icingabeat/docs/fields.asciidoc

11253 lines
176 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

////
This file is generated! See _meta/fields.yml and scripts/generate_fields_docs.py
////
[[exported-fields]]
= Exported fields
[partintro]
--
This document describes the fields that are exported by Icingabeat. They are
grouped in the following categories:
* <<exported-fields-beat-common>>
* <<exported-fields-cloud>>
* <<exported-fields-docker-processor>>
* <<exported-fields-ecs>>
* <<exported-fields-host-processor>>
* <<exported-fields-icingabeat>>
* <<exported-fields-jolokia-autodiscover>>
* <<exported-fields-kubernetes-processor>>
* <<exported-fields-process>>
--
[[exported-fields-beat-common]]
== Beat fields
Contains common beat fields available in all event types.
*`agent.hostname`*::
+
--
Deprecated - use agent.name or agent.id to identify an agent. Hostname of the agent.
type: keyword
--
*`beat.timezone`*::
+
--
type: alias
alias to: event.timezone
--
*`fields`*::
+
--
Contains user configurable fields.
type: object
--
*`beat.name`*::
+
--
type: alias
alias to: host.name
--
*`beat.hostname`*::
+
--
type: alias
alias to: agent.hostname
--
*`timeseries.instance`*::
+
--
Time series instance id
type: keyword
--
[[exported-fields-cloud]]
== Cloud provider metadata fields
Metadata from cloud providers added by the add_cloud_metadata processor.
*`cloud.image.id`*::
+
--
Image ID for the cloud instance.
example: ami-abcd1234
--
*`meta.cloud.provider`*::
+
--
type: alias
alias to: cloud.provider
--
*`meta.cloud.instance_id`*::
+
--
type: alias
alias to: cloud.instance.id
--
*`meta.cloud.instance_name`*::
+
--
type: alias
alias to: cloud.instance.name
--
*`meta.cloud.machine_type`*::
+
--
type: alias
alias to: cloud.machine.type
--
*`meta.cloud.availability_zone`*::
+
--
type: alias
alias to: cloud.availability_zone
--
*`meta.cloud.project_id`*::
+
--
type: alias
alias to: cloud.project.id
--
*`meta.cloud.region`*::
+
--
type: alias
alias to: cloud.region
--
[[exported-fields-docker-processor]]
== Docker fields
Docker stats collected from Docker.
*`docker.container.id`*::
+
--
type: alias
alias to: container.id
--
*`docker.container.image`*::
+
--
type: alias
alias to: container.image.name
--
*`docker.container.name`*::
+
--
type: alias
alias to: container.name
--
*`docker.container.labels`*::
+
--
Image labels.
type: object
--
[[exported-fields-ecs]]
== ECS fields
This section defines Elastic Common Schema (ECS) fields—a common set of fields
to be used when storing event data in {es}.
This is an exhaustive list, and fields listed here are not necessarily used by {beatname_uc}.
The goal of ECS is to enable and encourage users of {es} to normalize their event data,
so that they can better analyze, visualize, and correlate the data represented in their events.
See the {ecs-ref}[ECS reference] for more information.
*`@timestamp`*::
+
--
Date/time when the event originated.
This is the date/time extracted from the event, typically representing when the event was generated by the source.
If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline.
Required field for all events.
type: date
example: 2016-05-23T08:05:34.853Z
required: True
--
*`labels`*::
+
--
Custom key/value pairs.
Can be used to add meta information to events. Should not contain nested objects. All values are stored as keyword.
Example: `docker` and `k8s` labels.
type: object
example: {"application": "foo-bar", "env": "production"}
--
*`message`*::
+
--
For log events the message field contains the log message, optimized for viewing in a log viewer.
For structured logs without an original message field, other fields can be concatenated to form a human-readable summary of the event.
If multiple messages exist, they can be combined into one message.
type: text
example: Hello World
--
*`tags`*::
+
--
List of keywords used to tag each event.
type: keyword
example: ["production", "env2"]
--
[float]
=== agent
The agent fields contain the data about the software entity, if any, that collects, detects, or observes events on a host, or takes measurements on a host.
Examples include Beats. Agents may also run on observers. ECS agent.* fields shall be populated with details of the agent running on the host or observer where the event happened or the measurement was taken.
*`agent.build.original`*::
+
--
Extended build information for the agent.
This field is intended to contain any build information that a data source may provide, no specific formatting is required.
type: keyword
example: metricbeat version 7.6.0 (amd64), libbeat 7.6.0 [6a23e8f8f30f5001ba344e4e54d8d9cb82cb107c built 2020-02-05 23:10:10 +0000 UTC]
--
*`agent.ephemeral_id`*::
+
--
Ephemeral identifier of this agent (if one exists).
This id normally changes across restarts, but `agent.id` does not.
type: keyword
example: 8a4f500f
--
*`agent.id`*::
+
--
Unique identifier of this agent (if one exists).
Example: For Beats this would be beat.id.
type: keyword
example: 8a4f500d
--
*`agent.name`*::
+
--
Custom name of the agent.
This is a name that can be given to an agent. This can be helpful if for example two Filebeat instances are running on the same host but a human readable separation is needed on which Filebeat instance data is coming from.
If no name is given, the name is often left empty.
type: keyword
example: foo
--
*`agent.type`*::
+
--
Type of the agent.
The agent type always stays the same and should be given by the agent used. In case of Filebeat the agent would always be Filebeat also if two Filebeat instances are run on the same machine.
type: keyword
example: filebeat
--
*`agent.version`*::
+
--
Version of the agent.
type: keyword
example: 6.0.0-rc2
--
[float]
=== as
An autonomous system (AS) is a collection of connected Internet Protocol (IP) routing prefixes under the control of one or more network operators on behalf of a single administrative entity or domain that presents a common, clearly defined routing policy to the internet.
*`as.number`*::
+
--
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
type: long
example: 15169
--
*`as.organization.name`*::
+
--
Organization name.
type: keyword
example: Google LLC
--
*`as.organization.name.text`*::
+
--
type: text
--
[float]
=== client
A client is defined as the initiator of a network connection for events regarding sessions, connections, or bidirectional flow records.
For TCP events, the client is the initiator of the TCP connection that sends the SYN packet(s). For other protocols, the client is generally the initiator or requestor in the network transaction. Some systems use the term "originator" to refer the client in TCP connections. The client fields describe details about the system acting as the client in the network event. Client fields are usually populated in conjunction with server fields. Client fields are generally not populated for packet-level events.
Client / server representations can add semantic context to an exchange, which is helpful to visualize the data in certain situations. If your context falls in that category, you should still ensure that source and destination are filled appropriately.
*`client.address`*::
+
--
Some event client addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the `.address` field.
Then it should be duplicated to `.ip` or `.domain`, depending on which one it is.
type: keyword
--
*`client.as.number`*::
+
--
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
type: long
example: 15169
--
*`client.as.organization.name`*::
+
--
Organization name.
type: keyword
example: Google LLC
--
*`client.as.organization.name.text`*::
+
--
type: text
--
*`client.bytes`*::
+
--
Bytes sent from the client to the server.
type: long
example: 184
format: bytes
--
*`client.domain`*::
+
--
Client domain.
type: keyword
--
*`client.geo.city_name`*::
+
--
City name.
type: keyword
example: Montreal
--
*`client.geo.continent_code`*::
+
--
Two-letter code representing continent's name.
type: keyword
example: NA
--
*`client.geo.continent_name`*::
+
--
Name of the continent.
type: keyword
example: North America
--
*`client.geo.country_iso_code`*::
+
--
Country ISO code.
type: keyword
example: CA
--
*`client.geo.country_name`*::
+
--
Country name.
type: keyword
example: Canada
--
*`client.geo.location`*::
+
--
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
--
*`client.geo.name`*::
+
--
User-defined description of a location, at the level of granularity they care about.
Could be the name of their data centers, the floor number, if this describes a local physical entity, city names.
Not typically used in automated geolocation.
type: keyword
example: boston-dc
--
*`client.geo.postal_code`*::
+
--
Postal code associated with the location.
Values appropriate for this field may also be known as a postcode or ZIP code and will vary widely from country to country.
type: keyword
example: 94040
--
*`client.geo.region_iso_code`*::
+
--
Region ISO code.
type: keyword
example: CA-QC
--
*`client.geo.region_name`*::
+
--
Region name.
type: keyword
example: Quebec
--
*`client.geo.timezone`*::
+
--
The time zone of the location, such as IANA time zone name.
type: keyword
example: America/Argentina/Buenos_Aires
--
*`client.ip`*::
+
--
IP address of the client (IPv4 or IPv6).
type: ip
--
*`client.mac`*::
+
--
MAC address of the client.
The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
type: keyword
example: 00-00-5E-00-53-23
--
*`client.nat.ip`*::
+
--
Translated IP of source based NAT sessions (e.g. internal client to internet).
Typically connections traversing load balancers, firewalls, or routers.
type: ip
--
*`client.nat.port`*::
+
--
Translated port of source based NAT sessions (e.g. internal client to internet).
Typically connections traversing load balancers, firewalls, or routers.
type: long
format: string
--
*`client.packets`*::
+
--
Packets sent from the client to the server.
type: long
example: 12
--
*`client.port`*::
+
--
Port of the client.
type: long
format: string
--
*`client.registered_domain`*::
+
--
The highest registered client domain, stripped of the subdomain.
For example, the registered domain for "foo.example.com" is "example.com".
This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last two labels will not work well for TLDs such as "co.uk".
type: keyword
example: example.com
--
*`client.subdomain`*::
+
--
The subdomain portion of a fully qualified domain name includes all of the names except the host name under the registered_domain. In a partially qualified domain, or if the the qualification level of the full name cannot be determined, subdomain contains all of the names below the registered domain.
For example the subdomain portion of "www.east.mydomain.co.uk" is "east". If the domain has multiple levels of subdomain, such as "sub2.sub1.example.com", the subdomain field should contain "sub2.sub1", with no trailing period.
type: keyword
example: east
--
*`client.top_level_domain`*::
+
--
The effective top level domain (eTLD), also known as the domain suffix, is the last part of the domain name. For example, the top level domain for example.com is "com".
This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last label will not work well for effective TLDs such as "co.uk".
type: keyword
example: co.uk
--
*`client.user.domain`*::
+
--
Name of the directory the user is a member of.
For example, an LDAP or Active Directory domain name.
type: keyword
--
*`client.user.email`*::
+
--
User email address.
type: keyword
--
*`client.user.full_name`*::
+
--
User's full name, if available.
type: keyword
example: Albert Einstein
--
*`client.user.full_name.text`*::
+
--
type: text
--
*`client.user.group.domain`*::
+
--
Name of the directory the group is a member of.
For example, an LDAP or Active Directory domain name.
type: keyword
--
*`client.user.group.id`*::
+
--
Unique identifier for the group on the system/platform.
type: keyword
--
*`client.user.group.name`*::
+
--
Name of the group.
type: keyword
--
*`client.user.hash`*::
+
--
Unique user hash to correlate information for a user in anonymized form.
Useful if `user.id` or `user.name` contain confidential information and cannot be used.
type: keyword
--
*`client.user.id`*::
+
--
Unique identifier of the user.
type: keyword
--
*`client.user.name`*::
+
--
Short name or login of the user.
type: keyword
example: albert
--
*`client.user.name.text`*::
+
--
type: text
--
*`client.user.roles`*::
+
--
Array of user roles at the time of the event.
type: keyword
example: ["kibana_admin", "reporting_user"]
--
[float]
=== cloud
Fields related to the cloud or infrastructure the events are coming from.
*`cloud.account.id`*::
+
--
The cloud account or organization id used to identify different entities in a multi-tenant environment.
Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
type: keyword
example: 666777888999
--
*`cloud.account.name`*::
+
--
The cloud account name or alias used to identify different entities in a multi-tenant environment.
Examples: AWS account name, Google Cloud ORG display name.
type: keyword
example: elastic-dev
--
*`cloud.availability_zone`*::
+
--
Availability zone in which this host is running.
type: keyword
example: us-east-1c
--
*`cloud.instance.id`*::
+
--
Instance ID of the host machine.
type: keyword
example: i-1234567890abcdef0
--
*`cloud.instance.name`*::
+
--
Instance name of the host machine.
type: keyword
--
*`cloud.machine.type`*::
+
--
Machine type of the host machine.
type: keyword
example: t2.medium
--
*`cloud.project.id`*::
+
--
The cloud project identifier.
Examples: Google Cloud Project id, Azure Project id.
type: keyword
example: my-project
--
*`cloud.project.name`*::
+
--
The cloud project name.
Examples: Google Cloud Project name, Azure Project name.
type: keyword
example: my project
--
*`cloud.provider`*::
+
--
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
type: keyword
example: aws
--
*`cloud.region`*::
+
--
Region in which this host is running.
type: keyword
example: us-east-1
--
*`cloud.service.name`*::
+
--
The cloud service name is intended to distinguish services running on different platforms within a provider, eg AWS EC2 vs Lambda, GCP GCE vs App Engine, Azure VM vs App Server.
Examples: app engine, app service, cloud run, fargate, lambda.
type: keyword
example: lambda
--
[float]
=== code_signature
These fields contain information about binary code signatures.
*`code_signature.exists`*::
+
--
Boolean to capture if a signature is present.
type: boolean
example: true
--
*`code_signature.signing_id`*::
+
--
The identifier used to sign the process.
This is used to identify the application manufactured by a software vendor. The field is relevant to Apple *OS only.
type: keyword
example: com.apple.xpc.proxy
--
*`code_signature.status`*::
+
--
Additional information about the certificate status.
This is useful for logging cryptographic errors with the certificate validity or trust status. Leave unpopulated if the validity or trust of the certificate was unchecked.
type: keyword
example: ERROR_UNTRUSTED_ROOT
--
*`code_signature.subject_name`*::
+
--
Subject name of the code signer
type: keyword
example: Microsoft Corporation
--
*`code_signature.team_id`*::
+
--
The team identifier used to sign the process.
This is used to identify the team or vendor of a software product. The field is relevant to Apple *OS only.
type: keyword
example: EQHXZ8M8AV
--
*`code_signature.trusted`*::
+
--
Stores the trust status of the certificate chain.
Validating the trust of the certificate chain may be complicated, and this field should only be populated by tools that actively check the status.
type: boolean
example: true
--
*`code_signature.valid`*::
+
--
Boolean to capture if the digital signature is verified against the binary content.
Leave unpopulated if a certificate was unchecked.
type: boolean
example: true
--
[float]
=== container
Container fields are used for meta information about the specific container that is the source of information.
These fields help correlate data based containers from any runtime.
*`container.id`*::
+
--
Unique container id.
type: keyword
--
*`container.image.name`*::
+
--
Name of the image the container was built on.
type: keyword
--
*`container.image.tag`*::
+
--
Container image tags.
type: keyword
--
*`container.labels`*::
+
--
Image labels.
type: object
--
*`container.name`*::
+
--
Container name.
type: keyword
--
*`container.runtime`*::
+
--
Runtime managing this container.
type: keyword
example: docker
--
[float]
=== data_stream
The data_stream fields take part in defining the new data stream naming scheme.
In the new data stream naming scheme the value of the data stream fields combine to the name of the actual data stream in the following manner: `{data_stream.type}-{data_stream.dataset}-{data_stream.namespace}`. This means the fields can only contain characters that are valid as part of names of data streams. More details about this can be found in this https://www.elastic.co/blog/an-introduction-to-the-elastic-data-stream-naming-scheme[blog post].
