfo_api_function("pipe")
<< boost::errinfo_errno(errno));
}
Utility::SetCloExec(outfds[0]);
Utility::SetCloExec(outfds[1]);
#ifdef HAVE_PIPE2
} else {
BOOST_THROW_EXCEPTION(posix_error()
<< boost::errinfo_api_function("pipe2")
<< boost::errinfo_errno(errno));
}
}
#endif /* HAVE_PIPE2 */
int fds[3];
fds[0] = STDIN_FILENO;
fds[1] = outfds[1];
fds[2] = outfds[1];
m_Process = ProcessSpawn(m_Arguments, m_ExtraEnvironment, m_AdjustPriority, fds);
m_PID = m_Process;
if (m_PID == -1) {
m_OutputStream << "Fork failed with error code " << errno << " (" << Utility::FormatErrorNumber(errno) << ")";
Log(LogCritical, "Process", m_OutputStream.str());
}
Log(LogNotice, "Process")
<< "Running command " << PrettyPrintArguments(m_Arguments) << ": PID " << m_PID;
(void)close(outfds[1]);
Utility::SetNonBlocking(outfds[0]);
m_FD = outfds[0];
#endif /* _WIN32 */
m_Callback = callback;
int tid = GetTID();
{
boost::mutex::scoped_lock lock(l_ProcessMutex[tid]);
l_Processes[tid][m_Process] = this;
#ifndef _WIN32
l_FDs[tid][m_FD] = m_Process;
#endif /* _WIN32 */
}
#ifdef _WIN32
SetEvent(l_Events[tid]);
#else /* _WIN32 */
if (write(l_EventFDs[tid][1], "T", 1) < 0 && errno != EINTR && errno != EAGAIN)
Log(LogCritical, "base", "Write to event FD failed.");
#endif /* _WIN32 */
}
bool Process::DoEvents()
{
bool is_timeout = false;
#ifndef _WIN32
bool could_not_kill = false;
#endif /* _WIN32 */
if (m_Timeout != 0) {
double timeout = m_Result.ExecutionStart + m_Timeout;
if (timeout < Utility::GetTime()) {
Log(LogWarning, "Process")
<< "Killing process group " << m_PID << " (" << PrettyPrintArguments(m_Arguments)
<< ") after timeout of " << m_Timeout << " seconds";
m_OutputStream << "<Timeout exceeded.>";
#ifdef _WIN32
TerminateProcess(m_Process, 3);
#else /* _WIN32 */
int error = ProcessKill(-m_Process, SIGKILL);
if (error) {
Log(LogWarning, "Process")
<< "Couldn't kill the process group " << m_PID << " (" << PrettyPrintArguments(m_Arguments)
<< "): [errno " << error << "] " << strerror(error);
could_not_kill = true;
}
#endif /* _WIN32 */
is_timeout = true;
}
}
if (!is_timeout) {
#ifdef _WIN32
m_ReadPending = false;
DWORD rc;
if (!m_ReadFailed && GetOverlappedResult(m_FD, &m_Overlapped, &rc, TRUE) && rc > 0) {
m_OutputStream.write(m_ReadBuffer, rc);
return true;
}
#else /* _WIN32 */
char buffer[512];
for (;;) {
int rc = read(m_FD, buffer, sizeof(buffer));
if (rc < 0 && (errno == EAGAIN || errno == EWOULDBLOCK))
return true;
if (rc > 0) {
m_OutputStream.write(buffer, rc);
continue;
}
break;
}
#endif /* _WIN32 */
}
String output = m_OutputStream.str();
#ifdef _WIN32
WaitForSingleObject(m_Process, INFINITE);
DWORD exitcode;
GetExitCodeProcess(m_Process, &exitcode);
Log(LogNotice, "Process")
<< "PID " << m_PID << " (" << PrettyPrintArguments(m_Arguments) << ") terminated with exit code " << exitcode;
#else /* _WIN32 */
int status, exitcode;
if (could_not_kill || m_PID == -1) {
exitcode = 128;
} else if (ProcessWaitPID(m_Process, &status) != m_Process) {
exitcode = 128;
Log(LogWarning, "Process")
<< "PID " << m_PID << " (" << PrettyPrintArguments(m_Arguments) << ") died mysteriously: waitpid failed";
} else if (WIFEXITED(status)) {
exitcode = WEXITSTATUS(status);
Log(LogNotice, "Process")
<< "PID " << m_PID << " (" << PrettyPrintArguments(m_Arguments) << ") terminated with exit code " << exitcode;
} else if (WIFSIGNALED(status)) {
int signum = WTERMSIG(status);
const char *zsigname = strsignal(signum);
String signame = Convert::ToString(signum);
if (zsigname) {
signame += " (";
signame += zsigname;
signame += ")";
}
Log(LogWarning, "Process")
<< "PID " << m_PID << " was terminated by signal " << signame;
std::ostringstream outputbuf;
outputbuf << "<Terminated by signal " << signame << ".>";
output = output + outputbuf.str();
exitcode = 128;
} else {
exitcode = 128;
}
#endif /* _WIN32 */
m_Result.PID = m_PID;
m_Result.ExecutionEnd = Utility::GetTime();
m_Result.ExitStatus = exitcode;
m_Result.Output = output;
if (m_Callback)
Utility::QueueAsyncCallback(std::bind(m_Callback, m_Result));
return false;
}
pid_t Process::GetPID() const
{
return m_PID;
}
int Process::GetTID() const
{
return (reinterpret_cast<uintptr_t>(this) / sizeof(void *)) % IOTHREADS;
}