An Elasticsearch data stream consists of one or more backing indices, and a data stream name forms part of the backing indices names. Due to this convention, data streams must also follow index naming restrictions. For example, data stream names cannot include `\`, `/`, `*`, `?`, `"`, `<`, `>`, `|`, ` ` (space character), `,`, or `#`. Please see the Elasticsearch reference for additional https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-create-index.html#indices-create-api-path-params[restrictions].
*`data_stream.dataset`*::
+
--
The field can contain anything that makes sense to signify the source of the data.
Examples include `nginx.access`, `prometheus`, `endpoint` etc. For data streams that otherwise fit, but that do not have dataset set we use the value "generic" for the dataset value. `event.dataset` should have the same value as `data_stream.dataset`.
Beyond the Elasticsearch data stream naming criteria noted above, the `dataset` value has additional restrictions:
* Must not contain `-`
* No longer than 100 characters
type: constant_keyword
example: nginx.access
--
*`data_stream.namespace`*::
+
--
A user defined namespace. Namespaces are useful to allow grouping of data.
Many users already organize their indices this way, and the data stream naming scheme now provides this best practice as a default. Many users will populate this field with `default`. If no value is used, it falls back to `default`.
Beyond the Elasticsearch index naming criteria noted above, `namespace` value has the additional restrictions:
* Must not contain `-`
* No longer than 100 characters
type: constant_keyword
example: production
--
*`data_stream.type`*::
+
--
An overarching type for the data stream.
Currently allowed values are "logs" and "metrics". We expect to also add "traces" and "synthetics" in the near future.
type: constant_keyword
example: logs
--
[float]
=== destination
Destination fields capture details about the receiver of a network exchange/packet. These fields are populated from a network event, packet, or other event containing details of a network transaction.
Destination fields are usually populated in conjunction with source fields. The source and destination fields are considered the baseline and should always be filled if an event contains source and destination details from a network transaction. If the event also contains identification of the client and server roles, then the client and server fields should also be populated.
*`destination.address`*::
+
--
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the `.address` field.
Then it should be duplicated to `.ip` or `.domain`, depending on which one it is.
type: keyword
--
*`destination.as.number`*::
+
--
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
type: long
example: 15169
--
*`destination.as.organization.name`*::
+
--
Organization name.
type: keyword
example: Google LLC
--
*`destination.as.organization.name.text`*::
+
--
type: text
--
*`destination.bytes`*::
+
--
Bytes sent from the destination to the source.
type: long
example: 184
format: bytes
--
*`destination.domain`*::
+
--
Destination domain.
type: keyword
--
*`destination.geo.city_name`*::
+
--
City name.
type: keyword
example: Montreal
--
*`destination.geo.continent_code`*::
+
--
Two-letter code representing continent's name.
type: keyword
example: NA
--
*`destination.geo.continent_name`*::
+
--
Name of the continent.
type: keyword
example: North America
--
*`destination.geo.country_iso_code`*::
+
--
Country ISO code.
type: keyword
example: CA
--
*`destination.geo.country_name`*::
+
--
Country name.
type: keyword
example: Canada
--
*`destination.geo.location`*::
+
--
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
--
*`destination.geo.name`*::
+
--
User-defined description of a location, at the level of granularity they care about.
Could be the name of their data centers, the floor number, if this describes a local physical entity, city names.
Not typically used in automated geolocation.
type: keyword
example: boston-dc
--
*`destination.geo.postal_code`*::
+
--
Postal code associated with the location.
Values appropriate for this field may also be known as a postcode or ZIP code and will vary widely from country to country.
type: keyword
example: 94040
--
*`destination.geo.region_iso_code`*::
+
--
Region ISO code.
type: keyword
example: CA-QC
--
*`destination.geo.region_name`*::
+
--
Region name.
type: keyword
example: Quebec
--
*`destination.geo.timezone`*::
+
--
The time zone of the location, such as IANA time zone name.
type: keyword
example: America/Argentina/Buenos_Aires
--
*`destination.ip`*::
+
--
IP address of the destination (IPv4 or IPv6).
type: ip
--
*`destination.mac`*::
+
--
MAC address of the destination.
The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
type: keyword
example: 00-00-5E-00-53-23
--
*`destination.nat.ip`*::
+
--
Translated ip of destination based NAT sessions (e.g. internet to private DMZ)
Typically used with load balancers, firewalls, or routers.
type: ip
--
*`destination.nat.port`*::
+
--
Port the source session is translated to by NAT Device.
Typically used with load balancers, firewalls, or routers.
type: long
format: string
--
*`destination.packets`*::
+
--
Packets sent from the destination to the source.
type: long
example: 12
--
*`destination.port`*::
+
--
Port of the destination.
type: long
format: string
--
*`destination.registered_domain`*::
+
--
The highest registered destination domain, stripped of the subdomain.
For example, the registered domain for "foo.example.com" is "example.com".
This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last two labels will not work well for TLDs such as "co.uk".
type: keyword
example: example.com
--
*`destination.subdomain`*::
+
--
The subdomain portion of a fully qualified domain name includes all of the names except the host name under the registered_domain. In a partially qualified domain, or if the the qualification level of the full name cannot be determined, subdomain contains all of the names below the registered domain.
For example the subdomain portion of "www.east.mydomain.co.uk" is "east". If the domain has multiple levels of subdomain, such as "sub2.sub1.example.com", the subdomain field should contain "sub2.sub1", with no trailing period.
type: keyword
example: east
--
*`destination.top_level_domain`*::
+
--
The effective top level domain (eTLD), also known as the domain suffix, is the last part of the domain name. For example, the top level domain for example.com is "com".
This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last label will not work well for effective TLDs such as "co.uk".
type: keyword
example: co.uk
--
*`destination.user.domain`*::
+
--
Name of the directory the user is a member of.
For example, an LDAP or Active Directory domain name.
type: keyword
--
*`destination.user.email`*::
+
--
User email address.
type: keyword
--
*`destination.user.full_name`*::
+
--
User's full name, if available.
type: keyword
example: Albert Einstein
--
*`destination.user.full_name.text`*::
+
--
type: text
--
*`destination.user.group.domain`*::
+
--
Name of the directory the group is a member of.
For example, an LDAP or Active Directory domain name.
type: keyword
--
*`destination.user.group.id`*::
+
--
Unique identifier for the group on the system/platform.
type: keyword
--
*`destination.user.group.name`*::
+
--
Name of the group.
type: keyword
--
*`destination.user.hash`*::
+
--
Unique user hash to correlate information for a user in anonymized form.
Useful if `user.id` or `user.name` contain confidential information and cannot be used.
type: keyword
--
*`destination.user.id`*::
+
--
Unique identifier of the user.
type: keyword
--
*`destination.user.name`*::
+
--
Short name or login of the user.
type: keyword
example: albert
--
*`destination.user.name.text`*::
+
--
type: text
--
*`destination.user.roles`*::
+
--
Array of user roles at the time of the event.
type: keyword
example: ["kibana_admin", "reporting_user"]
--
[float]
=== dll
These fields contain information about code libraries dynamically loaded into processes.
Many operating systems refer to "shared code libraries" with different names, but this field set refers to all of the following:
* Dynamic-link library (`.dll`) commonly used on Windows
* Shared Object (`.so`) commonly used on Unix-like operating systems
* Dynamic library (`.dylib`) commonly used on macOS
*`dll.code_signature.exists`*::
+
--
Boolean to capture if a signature is present.
type: boolean
example: true
--
*`dll.code_signature.signing_id`*::
+
--
The identifier used to sign the process.
This is used to identify the application manufactured by a software vendor. The field is relevant to Apple *OS only.
type: keyword
example: com.apple.xpc.proxy
--
*`dll.code_signature.status`*::
+
--
Additional information about the certificate status.
This is useful for logging cryptographic errors with the certificate validity or trust status. Leave unpopulated if the validity or trust of the certificate was unchecked.
type: keyword
example: ERROR_UNTRUSTED_ROOT
--
*`dll.code_signature.subject_name`*::
+
--
Subject name of the code signer
type: keyword
example: Microsoft Corporation
--
*`dll.code_signature.team_id`*::
+
--
The team identifier used to sign the process.
This is used to identify the team or vendor of a software product. The field is relevant to Apple *OS only.
type: keyword
example: EQHXZ8M8AV
--
*`dll.code_signature.trusted`*::
+
--
Stores the trust status of the certificate chain.
Validating the trust of the certificate chain may be complicated, and this field should only be populated by tools that actively check the status.
type: boolean
example: true
--
*`dll.code_signature.valid`*::
+
--
Boolean to capture if the digital signature is verified against the binary content.
Leave unpopulated if a certificate was unchecked.
type: boolean
example: true
--
*`dll.hash.md5`*::
+
--
MD5 hash.
type: keyword
--
*`dll.hash.sha1`*::
+
--
SHA1 hash.
type: keyword
--
*`dll.hash.sha256`*::
+
--
SHA256 hash.
type: keyword
--
*`dll.hash.sha512`*::
+
--
SHA512 hash.
type: keyword
--
*`dll.hash.ssdeep`*::
+
--
SSDEEP hash.
type: keyword
--
*`dll.name`*::
+
--
Name of the library.
This generally maps to the name of the file on disk.
type: keyword
example: kernel32.dll
--
*`dll.path`*::
+
--
Full file path of the library.
type: keyword
example: C:\Windows\System32\kernel32.dll
--
*`dll.pe.architecture`*::
+
--
CPU architecture target for the file.
type: keyword
example: x64
--
*`dll.pe.company`*::
+
--
Internal company name of the file, provided at compile-time.
type: keyword
example: Microsoft Corporation
--
*`dll.pe.description`*::
+
--
Internal description of the file, provided at compile-time.
type: keyword
example: Paint
--
*`dll.pe.file_version`*::
+
--
Internal version of the file, provided at compile-time.
type: keyword
example: 6.3.9600.17415
--
*`dll.pe.imphash`*::
+
--
A hash of the imports in a PE file. An imphash -- or import hash -- can be used to fingerprint binaries even after recompilation or other code-level transformations have occurred, which would change more traditional hash values.
Learn more at https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html.
type: keyword
example: 0c6803c4e922103c4dca5963aad36ddf
--
*`dll.pe.original_file_name`*::
+
--
Internal name of the file, provided at compile-time.
type: keyword
example: MSPAINT.EXE
--
*`dll.pe.product`*::
+
--
Internal product name of the file, provided at compile-time.
type: keyword
example: Microsoft® Windows® Operating System
--
[float]
=== dns
Fields describing DNS queries and answers.
DNS events should either represent a single DNS query prior to getting answers (`dns.type:query`) or they should represent a full exchange and contain the query details as well as all of the answers that were provided for this query (`dns.type:answer`).
*`dns.answers`*::
+
--
An array containing an object for each answer section returned by the server.
The main keys that should be present in these objects are defined by ECS. Records that have more information may contain more keys than what ECS defines.
Not all DNS data sources give all details about DNS answers. At minimum, answer objects must contain the `data` key. If more information is available, map as much of it to ECS as possible, and add any additional fields to the answer objects as custom fields.
type: object
--
*`dns.answers.class`*::
+
--
The class of DNS data contained in this resource record.
type: keyword
example: IN
--
*`dns.answers.data`*::
+
--
The data describing the resource.
The meaning of this data depends on the type and class of the resource record.
type: keyword
example: 10.10.10.10
--
*`dns.answers.name`*::
+
--
The domain name to which this resource record pertains.
If a chain of CNAME is being resolved, each answer's `name` should be the one that corresponds with the answer's `data`. It should not simply be the original `question.name` repeated.
type: keyword
example: www.example.com
--
*`dns.answers.ttl`*::
+
--
The time interval in seconds that this resource record may be cached before it should be discarded. Zero values mean that the data should not be cached.
type: long
example: 180
--
*`dns.answers.type`*::
+
--
The type of data contained in this resource record.
type: keyword
example: CNAME
--
*`dns.header_flags`*::
+
--
Array of 2 letter DNS header flags.
Expected values are: AA, TC, RD, RA, AD, CD, DO.
type: keyword
example: ["RD", "RA"]
--
*`dns.id`*::
+
--
The DNS packet identifier assigned by the program that generated the query. The identifier is copied to the response.
type: keyword
example: 62111
--
*`dns.op_code`*::
+
--
The DNS operation code that specifies the kind of query in the message. This value is set by the originator of a query and copied into the response.
type: keyword
example: QUERY
--
*`dns.question.class`*::
+
--
The class of records being queried.
type: keyword
example: IN
--
*`dns.question.name`*::
+
--
The name being queried.
If the name field contains non-printable characters (below 32 or above 126), those characters should be represented as escaped base 10 integers (\DDD). Back slashes and quotes should be escaped. Tabs, carriage returns, and line feeds should be converted to \t, \r, and \n respectively.
type: keyword
example: www.example.com
--
*`dns.question.registered_domain`*::
+
--
The highest registered domain, stripped of the subdomain.
For example, the registered domain for "foo.example.com" is "example.com".
This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last two labels will not work well for TLDs such as "co.uk".
type: keyword
example: example.com
--
*`dns.question.subdomain`*::
+
--
The subdomain is all of the labels under the registered_domain.
If the domain has multiple levels of subdomain, such as "sub2.sub1.example.com", the subdomain field should contain "sub2.sub1", with no trailing period.
type: keyword
example: www
--
*`dns.question.top_level_domain`*::
+
--
The effective top level domain (eTLD), also known as the domain suffix, is the last part of the domain name. For example, the top level domain for example.com is "com".
This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last label will not work well for effective TLDs such as "co.uk".
type: keyword
example: co.uk
--
*`dns.question.type`*::
+
--
The type of record being queried.
type: keyword
example: AAAA
--
*`dns.resolved_ip`*::
+
--
Array containing all IPs seen in `answers.data`.
The `answers` array can be difficult to use, because of the variety of data formats it can contain. Extracting all IP addresses seen in there to `dns.resolved_ip` makes it possible to index them as IP addresses, and makes them easier to visualize and query for.
type: ip
example: ["10.10.10.10", "10.10.10.11"]
--
*`dns.response_code`*::
+
--
The DNS response code.
type: keyword
example: NOERROR
--
*`dns.type`*::
+
--
The type of DNS event captured, query or answer.
If your source of DNS events only gives you DNS queries, you should only create dns events of type `dns.type:query`.
If your source of DNS events gives you answers as well, you should create one event per query (optionally as soon as the query is seen). And a second event containing all query details as well as an array of answers.
type: keyword
example: answer
--
[float]
=== ecs
Meta-information specific to ECS.
*`ecs.version`*::
+
--
ECS version this event conforms to. `ecs.version` is a required field and must exist in all events.
When querying across multiple indices -- which may conform to slightly different ECS versions -- this field lets integrations adjust to the schema version of the events.
type: keyword
example: 1.0.0
required: True
--
[float]
=== error
These fields can represent errors of any kind.
Use them for errors that happen while fetching events or in cases where the event itself contains an error.
*`error.code`*::
+
--
Error code describing the error.
type: keyword
--
*`error.id`*::
+
--
Unique identifier for the error.
type: keyword
--
*`error.message`*::
+
--
Error message.
type: text
--
*`error.stack_trace`*::
+
--
The stack trace of this error in plain text.
type: keyword
Field is not indexed.
--
*`error.stack_trace.text`*::
+
--
type: text
--
*`error.type`*::
+
--
The type of the error, for example the class name of the exception.
type: keyword
example: java.lang.NullPointerException
--
[float]
=== event
The event fields are used for context information about the log or metric event itself.
A log is defined as an event containing details of something that happened. Log events must include the time at which the thing happened. Examples of log events include a process starting on a host, a network packet being sent from a source to a destination, or a network connection between a client and a server being initiated or closed. A metric is defined as an event containing one or more numerical measurements and the time at which the measurement was taken. Examples of metric events include memory pressure measured on a host and device temperature. See the `event.kind` definition in this section for additional details about metric and state events.
*`event.action`*::
+
--
The action captured by the event.
This describes the information in the event. It is more specific than `event.category`. Examples are `group-add`, `process-started`, `file-created`. The value is normally defined by the implementer.
type: keyword
example: user-password-change
--
*`event.category`*::
+
--
This is one of four ECS Categorization Fields, and indicates the second level in the ECS category hierarchy.
`event.category` represents the "big buckets" of ECS categories. For example, filtering on `event.category:process` yields all events relating to process activity. This field is closely related to `event.type`, which is used as a subcategory.
This field is an array. This will allow proper categorization of some events that fall in multiple categories.
type: keyword
example: authentication
--
*`event.code`*::
+
--
Identification code for this event, if one exists.
Some event sources use event codes to identify messages unambiguously, regardless of message language or wording adjustments over time. An example of this is the Windows Event ID.
type: keyword
example: 4648
--
*`event.created`*::
+
--
event.created contains the date/time when the event was first read by an agent, or by your pipeline.
This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event.
In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent's or pipeline's ability to keep up with your event source.
In case the two timestamps are identical, @timestamp should be used.
type: date
example: 2016-05-23T08:05:34.857Z
--
*`event.dataset`*::
+
--
Name of the dataset.
If an event source publishes more than one type of log or events (e.g. access log, error log), the dataset is used to specify which one the event comes from.
It's recommended but not required to start the dataset name with the module name, followed by a dot, then the dataset name.
type: keyword
example: apache.access
--
*`event.duration`*::
+
--
Duration of the event in nanoseconds.
If event.start and event.end are known this value should be the difference between the end and start time.
type: long
format: duration
--
*`event.end`*::
+
--
event.end contains the date when the event ended or when the activity was last observed.
type: date
--
*`event.hash`*::
+
--
Hash (perhaps logstash fingerprint) of raw field to be able to demonstrate log integrity.
type: keyword
example: 123456789012345678901234567890ABCD
--
*`event.id`*::
+
--
Unique ID to describe the event.
type: keyword
example: 8a4f500d
--
*`event.ingested`*::
+
--
Timestamp when an event arrived in the central data store.
This is different from `@timestamp`, which is when the event originally occurred. It's also different from `event.created`, which is meant to capture the first time an agent saw the event.
In normal conditions, assuming no tampering, the timestamps should chronologically look like this: `@timestamp` < `event.created` < `event.ingested`.
type: date
example: 2016-05-23T08:05:35.101Z
--
*`event.kind`*::
+
--
This is one of four ECS Categorization Fields, and indicates the highest level in the ECS category hierarchy.
`event.kind` gives high-level information about what type of information the event contains, without being specific to the contents of the event. For example, values of this field distinguish alert events from metric events.
The value of this field can be used to inform how these kinds of events should be handled. They may warrant different retention, different access control, it may also help understand whether the data coming in at a regular interval or not.
type: keyword
example: alert
--
*`event.module`*::
+
--
Name of the module this data is coming from.
If your monitoring agent supports the concept of modules or plugins to process events of a given source (e.g. Apache logs), `event.module` should contain the name of this module.
type: keyword
example: apache
--
*`event.original`*::
+
--
Raw text message of entire event. Used to demonstrate log integrity.
This field is not indexed and doc_values are disabled. It cannot be searched, but it can be retrieved from `_source`. If users wish to override this and index this field, consider using the wildcard data type.
type: keyword
example: Sep 19 08:26:10 host CEF:0&#124;Security&#124; threatmanager&#124;1.0&#124;100&#124; worm successfully stopped&#124;10&#124;src=10.0.0.1 dst=2.1.2.2spt=1232
Field is not indexed.
--
*`event.outcome`*::
+
--
This is one of four ECS Categorization Fields, and indicates the lowest level in the ECS category hierarchy.
`event.outcome` simply denotes whether the event represents a success or a failure from the perspective of the entity that produced the event.
Note that when a single transaction is described in multiple events, each event may populate different values of `event.outcome`, according to their perspective.
Also note that in the case of a compound event (a single event that contains multiple logical events), this field should be populated with the value that best captures the overall success or failure from the perspective of the event producer.
Further note that not all events will have an associated outcome. For example, this field is generally not populated for metric events, events with `event.type:info`, or any events for which an outcome does not make logical sense.
type: keyword
example: success
--
*`event.provider`*::
+
--
Source of the event.
Event transports such as Syslog or the Windows Event Log typically mention the source of an event. It can be the name of the software that generated the event (e.g. Sysmon, httpd), or of a subsystem of the operating system (kernel, Microsoft-Windows-Security-Auditing).
type: keyword
example: kernel
--
*`event.reason`*::
+
--
Reason why this event happened, according to the source.
This describes the why of a particular action or outcome captured in the event. Where `event.action` captures the action from the event, `event.reason` describes why that action was taken. For example, a web proxy with an `event.action` which denied the request may also populate `event.reason` with the reason why (e.g. `blocked site`).
type: keyword
example: Terminated an unexpected process
--
*`event.reference`*::
+
--
Reference URL linking to additional information about this event.
This URL links to a static definition of this event. Alert events, indicated by `event.kind:alert`, are a common use case for this field.
type: keyword
example: https://system.example.com/event/#0001234
--
*`event.risk_score`*::
+
--
Risk score or priority of the event (e.g. security solutions). Use your system's original value here.
type: float
--
*`event.risk_score_norm`*::
+
--
Normalized risk score or priority of the event, on a scale of 0 to 100.
This is mainly useful if you use more than one system that assigns risk scores, and you want to see a normalized value across all systems.
type: float
--
*`event.sequence`*::
+
--
Sequence number of the event.
The sequence number is a value published by some event sources, to make the exact ordering of events unambiguous, regardless of the timestamp precision.
type: long
format: string
--
*`event.severity`*::
+
--
The numeric severity of the event according to your event source.
What the different severity values mean can be different between sources and use cases. It's up to the implementer to make sure severities are consistent across events from the same source.
The Syslog severity belongs in `log.syslog.severity.code`. `event.severity` is meant to represent the severity according to the event source (e.g. firewall, IDS). If the event source does not publish its own severity, you may optionally copy the `log.syslog.severity.code` to `event.severity`.
type: long
example: 7
format: string
--
*`event.start`*::
+
--
event.start contains the date when the event started or when the activity was first observed.
type: date
--
*`event.timezone`*::
+
--
This field should be populated when the event's timestamp does not include timezone information already (e.g. default Syslog timestamps). It's optional otherwise.
Acceptable timezone formats are: a canonical ID (e.g. "Europe/Amsterdam"), abbreviated (e.g. "EST") or an HH:mm differential (e.g. "-05:00").
type: keyword
--
*`event.type`*::
+
--
This is one of four ECS Categorization Fields, and indicates the third level in the ECS category hierarchy.
`event.type` represents a categorization "sub-bucket" that, when used along with the `event.category` field values, enables filtering events down to a level appropriate for single visualization.
This field is an array. This will allow proper categorization of some events that fall in multiple event types.
type: keyword
--
*`event.url`*::
+
--
URL linking to an external system to continue investigation of this event.
This URL links to another system where in-depth investigation of the specific occurrence of this event can take place. Alert events, indicated by `event.kind:alert`, are a common use case for this field.
type: keyword
example: https://mysystem.example.com/alert/5271dedb-f5b0-4218-87f0-4ac4870a38fe
--
[float]
=== file
A file is defined as a set of information that has been created on, or has existed on a filesystem.
File objects can be associated with host events, network events, and/or file events (e.g., those produced by File Integrity Monitoring [FIM] products or services). File fields provide details about the affected file associated with the event or metric.
*`file.accessed`*::
+
--
Last time the file was accessed.
Note that not all filesystems keep track of access time.
type: date
--
*`file.attributes`*::
+
--
Array of file attributes.
Attributes names will vary by platform. Here's a non-exhaustive list of values that are expected in this field: archive, compressed, directory, encrypted, execute, hidden, read, readonly, system, write.
type: keyword
example: ["readonly", "system"]
--
*`file.code_signature.exists`*::
+
--
Boolean to capture if a signature is present.
type: boolean
example: true
--
*`file.code_signature.signing_id`*::
+
--
The identifier used to sign the process.
This is used to identify the application manufactured by a software vendor. The field is relevant to Apple *OS only.
type: keyword
example: com.apple.xpc.proxy
--
*`file.code_signature.status`*::
+
--
Additional information about the certificate status.
This is useful for logging cryptographic errors with the certificate validity or trust status. Leave unpopulated if the validity or trust of the certificate was unchecked.
type: keyword
example: ERROR_UNTRUSTED_ROOT
--
*`file.code_signature.subject_name`*::
+
--
Subject name of the code signer
type: keyword
example: Microsoft Corporation
--
*`file.code_signature.team_id`*::
+
--
The team identifier used to sign the process.
This is used to identify the team or vendor of a software product. The field is relevant to Apple *OS only.
type: keyword
example: EQHXZ8M8AV
--
*`file.code_signature.trusted`*::
+
--
Stores the trust status of the certificate chain.
Validating the trust of the certificate chain may be complicated, and this field should only be populated by tools that actively check the status.
type: boolean
example: true
--
*`file.code_signature.valid`*::
+
--
Boolean to capture if the digital signature is verified against the binary content.
Leave unpopulated if a certificate was unchecked.
type: boolean
example: true
--
*`file.created`*::
+
--
File creation time.
Note that not all filesystems store the creation time.
type: date
--
*`file.ctime`*::
+
--
Last time the file attributes or metadata changed.
Note that changes to the file content will update `mtime`. This implies `ctime` will be adjusted at the same time, since `mtime` is an attribute of the file.
type: date
--
*`file.device`*::
+
--
Device that is the source of the file.
type: keyword
example: sda
--
*`file.directory`*::
+
--
Directory where the file is located. It should include the drive letter, when appropriate.
type: keyword
example: /home/alice
--
*`file.drive_letter`*::
+
--
Drive letter where the file is located. This field is only relevant on Windows.
The value should be uppercase, and not include the colon.
type: keyword
example: C
--
*`file.extension`*::
+
--
File extension, excluding the leading dot.
Note that when the file name has multiple extensions (example.tar.gz), only the last one should be captured ("gz", not "tar.gz").
type: keyword
example: png
--
*`file.gid`*::
+
--
Primary group ID (GID) of the file.
type: keyword
example: 1001
--
*`file.group`*::
+
--
Primary group name of the file.
type: keyword
example: alice
--
*`file.hash.md5`*::
+
--
MD5 hash.
type: keyword
--
*`file.hash.sha1`*::
+
--
SHA1 hash.
type: keyword
--
*`file.hash.sha256`*::
+
--
SHA256 hash.
type: keyword
--
*`file.hash.sha512`*::
+
--
SHA512 hash.
type: keyword
--
*`file.hash.ssdeep`*::
+
--
SSDEEP hash.
type: keyword
--
*`file.inode`*::
+
--
Inode representing the file in the filesystem.
type: keyword
example: 256383
--
*`file.mime_type`*::
+
--
MIME type should identify the format of the file or stream of bytes using https://www.iana.org/assignments/media-types/media-types.xhtml[IANA official types], where possible. When more than one type is applicable, the most specific type should be used.
type: keyword
--
*`file.mode`*::
+
--
Mode of the file in octal representation.
type: keyword
example: 0640
--
*`file.mtime`*::
+
--
Last time the file content was modified.
type: date
--
*`file.name`*::
+
--
Name of the file including the extension, without the directory.
type: keyword
example: example.png
--
*`file.owner`*::
+
--
File owner's username.
type: keyword
example: alice
--
*`file.path`*::
+
--
Full path to the file, including the file name. It should include the drive letter, when appropriate.
type: keyword
example: /home/alice/example.png
--
*`file.path.text`*::
+
--
type: text
--
*`file.pe.architecture`*::
+
--
CPU architecture target for the file.
type: keyword
example: x64
--
*`file.pe.company`*::
+
--
Internal company name of the file, provided at compile-time.
type: keyword
example: Microsoft Corporation
--
*`file.pe.description`*::
+
--
Internal description of the file, provided at compile-time.
type: keyword
example: Paint
--
*`file.pe.file_version`*::
+
--
Internal version of the file, provided at compile-time.
type: keyword
example: 6.3.9600.17415
--
*`file.pe.imphash`*::
+
--
A hash of the imports in a PE file. An imphash -- or import hash -- can be used to fingerprint binaries even after recompilation or other code-level transformations have occurred, which would change more traditional hash values.
Learn more at https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html.
type: keyword
example: 0c6803c4e922103c4dca5963aad36ddf
--
*`file.pe.original_file_name`*::
+
--
Internal name of the file, provided at compile-time.
type: keyword
example: MSPAINT.EXE
--
*`file.pe.product`*::
+
--
Internal product name of the file, provided at compile-time.
type: keyword
example: Microsoft® Windows® Operating System
--
*`file.size`*::
+
--
File size in bytes.
Only relevant when `file.type` is "file".
type: long
example: 16384
--
*`file.target_path`*::
+
--
Target path for symlinks.
type: keyword
--
*`file.target_path.text`*::
+
--
type: text
--
*`file.type`*::
+
--
File type (file, dir, or symlink).
type: keyword
example: file
--
*`file.uid`*::
+
--
The user ID (UID) or security identifier (SID) of the file owner.
type: keyword
example: 1001
--
*`file.x509.alternative_names`*::
+
--
List of subject alternative names (SAN). Name types vary by certificate authority and certificate type but commonly contain IP addresses, DNS names (and wildcards), and email addresses.
type: keyword
example: *.elastic.co
--
*`file.x509.issuer.common_name`*::
+
--
List of common name (CN) of issuing certificate authority.
type: keyword
example: Example SHA2 High Assurance Server CA
--
*`file.x509.issuer.country`*::
+
--
List of country (C) codes
type: keyword
example: US
--
*`file.x509.issuer.distinguished_name`*::
+
--
Distinguished name (DN) of issuing certificate authority.
type: keyword
example: C=US, O=Example Inc, OU=www.example.com, CN=Example SHA2 High Assurance Server CA
--
*`file.x509.issuer.locality`*::
+
--
List of locality names (L)
type: keyword
example: Mountain View
--
*`file.x509.issuer.organization`*::
+
--
List of organizations (O) of issuing certificate authority.
type: keyword
example: Example Inc
--
*`file.x509.issuer.organizational_unit`*::
+
--
List of organizational units (OU) of issuing certificate authority.
type: keyword
example: www.example.com
--
*`file.x509.issuer.state_or_province`*::
+
--
List of state or province names (ST, S, or P)
type: keyword
example: California
--
*`file.x509.not_after`*::
+
--
Time at which the certificate is no longer considered valid.
type: date
example: 2020-07-16 03:15:39+00:00
--
*`file.x509.not_before`*::
+
--
Time at which the certificate is first considered valid.
type: date
example: 2019-08-16 01:40:25+00:00
--
*`file.x509.public_key_algorithm`*::
+
--
Algorithm used to generate the public key.
type: keyword
example: RSA
--
*`file.x509.public_key_curve`*::
+
--
The curve used by the elliptic curve public key algorithm. This is algorithm specific.
type: keyword
example: nistp521
--
*`file.x509.public_key_exponent`*::
+
--
Exponent used to derive the public key. This is algorithm specific.
type: long
example: 65537
Field is not indexed.
--
*`file.x509.public_key_size`*::
+
--
The size of the public key space in bits.
type: long
example: 2048
--
*`file.x509.serial_number`*::
+
--
Unique serial number issued by the certificate authority. For consistency, if this value is alphanumeric, it should be formatted without colons and uppercase characters.
type: keyword
example: 55FBB9C7DEBF09809D12CCAA
--
*`file.x509.signature_algorithm`*::
+
--
Identifier for certificate signature algorithm. We recommend using names found in Go Lang Crypto library. See https://github.com/golang/go/blob/go1.14/src/crypto/x509/x509.go#L337-L353.
type: keyword
example: SHA256-RSA
--
*`file.x509.subject.common_name`*::
+
--
List of common names (CN) of subject.
type: keyword
example: shared.global.example.net
--
*`file.x509.subject.country`*::
+
--
List of country (C) code
type: keyword
example: US
--
*`file.x509.subject.distinguished_name`*::
+
--
Distinguished name (DN) of the certificate subject entity.
type: keyword
example: C=US, ST=California, L=San Francisco, O=Example, Inc., CN=shared.global.example.net
--
*`file.x509.subject.locality`*::
+
--
List of locality names (L)
type: keyword
example: San Francisco
--
*`file.x509.subject.organization`*::
+
--
List of organizations (O) of subject.
type: keyword
example: Example, Inc.
--
*`file.x509.subject.organizational_unit`*::
+
--
List of organizational units (OU) of subject.
type: keyword
--
*`file.x509.subject.state_or_province`*::
+
--
List of state or province names (ST, S, or P)
type: keyword
example: California
--
*`file.x509.version_number`*::
+
--
Version of x509 format.
type: keyword
example: 3
--
[float]
=== geo
Geo fields can carry data about a specific location related to an event.
This geolocation information can be derived from techniques such as Geo IP, or be user-supplied.
*`geo.city_name`*::
+
--
City name.
type: keyword
example: Montreal
--
*`geo.continent_code`*::
+
--
Two-letter code representing continent's name.
type: keyword
example: NA
--
*`geo.continent_name`*::
+
--
Name of the continent.
type: keyword
example: North America
--
*`geo.country_iso_code`*::
+
--
Country ISO code.
type: keyword
example: CA
--
*`geo.country_name`*::
+
--
Country name.
type: keyword
example: Canada
--
*`geo.location`*::
+
--
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
--
*`geo.name`*::
+
--
User-defined description of a location, at the level of granularity they care about.
Could be the name of their data centers, the floor number, if this describes a local physical entity, city names.
Not typically used in automated geolocation.
type: keyword
example: boston-dc
--
*`geo.postal_code`*::
+
--
Postal code associated with the location.
Values appropriate for this field may also be known as a postcode or ZIP code and will vary widely from country to country.
type: keyword
example: 94040
--
*`geo.region_iso_code`*::
+
--
Region ISO code.
type: keyword
example: CA-QC
--
*`geo.region_name`*::
+
--
Region name.
type: keyword
example: Quebec
--
*`geo.timezone`*::
+
--
The time zone of the location, such as IANA time zone name.
type: keyword
example: America/Argentina/Buenos_Aires
--
[float]
=== group
The group fields are meant to represent groups that are relevant to the event.
*`group.domain`*::
+
--
Name of the directory the group is a member of.
For example, an LDAP or Active Directory domain name.
type: keyword
--
*`group.id`*::
+
--
Unique identifier for the group on the system/platform.
type: keyword
--
*`group.name`*::
+
--
Name of the group.
type: keyword
--
[float]
=== hash
The hash fields represent different bitwise hash algorithms and their values.
Field names for common hashes (e.g. MD5, SHA1) are predefined. Add fields for other hashes by lowercasing the hash algorithm name and using underscore separators as appropriate (snake case, e.g. sha3_512).
Note that this fieldset is used for common hashes that may be computed over a range of generic bytes. Entity-specific hashes such as ja3 or imphash are placed in the fieldsets to which they relate (tls and pe, respectively).
*`hash.md5`*::
+
--
MD5 hash.
type: keyword
--
*`hash.sha1`*::
+
--
SHA1 hash.
type: keyword
--
*`hash.sha256`*::
+
--
SHA256 hash.
type: keyword
--
*`hash.sha512`*::
+
--
SHA512 hash.
type: keyword
--
*`hash.ssdeep`*::
+
--
SSDEEP hash.
type: keyword
--
[float]
=== host
A host is defined as a general computing instance.
ECS host.* fields should be populated with details about the host on which the event happened, or from which the measurement was taken. Host types include hardware, virtual machines, Docker containers, and Kubernetes nodes.
*`host.architecture`*::
+
--
Operating system architecture.
type: keyword
example: x86_64
--
*`host.cpu.usage`*::
+
--
Percent CPU used which is normalized by the number of CPU cores and it ranges from 0 to 1.
Scaling factor: 1000.
For example: For a two core host, this value should be the average of the two cores, between 0 and 1.
type: scaled_float
--
*`host.disk.read.bytes`*::
+
--
The total number of bytes (gauge) read successfully (aggregated from all disks) since the last metric collection.
type: long
--
*`host.disk.write.bytes`*::
+
--
The total number of bytes (gauge) written successfully (aggregated from all disks) since the last metric collection.
type: long
--
*`host.domain`*::
+
--
Name of the domain of which the host is a member.
For example, on Windows this could be the host's Active Directory domain or NetBIOS domain name. For Linux this could be the domain of the host's LDAP provider.
type: keyword
example: CONTOSO
--
*`host.geo.city_name`*::
+
--
City name.
type: keyword
example: Montreal
--
*`host.geo.continent_code`*::
+
--
Two-letter code representing continent's name.
type: keyword
example: NA
--
*`host.geo.continent_name`*::
+
--
Name of the continent.
type: keyword
example: North America
--
*`host.geo.country_iso_code`*::
+
--
Country ISO code.
type: keyword
example: CA
--
*`host.geo.country_name`*::
+
--
Country name.
type: keyword
example: Canada
--
*`host.geo.location`*::
+
--
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
--
*`host.geo.name`*::
+
--
User-defined description of a location, at the level of granularity they care about.
Could be the name of their data centers, the floor number, if this describes a local physical entity, city names.
Not typically used in automated geolocation.
type: keyword
example: boston-dc
--
*`host.geo.postal_code`*::
+
--
Postal code associated with the location.
Values appropriate for this field may also be known as a postcode or ZIP code and will vary widely from country to country.
type: keyword
example: 94040
--
*`host.geo.region_iso_code`*::
+
--
Region ISO code.
type: keyword
example: CA-QC
--
*`host.geo.region_name`*::
+
--
Region name.
type: keyword
example: Quebec
--
*`host.geo.timezone`*::
+
--
The time zone of the location, such as IANA time zone name.
type: keyword
example: America/Argentina/Buenos_Aires
--
*`host.hostname`*::
+
--
Hostname of the host.
It normally contains what the `hostname` command returns on the host machine.
type: keyword
--
*`host.id`*::
+
--
Unique host id.
As hostname is not always unique, use values that are meaningful in your environment.
Example: The current usage of `beat.name`.
type: keyword
--
*`host.ip`*::
+
--
Host ip addresses.
type: ip
--
*`host.mac`*::
+
--
Host MAC addresses.
The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
type: keyword
example: ["00-00-5E-00-53-23", "00-00-5E-00-53-24"]
--
*`host.name`*::
+
--
Name of the host.
It can contain what `hostname` returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.
type: keyword
--
*`host.network.egress.bytes`*::
+
--
The number of bytes (gauge) sent out on all network interfaces by the host since the last metric collection.
type: long
--
*`host.network.egress.packets`*::
+
--
The number of packets (gauge) sent out on all network interfaces by the host since the last metric collection.
type: long
--
*`host.network.ingress.bytes`*::
+
--
The number of bytes received (gauge) on all network interfaces by the host since the last metric collection.
type: long
--
*`host.network.ingress.packets`*::
+
--
The number of packets (gauge) received on all network interfaces by the host since the last metric collection.
type: long
--
*`host.os.family`*::
+
--
OS family (such as redhat, debian, freebsd, windows).
type: keyword
example: debian
--
*`host.os.full`*::
+
--
Operating system name, including the version or code name.
type: keyword
example: Mac OS Mojave
--
*`host.os.full.text`*::
+
--
type: text
--
*`host.os.kernel`*::
+
--
Operating system kernel version as a raw string.
type: keyword
example: 4.4.0-112-generic
--
*`host.os.name`*::
+
--
Operating system name, without the version.
type: keyword
example: Mac OS X
--
*`host.os.name.text`*::
+
--
type: text
--
*`host.os.platform`*::
+
--
Operating system platform (such centos, ubuntu, windows).
type: keyword
example: darwin
--
*`host.os.type`*::
+
--
Use the `os.type` field to categorize the operating system into one of the broad commercial families.
One of these following values should be used (lowercase): linux, macos, unix, windows.
If the OS you're dealing with is not in the list, the field should not be populated. Please let us know by opening an issue with ECS, to propose its addition.
type: keyword
example: macos
--
*`host.os.version`*::
+
--
Operating system version as a raw string.
type: keyword
example: 10.14.1
--
*`host.type`*::
+
--
Type of host.
For Cloud providers this can be the machine type like `t2.medium`. If vm, this could be the container, for example, or other information meaningful in your environment.
type: keyword
--
*`host.uptime`*::
+
--
Seconds the host has been up.
type: long
example: 1325
--
*`host.user.domain`*::
+
--
Name of the directory the user is a member of.
For example, an LDAP or Active Directory domain name.
type: keyword
--
*`host.user.email`*::
+
--
User email address.
type: keyword
--
*`host.user.full_name`*::
+
--
User's full name, if available.
type: keyword
example: Albert Einstein
--
*`host.user.full_name.text`*::
+
--
type: text
--
*`host.user.group.domain`*::
+
--
Name of the directory the group is a member of.
For example, an LDAP or Active Directory domain name.
type: keyword
--
*`host.user.group.id`*::
+
--
Unique identifier for the group on the system/platform.
type: keyword
--
*`host.user.group.name`*::
+
--
Name of the group.
type: keyword
--
*`host.user.hash`*::
+
--
Unique user hash to correlate information for a user in anonymized form.
Useful if `user.id` or `user.name` contain confidential information and cannot be used.
type: keyword
--
*`host.user.id`*::
+
--
Unique identifier of the user.
type: keyword
--
*`host.user.name`*::
+
--
Short name or login of the user.
type: keyword
example: albert
--
*`host.user.name.text`*::
+
--
type: text
--
*`host.user.roles`*::
+
--
Array of user roles at the time of the event.
type: keyword
example: ["kibana_admin", "reporting_user"]
--
[float]
=== http
Fields related to HTTP activity. Use the `url` field set to store the url of the request.
*`http.request.body.bytes`*::
+
--
Size in bytes of the request body.
type: long
example: 887
format: bytes
--
*`http.request.body.content`*::
+
--
The full HTTP request body.
type: keyword
example: Hello world
--
*`http.request.body.content.text`*::
+
--
type: text
--
*`http.request.bytes`*::
+
--
Total size in bytes of the request (body and headers).
type: long
example: 1437
format: bytes
--
*`http.request.id`*::
+
--
A unique identifier for each HTTP request to correlate logs between clients and servers in transactions.
The id may be contained in a non-standard HTTP header, such as `X-Request-ID` or `X-Correlation-ID`.
type: keyword
example: 123e4567-e89b-12d3-a456-426614174000
--
*`http.request.method`*::
+
--
HTTP request method.
Prior to ECS 1.6.0 the following guidance was provided:
"The field value must be normalized to lowercase for querying."
As of ECS 1.6.0, the guidance is deprecated because the original case of the method may be useful in anomaly detection. Original case will be mandated in ECS 2.0.0
type: keyword
example: GET, POST, PUT, PoST
--
*`http.request.mime_type`*::
+
--
Mime type of the body of the request.
This value must only be populated based on the content of the request body, not on the `Content-Type` header. Comparing the mime type of a request with the request's Content-Type header can be helpful in detecting threats or misconfigured clients.
type: keyword
example: image/gif
--
*`http.request.referrer`*::
+
--
Referrer for this HTTP request.
type: keyword
example: https://blog.example.com/
--
*`http.response.body.bytes`*::
+
--
Size in bytes of the response body.
type: long
example: 887
format: bytes
--
*`http.response.body.content`*::
+
--
The full HTTP response body.
type: keyword
example: Hello world
--
*`http.response.body.content.text`*::
+
--
type: text
--
*`http.response.bytes`*::
+
--
Total size in bytes of the response (body and headers).
type: long
example: 1437
format: bytes
--
*`http.response.mime_type`*::
+
--
Mime type of the body of the response.
This value must only be populated based on the content of the response body, not on the `Content-Type` header. Comparing the mime type of a response with the response's Content-Type header can be helpful in detecting misconfigured servers.
type: keyword
example: image/gif
--
*`http.response.status_code`*::
+
--
HTTP response status code.
type: long
example: 404
format: string
--
*`http.version`*::
+
--
HTTP version.
type: keyword
example: 1.1
--
[float]
=== interface
The interface fields are used to record ingress and egress interface information when reported by an observer (e.g. firewall, router, load balancer) in the context of the observer handling a network connection. In the case of a single observer interface (e.g. network sensor on a span port) only the observer.ingress information should be populated.
*`interface.alias`*::
+
--
Interface alias as reported by the system, typically used in firewall implementations for e.g. inside, outside, or dmz logical interface naming.
type: keyword
example: outside
--
*`interface.id`*::
+
--
Interface ID as reported by an observer (typically SNMP interface ID).
type: keyword
example: 10
--
*`interface.name`*::
+
--
Interface name as reported by the system.
type: keyword
example: eth0
--
[float]
=== log
Details about the event's logging mechanism or logging transport.
The log.* fields are typically populated with details about the logging mechanism used to create and/or transport the event. For example, syslog details belong under `log.syslog.*`.
The details specific to your event source are typically not logged under `log.*`, but rather in `event.*` or in other ECS fields.
*`log.file.path`*::
+
--
Full path to the log file this event came from, including the file name. It should include the drive letter, when appropriate.
If the event wasn't read from a log file, do not populate this field.
type: keyword
example: /var/log/fun-times.log
--
*`log.level`*::
+
--
Original log level of the log event.
If the source of the event provides a log level or textual severity, this is the one that goes in `log.level`. If your source doesn't specify one, you may put your event transport's severity here (e.g. Syslog severity).
Some examples are `warn`, `err`, `i`, `informational`.
type: keyword
example: error
--
*`log.logger`*::
+
--
The name of the logger inside an application. This is usually the name of the class which initialized the logger, or can be a custom name.
type: keyword
example: org.elasticsearch.bootstrap.Bootstrap
--
*`log.origin.file.line`*::
+
--
The line number of the file containing the source code which originated the log event.
type: integer
example: 42
--
*`log.origin.file.name`*::
+
--
The name of the file containing the source code which originated the log event.
Note that this field is not meant to capture the log file. The correct field to capture the log file is `log.file.path`.
type: keyword
example: Bootstrap.java
--
*`log.origin.function`*::
+
--
The name of the function or method which originated the log event.
type: keyword
example: init
--
*`log.original`*::
+
--
This is the original log message and contains the full log message before splitting it up in multiple parts.
In contrast to the `message` field which can contain an extracted part of the log message, this field contains the original, full log message. It can have already some modifications applied like encoding or new lines removed to clean up the log message.
This field is not indexed and doc_values are disabled so it can't be queried but the value can be retrieved from `_source`.
type: keyword
example: Sep 19 08:26:10 localhost My log
Field is not indexed.
--
*`log.syslog`*::
+
--
The Syslog metadata of the event, if the event was transmitted via Syslog. Please see RFCs 5424 or 3164.
type: object
--
*`log.syslog.facility.code`*::
+
--
The Syslog numeric facility of the log event, if available.
According to RFCs 5424 and 3164, this value should be an integer between 0 and 23.
type: long
example: 23
format: string
--
*`log.syslog.facility.name`*::
+
--
The Syslog text-based facility of the log event, if available.
type: keyword
example: local7
--
*`log.syslog.priority`*::
+
--
Syslog numeric priority of the event, if available.
According to RFCs 5424 and 3164, the priority is 8 * facility + severity. This number is therefore expected to contain a value between 0 and 191.
type: long
example: 135
format: string
--
*`log.syslog.severity.code`*::
+
--
The Syslog numeric severity of the log event, if available.
If the event source publishing via Syslog provides a different numeric severity value (e.g. firewall, IDS), your source's numeric severity should go to `event.severity`. If the event source does not specify a distinct severity, you can optionally copy the Syslog severity to `event.severity`.
type: long
example: 3
--
*`log.syslog.severity.name`*::
+
--
The Syslog numeric severity of the log event, if available.
If the event source publishing via Syslog provides a different severity value (e.g. firewall, IDS), your source's text severity should go to `log.level`. If the event source does not specify a distinct severity, you can optionally copy the Syslog severity to `log.level`.
type: keyword
example: Error
--
[float]
=== network
The network is defined as the communication path over which a host or network event happens.
The network.* fields should be populated with details about the network activity associated with an event.
*`network.application`*::
+
--
A name given to an application level protocol. This can be arbitrarily assigned for things like microservices, but also apply to things like skype, icq, facebook, twitter. This would be used in situations where the vendor or service can be decoded such as from the source/dest IP owners, ports, or wire format.
The field value must be normalized to lowercase for querying. See the documentation section "Implementing ECS".
type: keyword
example: aim
--
*`network.bytes`*::
+
--
Total bytes transferred in both directions.
If `source.bytes` and `destination.bytes` are known, `network.bytes` is their sum.
type: long
example: 368
format: bytes
--
*`network.community_id`*::
+
--
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows.
Learn more at https://github.com/corelight/community-id-spec.
type: keyword
example: 1:hO+sN4H+MG5MY/8hIrXPqc4ZQz0=
--
*`network.direction`*::
+
--
Direction of the network traffic.
Recommended values are:
* ingress
* egress
* inbound
* outbound
* internal
* external
* unknown
When mapping events from a host-based monitoring context, populate this field from the host's point of view, using the values "ingress" or "egress".
When mapping events from a network or perimeter-based monitoring context, populate this field from the point of view of the network perimeter, using the values "inbound", "outbound", "internal" or "external".
Note that "internal" is not crossing perimeter boundaries, and is meant to describe communication between two hosts within the perimeter. Note also that "external" is meant to describe traffic between two hosts that are external to the perimeter. This could for example be useful for ISPs or VPN service providers.
type: keyword
example: inbound
--
*`network.forwarded_ip`*::
+
--
Host IP address when the source IP address is the proxy.
type: ip
example: 192.1.1.2
--
*`network.iana_number`*::
+
--
IANA Protocol Number (https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml). Standardized list of protocols. This aligns well with NetFlow and sFlow related logs which use the IANA Protocol Number.
type: keyword
example: 6
--
*`network.inner`*::
+
--
Network.inner fields are added in addition to network.vlan fields to describe the innermost VLAN when q-in-q VLAN tagging is present. Allowed fields include vlan.id and vlan.name. Inner vlan fields are typically used when sending traffic with multiple 802.1q encapsulations to a network sensor (e.g. Zeek, Wireshark.)
type: object
--
*`network.inner.vlan.id`*::
+
--
VLAN ID as reported by the observer.
type: keyword
example: 10
--
*`network.inner.vlan.name`*::
+
--
Optional VLAN name as reported by the observer.
type: keyword
example: outside
--
*`network.name`*::
+
--
Name given by operators to sections of their network.
type: keyword
example: Guest Wifi
--
*`network.packets`*::
+
--
Total packets transferred in both directions.
If `source.packets` and `destination.packets` are known, `network.packets` is their sum.
type: long
example: 24
--
*`network.protocol`*::
+
--
L7 Network protocol name. ex. http, lumberjack, transport protocol.
The field value must be normalized to lowercase for querying. See the documentation section "Implementing ECS".
type: keyword
example: http
--
*`network.transport`*::
+
--
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.)
The field value must be normalized to lowercase for querying. See the documentation section "Implementing ECS".
type: keyword
example: tcp
--
*`network.type`*::
+
--
In the OSI Model this would be the Network Layer. ipv4, ipv6, ipsec, pim, etc
The field value must be normalized to lowercase for querying. See the documentation section "Implementing ECS".
type: keyword
example: ipv4
--
*`network.vlan.id`*::
+
--
VLAN ID as reported by the observer.
type: keyword
example: 10
--
*`network.vlan.name`*::
+
--
Optional VLAN name as reported by the observer.
type: keyword
example: outside
--
[float]
=== observer
An observer is defined as a special network, security, or application device used to detect, observe, or create network, security, or application-related events and metrics.
This could be a custom hardware appliance or a server that has been configured to run special network, security, or application software. Examples include firewalls, web proxies, intrusion detection/prevention systems, network monitoring sensors, web application firewalls, data loss prevention systems, and APM servers. The observer.* fields shall be populated with details of the system, if any, that detects, observes and/or creates a network, security, or application event or metric. Message queues and ETL components used in processing events or metrics are not considered observers in ECS.
*`observer.egress`*::
+
--
Observer.egress holds information like interface number and name, vlan, and zone information to classify egress traffic. Single armed monitoring such as a network sensor on a span port should only use observer.ingress to categorize traffic.
type: object
--
*`observer.egress.interface.alias`*::
+
--
Interface alias as reported by the system, typically used in firewall implementations for e.g. inside, outside, or dmz logical interface naming.
type: keyword
example: outside
--
*`observer.egress.interface.id`*::
+
--
Interface ID as reported by an observer (typically SNMP interface ID).
type: keyword
example: 10
--
*`observer.egress.interface.name`*::
+
--
Interface name as reported by the system.
type: keyword
example: eth0
--
*`observer.egress.vlan.id`*::
+
--
VLAN ID as reported by the observer.
type: keyword
example: 10
--
*`observer.egress.vlan.name`*::
+
--
Optional VLAN name as reported by the observer.
type: keyword
example: outside
--
*`observer.egress.zone`*::
+
--
Network zone of outbound traffic as reported by the observer to categorize the destination area of egress traffic, e.g. Internal, External, DMZ, HR, Legal, etc.
type: keyword
example: Public_Internet
--
*`observer.geo.city_name`*::
+
--
City name.
type: keyword
example: Montreal
--
*`observer.geo.continent_code`*::
+
--
Two-letter code representing continent's name.
type: keyword
example: NA
--
*`observer.geo.continent_name`*::
+
--
Name of the continent.
type: keyword
example: North America
--
*`observer.geo.country_iso_code`*::
+
--
Country ISO code.
type: keyword
example: CA
--
*`observer.geo.country_name`*::
+
--
Country name.
type: keyword
example: Canada
--
*`observer.geo.location`*::
+
--
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
--
*`observer.geo.name`*::
+
--
User-defined description of a location, at the level of granularity they care about.
Could be the name of their data centers, the floor number, if this describes a local physical entity, city names.
Not typically used in automated geolocation.
type: keyword
example: boston-dc
--
*`observer.geo.postal_code`*::
+
--
Postal code associated with the location.
Values appropriate for this field may also be known as a postcode or ZIP code and will vary widely from country to country.
type: keyword
example: 94040
--
*`observer.geo.region_iso_code`*::
+
--
Region ISO code.
type: keyword
example: CA-QC
--
*`observer.geo.region_name`*::
+
--
Region name.
type: keyword
example: Quebec
--
*`observer.geo.timezone`*::
+
--
The time zone of the location, such as IANA time zone name.
type: keyword
example: America/Argentina/Buenos_Aires
--
*`observer.hostname`*::
+
--
Hostname of the observer.
type: keyword
--
*`observer.ingress`*::
+
--
Observer.ingress holds information like interface number and name, vlan, and zone information to classify ingress traffic. Single armed monitoring such as a network sensor on a span port should only use observer.ingress to categorize traffic.
type: object
--
*`observer.ingress.interface.alias`*::
+
--
Interface alias as reported by the system, typically used in firewall implementations for e.g. inside, outside, or dmz logical interface naming.
type: keyword
example: outside
--
*`observer.ingress.interface.id`*::
+
--
Interface ID as reported by an observer (typically SNMP interface ID).
type: keyword
example: 10
--
*`observer.ingress.interface.name`*::
+
--
Interface name as reported by the system.
type: keyword
example: eth0
--
*`observer.ingress.vlan.id`*::
+
--
VLAN ID as reported by the observer.
type: keyword
example: 10
--
*`observer.ingress.vlan.name`*::
+
--
Optional VLAN name as reported by the observer.
type: keyword
example: outside
--
*`observer.ingress.zone`*::
+
--
Network zone of incoming traffic as reported by the observer to categorize the source area of ingress traffic. e.g. internal, External, DMZ, HR, Legal, etc.
type: keyword
example: DMZ
--
*`observer.ip`*::
+
--
IP addresses of the observer.
type: ip
--
*`observer.mac`*::
+
--
MAC addresses of the observer.
The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
type: keyword
example: ["00-00-5E-00-53-23", "00-00-5E-00-53-24"]
--
*`observer.name`*::
+
--
Custom name of the observer.
This is a name that can be given to an observer. This can be helpful for example if multiple firewalls of the same model are used in an organization.
If no custom name is needed, the field can be left empty.
type: keyword
example: 1_proxySG
--
*`observer.os.family`*::
+
--
OS family (such as redhat, debian, freebsd, windows).
type: keyword
example: debian
--
*`observer.os.full`*::
+
--
Operating system name, including the version or code name.
type: keyword
example: Mac OS Mojave
--
*`observer.os.full.text`*::
+
--
type: text
--
*`observer.os.kernel`*::
+
--
Operating system kernel version as a raw string.
type: keyword
example: 4.4.0-112-generic
--
*`observer.os.name`*::
+
--
Operating system name, without the version.
type: keyword
example: Mac OS X
--
*`observer.os.name.text`*::
+
--
type: text
--
*`observer.os.platform`*::
+
--
Operating system platform (such centos, ubuntu, windows).
type: keyword
example: darwin
--
*`observer.os.type`*::
+
--
Use the `os.type` field to categorize the operating system into one of the broad commercial families.
One of these following values should be used (lowercase): linux, macos, unix, windows.
If the OS you're dealing with is not in the list, the field should not be populated. Please let us know by opening an issue with ECS, to propose its addition.
type: keyword
example: macos
--
*`observer.os.version`*::
+
--
Operating system version as a raw string.
type: keyword
example: 10.14.1
--
*`observer.product`*::
+
--
The product name of the observer.
type: keyword
example: s200
--
*`observer.serial_number`*::
+
--
Observer serial number.
type: keyword
--
*`observer.type`*::
+
--
The type of the observer the data is coming from.
There is no predefined list of observer types. Some examples are `forwarder`, `firewall`, `ids`, `ips`, `proxy`, `poller`, `sensor`, `APM server`.
type: keyword
example: firewall
--
*`observer.vendor`*::
+
--
Vendor name of the observer.
type: keyword
example: Symantec
--
*`observer.version`*::
+
--
Observer version.
type: keyword
--
[float]
=== orchestrator
Fields that describe the resources which container orchestrators manage or act upon.
*`orchestrator.api_version`*::
+
--
API version being used to carry out the action
type: keyword
example: v1beta1
--
*`orchestrator.cluster.name`*::
+
--
Name of the cluster.
type: keyword
--
*`orchestrator.cluster.url`*::
+
--
URL of the API used to manage the cluster.
type: keyword
--
*`orchestrator.cluster.version`*::
+
--
The version of the cluster.
type: keyword
--
*`orchestrator.namespace`*::
+
--
Namespace in which the action is taking place.
type: keyword
example: kube-system
--
*`orchestrator.organization`*::
+
--
Organization affected by the event (for multi-tenant orchestrator setups).
type: keyword
example: elastic
--
*`orchestrator.resource.name`*::
+
--
Name of the resource being acted upon.
type: keyword
example: test-pod-cdcws
--
*`orchestrator.resource.type`*::
+
--
Type of resource being acted upon.
type: keyword
example: service
--
*`orchestrator.type`*::
+
--
Orchestrator cluster type (e.g. kubernetes, nomad or cloudfoundry).
type: keyword
example: kubernetes
--
[float]
=== organization
The organization fields enrich data with information about the company or entity the data is associated with.
These fields help you arrange or filter data stored in an index by one or multiple organizations.
*`organization.id`*::
+
--
Unique identifier for the organization.
type: keyword
--
*`organization.name`*::
+
--
Organization name.
type: keyword
--
*`organization.name.text`*::
+
--
type: text
--
[float]
=== os
The OS fields contain information about the operating system.
*`os.family`*::
+
--
OS family (such as redhat, debian, freebsd, windows).
type: keyword
example: debian
--
*`os.full`*::
+
--
Operating system name, including the version or code name.
type: keyword
example: Mac OS Mojave
--
*`os.full.text`*::
+
--
type: text
--
*`os.kernel`*::
+
--
Operating system kernel version as a raw string.
type: keyword
example: 4.4.0-112-generic
--
*`os.name`*::
+
--
Operating system name, without the version.
type: keyword
example: Mac OS X
--
*`os.name.text`*::
+
--
type: text
--
*`os.platform`*::
+
--
Operating system platform (such centos, ubuntu, windows).
type: keyword
example: darwin
--
*`os.type`*::
+
--
Use the `os.type` field to categorize the operating system into one of the broad commercial families.
One of these following values should be used (lowercase): linux, macos, unix, windows.
If the OS you're dealing with is not in the list, the field should not be populated. Please let us know by opening an issue with ECS, to propose its addition.
type: keyword
example: macos
--
*`os.version`*::
+
--
Operating system version as a raw string.
type: keyword
example: 10.14.1
--
[float]
=== package
These fields contain information about an installed software package. It contains general information about a package, such as name, version or size. It also contains installation details, such as time or location.
*`package.architecture`*::
+
--
Package architecture.
type: keyword
example: x86_64
--
*`package.build_version`*::
+
--
Additional information about the build version of the installed package.
For example use the commit SHA of a non-released package.
type: keyword
example: 36f4f7e89dd61b0988b12ee000b98966867710cd
--
*`package.checksum`*::
+
--
Checksum of the installed package for verification.
type: keyword
example: 68b329da9893e34099c7d8ad5cb9c940
--
*`package.description`*::
+
--
Description of the package.
type: keyword
example: Open source programming language to build simple/reliable/efficient software.
--
*`package.install_scope`*::
+
--
Indicating how the package was installed, e.g. user-local, global.
type: keyword
example: global
--
*`package.installed`*::
+
--
Time when package was installed.
type: date
--
*`package.license`*::
+
--
License under which the package was released.
Use a short name, e.g. the license identifier from SPDX License List where possible (https://spdx.org/licenses/).
type: keyword
example: Apache License 2.0
--
*`package.name`*::
+
--
Package name
type: keyword
example: go
--
*`package.path`*::
+
--
Path where the package is installed.
type: keyword
example: /usr/local/Cellar/go/1.12.9/
--
*`package.reference`*::
+
--
Home page or reference URL of the software in this package, if available.
type: keyword
example: https://golang.org
--
*`package.size`*::
+
--
Package size in bytes.
type: long
example: 62231
format: string
--
*`package.type`*::
+
--
Type of package.
This should contain the package file type, rather than the package manager name. Examples: rpm, dpkg, brew, npm, gem, nupkg, jar.
type: keyword
example: rpm
--
*`package.version`*::
+
--
Package version
type: keyword
example: 1.12.9
--
[float]
=== pe
These fields contain Windows Portable Executable (PE) metadata.
*`pe.architecture`*::
+
--
CPU architecture target for the file.
type: keyword
example: x64
--
*`pe.company`*::
+
--
Internal company name of the file, provided at compile-time.
type: keyword
example: Microsoft Corporation
--
*`pe.description`*::
+
--
Internal description of the file, provided at compile-time.
type: keyword
example: Paint
--
*`pe.file_version`*::
+
--
Internal version of the file, provided at compile-time.
type: keyword
example: 6.3.9600.17415
--
*`pe.imphash`*::
+
--
A hash of the imports in a PE file. An imphash -- or import hash -- can be used to fingerprint binaries even after recompilation or other code-level transformations have occurred, which would change more traditional hash values.
Learn more at https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html.
type: keyword
example: 0c6803c4e922103c4dca5963aad36ddf
--
*`pe.original_file_name`*::
+
--
Internal name of the file, provided at compile-time.
type: keyword
example: MSPAINT.EXE
--
*`pe.product`*::
+
--
Internal product name of the file, provided at compile-time.
type: keyword
example: Microsoft® Windows® Operating System
--
[float]
=== process
These fields contain information about a process.
These fields can help you correlate metrics information with a process id/name from a log message. The `process.pid` often stays in the metric itself and is copied to the global field for correlation.
*`process.args`*::
+
--
Array of process arguments, starting with the absolute path to the executable.
May be filtered to protect sensitive information.
type: keyword
example: ["/usr/bin/ssh", "-l", "user", "10.0.0.16"]
--
*`process.args_count`*::
+
--
Length of the process.args array.
This field can be useful for querying or performing bucket analysis on how many arguments were provided to start a process. More arguments may be an indication of suspicious activity.
type: long
example: 4
--
*`process.code_signature.exists`*::
+
--
Boolean to capture if a signature is present.
type: boolean
example: true
--
*`process.code_signature.signing_id`*::
+
--
The identifier used to sign the process.
This is used to identify the application manufactured by a software vendor. The field is relevant to Apple *OS only.
type: keyword
example: com.apple.xpc.proxy
--
*`process.code_signature.status`*::
+
--
Additional information about the certificate status.
This is useful for logging cryptographic errors with the certificate validity or trust status. Leave unpopulated if the validity or trust of the certificate was unchecked.
type: keyword
example: ERROR_UNTRUSTED_ROOT
--
*`process.code_signature.subject_name`*::
+
--
Subject name of the code signer
type: keyword
example: Microsoft Corporation
--
*`process.code_signature.team_id`*::
+
--
The team identifier used to sign the process.
This is used to identify the team or vendor of a software product. The field is relevant to Apple *OS only.
type: keyword
example: EQHXZ8M8AV
--
*`process.code_signature.trusted`*::
+
--
Stores the trust status of the certificate chain.
Validating the trust of the certificate chain may be complicated, and this field should only be populated by tools that actively check the status.
type: boolean
example: true
--
*`process.code_signature.valid`*::
+
--
Boolean to capture if the digital signature is verified against the binary content.
Leave unpopulated if a certificate was unchecked.
type: boolean
example: true
--
*`process.command_line`*::
+
--
Full command line that started the process, including the absolute path to the executable, and all arguments.
Some arguments may be filtered to protect sensitive information.
type: keyword
example: /usr/bin/ssh -l user 10.0.0.16
--
*`process.command_line.text`*::
+
--
type: text
--
*`process.entity_id`*::
+
--
Unique identifier for the process.
The implementation of this is specified by the data source, but some examples of what could be used here are a process-generated UUID, Sysmon Process GUIDs, or a hash of some uniquely identifying components of a process.
Constructing a globally unique identifier is a common practice to mitigate PID reuse as well as to identify a specific process over time, across multiple monitored hosts.
type: keyword
example: c2c455d9f99375d
--
*`process.executable`*::
+
--
Absolute path to the process executable.
type: keyword
example: /usr/bin/ssh
--
*`process.executable.text`*::
+
--
type: text
--
*`process.exit_code`*::
+
--
The exit code of the process, if this is a termination event.
The field should be absent if there is no exit code for the event (e.g. process start).
type: long
example: 137
--
*`process.hash.md5`*::
+
--
MD5 hash.
type: keyword
--
*`process.hash.sha1`*::
+
--
SHA1 hash.
type: keyword
--
*`process.hash.sha256`*::
+
--
SHA256 hash.
type: keyword
--
*`process.hash.sha512`*::
+
--
SHA512 hash.
type: keyword
--
*`process.hash.ssdeep`*::
+
--
SSDEEP hash.
type: keyword
--
*`process.name`*::
+
--
Process name.
Sometimes called program name or similar.
type: keyword
example: ssh
--
*`process.name.text`*::
+
--
type: text
--
*`process.parent.args`*::
+
--
Array of process arguments, starting with the absolute path to the executable.
May be filtered to protect sensitive information.
type: keyword
example: ["/usr/bin/ssh", "-l", "user", "10.0.0.16"]
--
*`process.parent.args_count`*::
+
--
Length of the process.args array.
This field can be useful for querying or performing bucket analysis on how many arguments were provided to start a process. More arguments may be an indication of suspicious activity.
type: long
example: 4
--
*`process.parent.code_signature.exists`*::
+
--
Boolean to capture if a signature is present.
type: boolean
example: true
--
*`process.parent.code_signature.signing_id`*::
+
--
The identifier used to sign the process.
This is used to identify the application manufactured by a software vendor. The field is relevant to Apple *OS only.
type: keyword
example: com.apple.xpc.proxy
--
*`process.parent.code_signature.status`*::
+
--
Additional information about the certificate status.
This is useful for logging cryptographic errors with the certificate validity or trust status. Leave unpopulated if the validity or trust of the certificate was unchecked.
type: keyword
example: ERROR_UNTRUSTED_ROOT
--
*`process.parent.code_signature.subject_name`*::
+
--
Subject name of the code signer
type: keyword
example: Microsoft Corporation
--
*`process.parent.code_signature.team_id`*::
+
--
The team identifier used to sign the process.
This is used to identify the team or vendor of a software product. The field is relevant to Apple *OS only.
type: keyword
example: EQHXZ8M8AV
--
*`process.parent.code_signature.trusted`*::
+
--
Stores the trust status of the certificate chain.
Validating the trust of the certificate chain may be complicated, and this field should only be populated by tools that actively check the status.
type: boolean
example: true
--
*`process.parent.code_signature.valid`*::
+
--
Boolean to capture if the digital signature is verified against the binary content.
Leave unpopulated if a certificate was unchecked.
type: boolean
example: true
--
*`process.parent.command_line`*::
+
--
Full command line that started the process, including the absolute path to the executable, and all arguments.
Some arguments may be filtered to protect sensitive information.
type: keyword
example: /usr/bin/ssh -l user 10.0.0.16
--
*`process.parent.command_line.text`*::
+
--
type: text
--
*`process.parent.entity_id`*::
+
--
Unique identifier for the process.
The implementation of this is specified by the data source, but some examples of what could be used here are a process-generated UUID, Sysmon Process GUIDs, or a hash of some uniquely identifying components of a process.
Constructing a globally unique identifier is a common practice to mitigate PID reuse as well as to identify a specific process over time, across multiple monitored hosts.
type: keyword
example: c2c455d9f99375d
--
*`process.parent.executable`*::
+
--
Absolute path to the process executable.
type: keyword
example: /usr/bin/ssh
--
*`process.parent.executable.text`*::
+
--
type: text
--
*`process.parent.exit_code`*::
+
--
The exit code of the process, if this is a termination event.
The field should be absent if there is no exit code for the event (e.g. process start).
type: long
example: 137
--
*`process.parent.hash.md5`*::
+
--
MD5 hash.
type: keyword
--
*`process.parent.hash.sha1`*::
+
--
SHA1 hash.
type: keyword
--
*`process.parent.hash.sha256`*::
+
--
SHA256 hash.
type: keyword
--
*`process.parent.hash.sha512`*::
+
--
SHA512 hash.
type: keyword
--
*`process.parent.hash.ssdeep`*::
+
--
SSDEEP hash.
type: keyword
--
*`process.parent.name`*::
+
--
Process name.
Sometimes called program name or similar.
type: keyword
example: ssh
--
*`process.parent.name.text`*::
+
--
type: text
--
*`process.parent.pe.architecture`*::
+
--
CPU architecture target for the file.
type: keyword
example: x64
--
*`process.parent.pe.company`*::
+
--
Internal company name of the file, provided at compile-time.
type: keyword
example: Microsoft Corporation
--
*`process.parent.pe.description`*::
+
--
Internal description of the file, provided at compile-time.
type: keyword
example: Paint
--
*`process.parent.pe.file_version`*::
+
--
Internal version of the file, provided at compile-time.
type: keyword
example: 6.3.9600.17415
--
*`process.parent.pe.imphash`*::
+
--
A hash of the imports in a PE file. An imphash -- or import hash -- can be used to fingerprint binaries even after recompilation or other code-level transformations have occurred, which would change more traditional hash values.
Learn more at https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html.
type: keyword
example: 0c6803c4e922103c4dca5963aad36ddf
--
*`process.parent.pe.original_file_name`*::
+
--
Internal name of the file, provided at compile-time.
type: keyword
example: MSPAINT.EXE
--
*`process.parent.pe.product`*::
+
--
Internal product name of the file, provided at compile-time.
type: keyword
example: Microsoft® Windows® Operating System
--
*`process.parent.pgid`*::
+
--
Identifier of the group of processes the process belongs to.
type: long
format: string
--
*`process.parent.pid`*::
+
--
Process id.
type: long
example: 4242
format: string
--
*`process.parent.ppid`*::
+
--
Parent process' pid.
type: long
example: 4241
format: string
--
*`process.parent.start`*::
+
--
The time the process started.
type: date
example: 2016-05-23T08:05:34.853Z
--
*`process.parent.thread.id`*::
+
--
Thread ID.
type: long
example: 4242
format: string
--
*`process.parent.thread.name`*::
+
--
Thread name.
type: keyword
example: thread-0
--
*`process.parent.title`*::
+
--
Process title.
The proctitle, some times the same as process name. Can also be different: for example a browser setting its title to the web page currently opened.
type: keyword
--
*`process.parent.title.text`*::
+
--
type: text
--
*`process.parent.uptime`*::
+
--
Seconds the process has been up.
type: long
example: 1325
--
*`process.parent.working_directory`*::
+
--
The working directory of the process.
type: keyword
example: /home/alice
--
*`process.parent.working_directory.text`*::
+
--
type: text
--
*`process.pe.architecture`*::
+
--
CPU architecture target for the file.
type: keyword
example: x64
--
*`process.pe.company`*::
+
--
Internal company name of the file, provided at compile-time.
type: keyword
example: Microsoft Corporation
--
*`process.pe.description`*::
+
--
Internal description of the file, provided at compile-time.
type: keyword
example: Paint
--
*`process.pe.file_version`*::
+
--
Internal version of the file, provided at compile-time.
type: keyword
example: 6.3.9600.17415
--
*`process.pe.imphash`*::
+
--
A hash of the imports in a PE file. An imphash -- or import hash -- can be used to fingerprint binaries even after recompilation or other code-level transformations have occurred, which would change more traditional hash values.
Learn more at https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html.
type: keyword
example: 0c6803c4e922103c4dca5963aad36ddf
--
*`process.pe.original_file_name`*::
+
--
Internal name of the file, provided at compile-time.
type: keyword
example: MSPAINT.EXE
--
*`process.pe.product`*::
+
--
Internal product name of the file, provided at compile-time.
type: keyword
example: Microsoft® Windows® Operating System
--
*`process.pgid`*::
+
--
Identifier of the group of processes the process belongs to.
type: long
format: string
--
*`process.pid`*::
+
--
Process id.
type: long
example: 4242
format: string
--
*`process.ppid`*::
+
--
Parent process' pid.
type: long
example: 4241
format: string
--
*`process.start`*::
+
--
The time the process started.
type: date
example: 2016-05-23T08:05:34.853Z
--
*`process.thread.id`*::
+
--
Thread ID.
type: long
example: 4242
format: string
--
*`process.thread.name`*::
+
--
Thread name.
type: keyword
example: thread-0
--
*`process.title`*::
+
--
Process title.
The proctitle, some times the same as process name. Can also be different: for example a browser setting its title to the web page currently opened.
type: keyword
--
*`process.title.text`*::
+
--
type: text
--
*`process.uptime`*::
+
--
Seconds the process has been up.
type: long
example: 1325
--
*`process.working_directory`*::
+
--
The working directory of the process.
type: keyword
example: /home/alice
--
*`process.working_directory.text`*::
+
--
type: text
--
[float]
=== registry
Fields related to Windows Registry operations.
*`registry.data.bytes`*::
+
--
Original bytes written with base64 encoding.
For Windows registry operations, such as SetValueEx and RegQueryValueEx, this corresponds to the data pointed by `lp_data`. This is optional but provides better recoverability and should be populated for REG_BINARY encoded values.
type: keyword
example: ZQBuAC0AVQBTAAAAZQBuAAAAAAA=
--
*`registry.data.strings`*::
+
--
Content when writing string types.
Populated as an array when writing string data to the registry. For single string registry types (REG_SZ, REG_EXPAND_SZ), this should be an array with one string. For sequences of string with REG_MULTI_SZ, this array will be variable length. For numeric data, such as REG_DWORD and REG_QWORD, this should be populated with the decimal representation (e.g `"1"`).
type: keyword
example: ["C:\rta\red_ttp\bin\myapp.exe"]
--
*`registry.data.type`*::
+
--
Standard registry type for encoding contents
type: keyword
example: REG_SZ
--
*`registry.hive`*::
+
--
Abbreviated name for the hive.
type: keyword
example: HKLM
--
*`registry.key`*::
+
--
Hive-relative path of keys.
type: keyword
example: SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\winword.exe
--
*`registry.path`*::
+
--
Full path, including hive, key and value
type: keyword
example: HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\winword.exe\Debugger
--
*`registry.value`*::
+
--
Name of the value written.
type: keyword
example: Debugger
--
[float]
=== related
This field set is meant to facilitate pivoting around a piece of data.
Some pieces of information can be seen in many places in an ECS event. To facilitate searching for them, store an array of all seen values to their corresponding field in `related.`.
A concrete example is IP addresses, which can be under host, observer, source, destination, client, server, and network.forwarded_ip. If you append all IPs to `related.ip`, you can then search for a given IP trivially, no matter where it appeared, by querying `related.ip:192.0.2.15`.
*`related.hash`*::
+
--
All the hashes seen on your event. Populating this field, then using it to search for hashes can help in situations where you're unsure what the hash algorithm is (and therefore which key name to search).
type: keyword
--
*`related.hosts`*::
+
--
All hostnames or other host identifiers seen on your event. Example identifiers include FQDNs, domain names, workstation names, or aliases.
type: keyword
--
*`related.ip`*::
+
--
All of the IPs seen on your event.
type: ip
--
*`related.user`*::
+
--
All the user names seen on your event.
type: keyword
--
[float]
=== rule
Rule fields are used to capture the specifics of any observer or agent rules that generate alerts or other notable events.
Examples of data sources that would populate the rule fields include: network admission control platforms, network or host IDS/IPS, network firewalls, web application firewalls, url filters, endpoint detection and response (EDR) systems, etc.
*`rule.author`*::
+
--
Name, organization, or pseudonym of the author or authors who created the rule used to generate this event.
type: keyword
example: ["Star-Lord"]
--
*`rule.category`*::
+
--
A categorization value keyword used by the entity using the rule for detection of this event.
type: keyword
example: Attempted Information Leak
--
*`rule.description`*::
+
--
The description of the rule generating the event.
type: keyword
example: Block requests to public DNS over HTTPS / TLS protocols
--
*`rule.id`*::
+
--
A rule ID that is unique within the scope of an agent, observer, or other entity using the rule for detection of this event.
type: keyword
example: 101
--
*`rule.license`*::
+
--
Name of the license under which the rule used to generate this event is made available.
type: keyword
example: Apache 2.0
--
*`rule.name`*::
+
--
The name of the rule or signature generating the event.
type: keyword
example: BLOCK_DNS_over_TLS
--
*`rule.reference`*::
+
--
Reference URL to additional information about the rule used to generate this event.
The URL can point to the vendor's documentation about the rule. If that's not available, it can also be a link to a more general page describing this type of alert.
type: keyword
example: https://en.wikipedia.org/wiki/DNS_over_TLS
--
*`rule.ruleset`*::
+
--
Name of the ruleset, policy, group, or parent category in which the rule used to generate this event is a member.
type: keyword
example: Standard_Protocol_Filters
--
*`rule.uuid`*::
+
--
A rule ID that is unique within the scope of a set or group of agents, observers, or other entities using the rule for detection of this event.
type: keyword
example: 1100110011
--
*`rule.version`*::
+
--
The version / revision of the rule being used for analysis.
type: keyword
example: 1.1
--
[float]
=== server
A Server is defined as the responder in a network connection for events regarding sessions, connections, or bidirectional flow records.
For TCP events, the server is the receiver of the initial SYN packet(s) of the TCP connection. For other protocols, the server is generally the responder in the network transaction. Some systems actually use the term "responder" to refer the server in TCP connections. The server fields describe details about the system acting as the server in the network event. Server fields are usually populated in conjunction with client fields. Server fields are generally not populated for packet-level events.
Client / server representations can add semantic context to an exchange, which is helpful to visualize the data in certain situations. If your context falls in that category, you should still ensure that source and destination are filled appropriately.
*`server.address`*::
+
--
Some event server addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the `.address` field.
Then it should be duplicated to `.ip` or `.domain`, depending on which one it is.
type: keyword
--
*`server.as.number`*::
+
--
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
type: long
example: 15169
--
*`server.as.organization.name`*::
+
--
Organization name.
type: keyword
example: Google LLC
--
*`server.as.organization.name.text`*::
+
--
type: text
--
*`server.bytes`*::
+
--
Bytes sent from the server to the client.
type: long
example: 184
format: bytes
--
*`server.domain`*::
+
--
Server domain.
type: keyword
--
*`server.geo.city_name`*::
+
--
City name.
type: keyword
example: Montreal
--
*`server.geo.continent_code`*::
+
--
Two-letter code representing continent's name.
type: keyword
example: NA
--
*`server.geo.continent_name`*::
+
--
Name of the continent.
type: keyword
example: North America
--
*`server.geo.country_iso_code`*::
+
--
Country ISO code.
type: keyword
example: CA
--
*`server.geo.country_name`*::
+
--
Country name.
type: keyword
example: Canada
--
*`server.geo.location`*::
+
--
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
--
*`server.geo.name`*::
+
--
User-defined description of a location, at the level of granularity they care about.
Could be the name of their data centers, the floor number, if this describes a local physical entity, city names.
Not typically used in automated geolocation.
type: keyword
example: boston-dc
--
*`server.geo.postal_code`*::
+
--
Postal code associated with the location.
Values appropriate for this field may also be known as a postcode or ZIP code and will vary widely from country to country.
type: keyword
example: 94040
--
*`server.geo.region_iso_code`*::
+
--
Region ISO code.
type: keyword
example: CA-QC
--
*`server.geo.region_name`*::
+
--
Region name.
type: keyword
example: Quebec
--
*`server.geo.timezone`*::
+
--
The time zone of the location, such as IANA time zone name.
type: keyword
example: America/Argentina/Buenos_Aires
--
*`server.ip`*::
+
--
IP address of the server (IPv4 or IPv6).
type: ip
--
*`server.mac`*::
+
--
MAC address of the server.
The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
type: keyword
example: 00-00-5E-00-53-23
--
*`server.nat.ip`*::
+
--
Translated ip of destination based NAT sessions (e.g. internet to private DMZ)
Typically used with load balancers, firewalls, or routers.
type: ip
--
*`server.nat.port`*::
+
--
Translated port of destination based NAT sessions (e.g. internet to private DMZ)
Typically used with load balancers, firewalls, or routers.
type: long
format: string
--
*`server.packets`*::
+
--
Packets sent from the server to the client.
type: long
example: 12
--
*`server.port`*::
+
--
Port of the server.
type: long
format: string
--
*`server.registered_domain`*::
+
--
The highest registered server domain, stripped of the subdomain.
For example, the registered domain for "foo.example.com" is "example.com".
This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last two labels will not work well for TLDs such as "co.uk".
type: keyword
example: example.com
--
*`server.subdomain`*::
+
--
The subdomain portion of a fully qualified domain name includes all of the names except the host name under the registered_domain. In a partially qualified domain, or if the the qualification level of the full name cannot be determined, subdomain contains all of the names below the registered domain.
For example the subdomain portion of "www.east.mydomain.co.uk" is "east". If the domain has multiple levels of subdomain, such as "sub2.sub1.example.com", the subdomain field should contain "sub2.sub1", with no trailing period.
type: keyword
example: east
--
*`server.top_level_domain`*::
+
--
The effective top level domain (eTLD), also known as the domain suffix, is the last part of the domain name. For example, the top level domain for example.com is "com".
This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last label will not work well for effective TLDs such as "co.uk".
type: keyword
example: co.uk
--
*`server.user.domain`*::
+
--
Name of the directory the user is a member of.
For example, an LDAP or Active Directory domain name.
type: keyword
--
*`server.user.email`*::
+
--
User email address.
type: keyword
--
*`server.user.full_name`*::
+
--
User's full name, if available.
type: keyword
example: Albert Einstein
--
*`server.user.full_name.text`*::
+
--
type: text
--
*`server.user.group.domain`*::
+
--
Name of the directory the group is a member of.
For example, an LDAP or Active Directory domain name.
type: keyword
--
*`server.user.group.id`*::
+
--
Unique identifier for the group on the system/platform.
type: keyword
--
*`server.user.group.name`*::
+
--
Name of the group.
type: keyword
--
*`server.user.hash`*::
+
--
Unique user hash to correlate information for a user in anonymized form.
Useful if `user.id` or `user.name` contain confidential information and cannot be used.
type: keyword
--
*`server.user.id`*::
+
--
Unique identifier of the user.
type: keyword
--
*`server.user.name`*::
+
--
Short name or login of the user.
type: keyword
example: albert
--
*`server.user.name.text`*::
+
--
type: text
--
*`server.user.roles`*::
+
--
Array of user roles at the time of the event.
type: keyword
example: ["kibana_admin", "reporting_user"]
--
[float]
=== service
The service fields describe the service for or from which the data was collected.
These fields help you find and correlate logs for a specific service and version.
*`service.ephemeral_id`*::
+
--
Ephemeral identifier of this service (if one exists).
This id normally changes across restarts, but `service.id` does not.
type: keyword
example: 8a4f500f
--
*`service.id`*::
+
--
Unique identifier of the running service. If the service is comprised of many nodes, the `service.id` should be the same for all nodes.
This id should uniquely identify the service. This makes it possible to correlate logs and metrics for one specific service, no matter which particular node emitted the event.
Note that if you need to see the events from one specific host of the service, you should filter on that `host.name` or `host.id` instead.
type: keyword
example: d37e5ebfe0ae6c4972dbe9f0174a1637bb8247f6
--
*`service.name`*::
+
--
Name of the service data is collected from.
The name of the service is normally user given. This allows for distributed services that run on multiple hosts to correlate the related instances based on the name.
In the case of Elasticsearch the `service.name` could contain the cluster name. For Beats the `service.name` is by default a copy of the `service.type` field if no name is specified.
type: keyword
example: elasticsearch-metrics
--
*`service.node.name`*::
+
--
Name of a service node.
This allows for two nodes of the same service running on the same host to be differentiated. Therefore, `service.node.name` should typically be unique across nodes of a given service.
In the case of Elasticsearch, the `service.node.name` could contain the unique node name within the Elasticsearch cluster. In cases where the service doesn't have the concept of a node name, the host name or container name can be used to distinguish running instances that make up this service. If those do not provide uniqueness (e.g. multiple instances of the service running on the same host) - the node name can be manually set.
type: keyword
example: instance-0000000016
--
*`service.state`*::
+
--
Current state of the service.
type: keyword
--
*`service.type`*::
+
--
The type of the service data is collected from.
The type can be used to group and correlate logs and metrics from one service type.
Example: If logs or metrics are collected from Elasticsearch, `service.type` would be `elasticsearch`.
type: keyword
example: elasticsearch
--
*`service.version`*::
+
--
Version of the service the data was collected from.
This allows to look at a data set only for a specific version of a service.
type: keyword
example: 3.2.4
--
[float]
=== source
Source fields capture details about the sender of a network exchange/packet. These fields are populated from a network event, packet, or other event containing details of a network transaction.
Source fields are usually populated in conjunction with destination fields. The source and destination fields are considered the baseline and should always be filled if an event contains source and destination details from a network transaction. If the event also contains identification of the client and server roles, then the client and server fields should also be populated.
*`source.address`*::
+
--
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the `.address` field.
Then it should be duplicated to `.ip` or `.domain`, depending on which one it is.
type: keyword
--
*`source.as.number`*::
+
--
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
type: long
example: 15169
--
*`source.as.organization.name`*::
+
--
Organization name.
type: keyword
example: Google LLC
--
*`source.as.organization.name.text`*::
+
--
type: text
--
*`source.bytes`*::
+
--
Bytes sent from the source to the destination.
type: long
example: 184
format: bytes
--
*`source.domain`*::
+
--
Source domain.
type: keyword
--
*`source.geo.city_name`*::
+
--
City name.
type: keyword
example: Montreal
--
*`source.geo.continent_code`*::
+
--
Two-letter code representing continent's name.
type: keyword
example: NA
--
*`source.geo.continent_name`*::
+
--
Name of the continent.
type: keyword
example: North America
--
*`source.geo.country_iso_code`*::
+
--
Country ISO code.
type: keyword
example: CA
--
*`source.geo.country_name`*::
+
--
Country name.
type: keyword
example: Canada
--
*`source.geo.location`*::
+
--
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
--
*`source.geo.name`*::
+
--
User-defined description of a location, at the level of granularity they care about.
Could be the name of their data centers, the floor number, if this describes a local physical entity, city names.
Not typically used in automated geolocation.
type: keyword
example: boston-dc
--
*`source.geo.postal_code`*::
+
--
Postal code associated with the location.
Values appropriate for this field may also be known as a postcode or ZIP code and will vary widely from country to country.
type: keyword
example: 94040
--
*`source.geo.region_iso_code`*::
+
--
Region ISO code.
type: keyword
example: CA-QC
--
*`source.geo.region_name`*::
+
--
Region name.
type: keyword
example: Quebec
--
*`source.geo.timezone`*::
+
--
The time zone of the location, such as IANA time zone name.
type: keyword
example: America/Argentina/Buenos_Aires
--
*`source.ip`*::
+
--
IP address of the source (IPv4 or IPv6).
type: ip
--
*`source.mac`*::
+
--
MAC address of the source.
The notation format from RFC 7042 is suggested: Each octet (that is, 8-bit byte) is represented by two [uppercase] hexadecimal digits giving the value of the octet as an unsigned integer. Successive octets are separated by a hyphen.
type: keyword
example: 00-00-5E-00-53-23
--
*`source.nat.ip`*::
+
--
Translated ip of source based NAT sessions (e.g. internal client to internet)
Typically connections traversing load balancers, firewalls, or routers.
type: ip
--
*`source.nat.port`*::
+
--
Translated port of source based NAT sessions. (e.g. internal client to internet)
Typically used with load balancers, firewalls, or routers.
type: long
format: string
--
*`source.packets`*::
+
--
Packets sent from the source to the destination.
type: long
example: 12
--
*`source.port`*::
+
--
Port of the source.
type: long
format: string
--
*`source.registered_domain`*::
+
--
The highest registered source domain, stripped of the subdomain.
For example, the registered domain for "foo.example.com" is "example.com".
This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last two labels will not work well for TLDs such as "co.uk".
type: keyword
example: example.com
--
*`source.subdomain`*::
+
--
The subdomain portion of a fully qualified domain name includes all of the names except the host name under the registered_domain. In a partially qualified domain, or if the the qualification level of the full name cannot be determined, subdomain contains all of the names below the registered domain.
For example the subdomain portion of "www.east.mydomain.co.uk" is "east". If the domain has multiple levels of subdomain, such as "sub2.sub1.example.com", the subdomain field should contain "sub2.sub1", with no trailing period.
type: keyword
example: east
--
*`source.top_level_domain`*::
+
--
The effective top level domain (eTLD), also known as the domain suffix, is the last part of the domain name. For example, the top level domain for example.com is "com".
This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last label will not work well for effective TLDs such as "co.uk".
type: keyword
example: co.uk
--
*`source.user.domain`*::
+
--
Name of the directory the user is a member of.
For example, an LDAP or Active Directory domain name.
type: keyword
--
*`source.user.email`*::
+
--
User email address.
type: keyword
--
*`source.user.full_name`*::
+
--
User's full name, if available.
type: keyword
example: Albert Einstein
--
*`source.user.full_name.text`*::
+
--
type: text
--
*`source.user.group.domain`*::
+
--
Name of the directory the group is a member of.
For example, an LDAP or Active Directory domain name.
type: keyword
--
*`source.user.group.id`*::
+
--
Unique identifier for the group on the system/platform.
type: keyword
--
*`source.user.group.name`*::
+
--
Name of the group.
type: keyword
--
*`source.user.hash`*::
+
--
Unique user hash to correlate information for a user in anonymized form.
Useful if `user.id` or `user.name` contain confidential information and cannot be used.
type: keyword
--
*`source.user.id`*::
+
--
Unique identifier of the user.
type: keyword
--
*`source.user.name`*::
+
--
Short name or login of the user.
type: keyword
example: albert
--
*`source.user.name.text`*::
+
--
type: text
--
*`source.user.roles`*::
+
--
Array of user roles at the time of the event.
type: keyword
example: ["kibana_admin", "reporting_user"]
--
[float]
=== threat
Fields to classify events and alerts according to a threat taxonomy such as the MITRE ATT&CK® framework.
These fields are for users to classify alerts from all of their sources (e.g. IDS, NGFW, etc.) within a common taxonomy. The threat.tactic.* are meant to capture the high level category of the threat (e.g. "impact"). The threat.technique.* fields are meant to capture which kind of approach is used by this detected threat, to accomplish the goal (e.g. "endpoint denial of service").
*`threat.framework`*::
+
--
Name of the threat framework used to further categorize and classify the tactic and technique of the reported threat. Framework classification can be provided by detecting systems, evaluated at ingest time, or retrospectively tagged to events.
type: keyword
example: MITRE ATT&CK
--
*`threat.tactic.id`*::
+
--
The id of tactic used by this threat. You can use a MITRE ATT&CK® tactic, for example. (ex. https://attack.mitre.org/tactics/TA0002/ )
type: keyword
example: TA0002
--
*`threat.tactic.name`*::
+
--
Name of the type of tactic used by this threat. You can use a MITRE ATT&CK® tactic, for example. (ex. https://attack.mitre.org/tactics/TA0002/)
type: keyword
example: Execution
--
*`threat.tactic.reference`*::
+
--
The reference url of tactic used by this threat. You can use a MITRE ATT&CK® tactic, for example. (ex. https://attack.mitre.org/tactics/TA0002/ )
type: keyword
example: https://attack.mitre.org/tactics/TA0002/
--
*`threat.technique.id`*::
+
--
The id of technique used by this threat. You can use a MITRE ATT&CK® technique, for example. (ex. https://attack.mitre.org/techniques/T1059/)
type: keyword
example: T1059
--
*`threat.technique.name`*::
+
--
The name of technique used by this threat. You can use a MITRE ATT&CK® technique, for example. (ex. https://attack.mitre.org/techniques/T1059/)
type: keyword
example: Command and Scripting Interpreter
--
*`threat.technique.name.text`*::
+
--
type: text
--
*`threat.technique.reference`*::
+
--
The reference url of technique used by this threat. You can use a MITRE ATT&CK® technique, for example. (ex. https://attack.mitre.org/techniques/T1059/)
type: keyword
example: https://attack.mitre.org/techniques/T1059/
--
*`threat.technique.subtechnique.id`*::
+
--
The full id of subtechnique used by this threat. You can use a MITRE ATT&CK® subtechnique, for example. (ex. https://attack.mitre.org/techniques/T1059/001/)
type: keyword
example: T1059.001
--
*`threat.technique.subtechnique.name`*::
+
--
The name of subtechnique used by this threat. You can use a MITRE ATT&CK® subtechnique, for example. (ex. https://attack.mitre.org/techniques/T1059/001/)
type: keyword
example: PowerShell
--
*`threat.technique.subtechnique.name.text`*::
+
--
type: text
--
*`threat.technique.subtechnique.reference`*::
+
--
The reference url of subtechnique used by this threat. You can use a MITRE ATT&CK® subtechnique, for example. (ex. https://attack.mitre.org/techniques/T1059/001/)
type: keyword
example: https://attack.mitre.org/techniques/T1059/001/
--
[float]
=== tls
Fields related to a TLS connection. These fields focus on the TLS protocol itself and intentionally avoids in-depth analysis of the related x.509 certificate files.
*`tls.cipher`*::
+
--
String indicating the cipher used during the current connection.
type: keyword
example: TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
--
*`tls.client.certificate`*::
+
--
PEM-encoded stand-alone certificate offered by the client. This is usually mutually-exclusive of `client.certificate_chain` since this value also exists in that list.
type: keyword
example: MII...
--
*`tls.client.certificate_chain`*::
+
--
Array of PEM-encoded certificates that make up the certificate chain offered by the client. This is usually mutually-exclusive of `client.certificate` since that value should be the first certificate in the chain.
type: keyword
example: ["MII...", "MII..."]
--
*`tls.client.hash.md5`*::
+
--
Certificate fingerprint using the MD5 digest of DER-encoded version of certificate offered by the client. For consistency with other hash values, this value should be formatted as an uppercase hash.
type: keyword
example: 0F76C7F2C55BFD7D8E8B8F4BFBF0C9EC
--
*`tls.client.hash.sha1`*::
+
--
Certificate fingerprint using the SHA1 digest of DER-encoded version of certificate offered by the client. For consistency with other hash values, this value should be formatted as an uppercase hash.
type: keyword
example: 9E393D93138888D288266C2D915214D1D1CCEB2A
--
*`tls.client.hash.sha256`*::
+
--
Certificate fingerprint using the SHA256 digest of DER-encoded version of certificate offered by the client. For consistency with other hash values, this value should be formatted as an uppercase hash.
type: keyword
example: 0687F666A054EF17A08E2F2162EAB4CBC0D265E1D7875BE74BF3C712CA92DAF0
--
*`tls.client.issuer`*::
+
--
Distinguished name of subject of the issuer of the x.509 certificate presented by the client.
type: keyword
example: CN=Example Root CA, OU=Infrastructure Team, DC=example, DC=com
--
*`tls.client.ja3`*::
+
--
A hash that identifies clients based on how they perform an SSL/TLS handshake.
type: keyword
example: d4e5b18d6b55c71272893221c96ba240
--
*`tls.client.not_after`*::
+
--
Date/Time indicating when client certificate is no longer considered valid.
type: date
example: 2021-01-01T00:00:00.000Z
--
*`tls.client.not_before`*::
+
--
Date/Time indicating when client certificate is first considered valid.
type: date
example: 1970-01-01T00:00:00.000Z
--
*`tls.client.server_name`*::
+
--
Also called an SNI, this tells the server which hostname to which the client is attempting to connect to. When this value is available, it should get copied to `destination.domain`.
type: keyword
example: www.elastic.co
--
*`tls.client.subject`*::
+
--
Distinguished name of subject of the x.509 certificate presented by the client.
type: keyword
example: CN=myclient, OU=Documentation Team, DC=example, DC=com
--
*`tls.client.supported_ciphers`*::
+
--
Array of ciphers offered by the client during the client hello.
type: keyword
example: ["TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384", "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384", "..."]
--
*`tls.client.x509.alternative_names`*::
+
--
List of subject alternative names (SAN). Name types vary by certificate authority and certificate type but commonly contain IP addresses, DNS names (and wildcards), and email addresses.
type: keyword
example: *.elastic.co
--
*`tls.client.x509.issuer.common_name`*::
+
--
List of common name (CN) of issuing certificate authority.
type: keyword
example: Example SHA2 High Assurance Server CA
--
*`tls.client.x509.issuer.country`*::
+
--
List of country (C) codes
type: keyword
example: US
--
*`tls.client.x509.issuer.distinguished_name`*::
+
--
Distinguished name (DN) of issuing certificate authority.
type: keyword
example: C=US, O=Example Inc, OU=www.example.com, CN=Example SHA2 High Assurance Server CA
--
*`tls.client.x509.issuer.locality`*::
+
--
List of locality names (L)
type: keyword
example: Mountain View
--
*`tls.client.x509.issuer.organization`*::
+
--
List of organizations (O) of issuing certificate authority.
type: keyword
example: Example Inc
--
*`tls.client.x509.issuer.organizational_unit`*::
+
--
List of organizational units (OU) of issuing certificate authority.
type: keyword
example: www.example.com
--
*`tls.client.x509.issuer.state_or_province`*::
+
--
List of state or province names (ST, S, or P)
type: keyword
example: California
--
*`tls.client.x509.not_after`*::
+
--
Time at which the certificate is no longer considered valid.
type: date
example: 2020-07-16 03:15:39+00:00
--
*`tls.client.x509.not_before`*::
+
--
Time at which the certificate is first considered valid.
type: date
example: 2019-08-16 01:40:25+00:00
--
*`tls.client.x509.public_key_algorithm`*::
+
--
Algorithm used to generate the public key.
type: keyword
example: RSA
--
*`tls.client.x509.public_key_curve`*::
+
--
The curve used by the elliptic curve public key algorithm. This is algorithm specific.
type: keyword
example: nistp521
--
*`tls.client.x509.public_key_exponent`*::
+
--
Exponent used to derive the public key. This is algorithm specific.
type: long
example: 65537
Field is not indexed.
--
*`tls.client.x509.public_key_size`*::
+
--
The size of the public key space in bits.
type: long
example: 2048
--
*`tls.client.x509.serial_number`*::
+
--
Unique serial number issued by the certificate authority. For consistency, if this value is alphanumeric, it should be formatted without colons and uppercase characters.
type: keyword
example: 55FBB9C7DEBF09809D12CCAA
--
*`tls.client.x509.signature_algorithm`*::
+
--
Identifier for certificate signature algorithm. We recommend using names found in Go Lang Crypto library. See https://github.com/golang/go/blob/go1.14/src/crypto/x509/x509.go#L337-L353.
type: keyword
example: SHA256-RSA
--
*`tls.client.x509.subject.common_name`*::
+
--
List of common names (CN) of subject.
type: keyword
example: shared.global.example.net
--
*`tls.client.x509.subject.country`*::
+
--
List of country (C) code
type: keyword
example: US
--
*`tls.client.x509.subject.distinguished_name`*::
+
--
Distinguished name (DN) of the certificate subject entity.
type: keyword
example: C=US, ST=California, L=San Francisco, O=Example, Inc., CN=shared.global.example.net
--
*`tls.client.x509.subject.locality`*::
+
--
List of locality names (L)
type: keyword
example: San Francisco
--
*`tls.client.x509.subject.organization`*::
+
--
List of organizations (O) of subject.
type: keyword
example: Example, Inc.
--
*`tls.client.x509.subject.organizational_unit`*::
+
--
List of organizational units (OU) of subject.
type: keyword
--
*`tls.client.x509.subject.state_or_province`*::
+
--
List of state or province names (ST, S, or P)
type: keyword
example: California
--
*`tls.client.x509.version_number`*::
+
--
Version of x509 format.
type: keyword
example: 3
--
*`tls.curve`*::
+
--
String indicating the curve used for the given cipher, when applicable.
type: keyword
example: secp256r1
--
*`tls.established`*::
+
--
Boolean flag indicating if the TLS negotiation was successful and transitioned to an encrypted tunnel.
type: boolean
--
*`tls.next_protocol`*::
+
--
String indicating the protocol being tunneled. Per the values in the IANA registry (https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml#alpn-protocol-ids), this string should be lower case.
type: keyword
example: http/1.1
--
*`tls.resumed`*::
+
--
Boolean flag indicating if this TLS connection was resumed from an existing TLS negotiation.
type: boolean
--
*`tls.server.certificate`*::
+
--
PEM-encoded stand-alone certificate offered by the server. This is usually mutually-exclusive of `server.certificate_chain` since this value also exists in that list.
type: keyword
example: MII...
--
*`tls.server.certificate_chain`*::
+
--
Array of PEM-encoded certificates that make up the certificate chain offered by the server. This is usually mutually-exclusive of `server.certificate` since that value should be the first certificate in the chain.
type: keyword
example: ["MII...", "MII..."]
--
*`tls.server.hash.md5`*::
+
--
Certificate fingerprint using the MD5 digest of DER-encoded version of certificate offered by the server. For consistency with other hash values, this value should be formatted as an uppercase hash.
type: keyword
example: 0F76C7F2C55BFD7D8E8B8F4BFBF0C9EC
--
*`tls.server.hash.sha1`*::
+
--
Certificate fingerprint using the SHA1 digest of DER-encoded version of certificate offered by the server. For consistency with other hash values, this value should be formatted as an uppercase hash.
type: keyword
example: 9E393D93138888D288266C2D915214D1D1CCEB2A
--
*`tls.server.hash.sha256`*::
+
--
Certificate fingerprint using the SHA256 digest of DER-encoded version of certificate offered by the server. For consistency with other hash values, this value should be formatted as an uppercase hash.
type: keyword
example: 0687F666A054EF17A08E2F2162EAB4CBC0D265E1D7875BE74BF3C712CA92DAF0
--
*`tls.server.issuer`*::
+
--
Subject of the issuer of the x.509 certificate presented by the server.
type: keyword
example: CN=Example Root CA, OU=Infrastructure Team, DC=example, DC=com
--
*`tls.server.ja3s`*::
+
--
A hash that identifies servers based on how they perform an SSL/TLS handshake.
type: keyword
example: 394441ab65754e2207b1e1b457b3641d
--
*`tls.server.not_after`*::
+
--
Timestamp indicating when server certificate is no longer considered valid.
type: date
example: 2021-01-01T00:00:00.000Z
--
*`tls.server.not_before`*::
+
--
Timestamp indicating when server certificate is first considered valid.
type: date
example: 1970-01-01T00:00:00.000Z
--
*`tls.server.subject`*::
+
--
Subject of the x.509 certificate presented by the server.
type: keyword
example: CN=www.example.com, OU=Infrastructure Team, DC=example, DC=com
--
*`tls.server.x509.alternative_names`*::
+
--
List of subject alternative names (SAN). Name types vary by certificate authority and certificate type but commonly contain IP addresses, DNS names (and wildcards), and email addresses.
type: keyword
example: *.elastic.co
--
*`tls.server.x509.issuer.common_name`*::
+
--
List of common name (CN) of issuing certificate authority.
type: keyword
example: Example SHA2 High Assurance Server CA
--
*`tls.server.x509.issuer.country`*::
+
--
List of country (C) codes
type: keyword
example: US
--
*`tls.server.x509.issuer.distinguished_name`*::
+
--
Distinguished name (DN) of issuing certificate authority.
type: keyword
example: C=US, O=Example Inc, OU=www.example.com, CN=Example SHA2 High Assurance Server CA
--
*`tls.server.x509.issuer.locality`*::
+
--
List of locality names (L)
type: keyword
example: Mountain View
--
*`tls.server.x509.issuer.organization`*::
+
--
List of organizations (O) of issuing certificate authority.
type: keyword
example: Example Inc
--
*`tls.server.x509.issuer.organizational_unit`*::
+
--
List of organizational units (OU) of issuing certificate authority.
type: keyword
example: www.example.com
--
*`tls.server.x509.issuer.state_or_province`*::
+
--
List of state or province names (ST, S, or P)
type: keyword
example: California
--
*`tls.server.x509.not_after`*::
+
--
Time at which the certificate is no longer considered valid.
type: date
example: 2020-07-16 03:15:39+00:00
--
*`tls.server.x509.not_before`*::
+
--
Time at which the certificate is first considered valid.
type: date
example: 2019-08-16 01:40:25+00:00
--
*`tls.server.x509.public_key_algorithm`*::
+
--
Algorithm used to generate the public key.
type: keyword
example: RSA
--
*`tls.server.x509.public_key_curve`*::
+
--
The curve used by the elliptic curve public key algorithm. This is algorithm specific.
type: keyword
example: nistp521
--
*`tls.server.x509.public_key_exponent`*::
+
--
Exponent used to derive the public key. This is algorithm specific.
type: long
example: 65537
Field is not indexed.
--
*`tls.server.x509.public_key_size`*::
+
--
The size of the public key space in bits.
type: long
example: 2048
--
*`tls.server.x509.serial_number`*::
+
--
Unique serial number issued by the certificate authority. For consistency, if this value is alphanumeric, it should be formatted without colons and uppercase characters.
type: keyword
example: 55FBB9C7DEBF09809D12CCAA
--
*`tls.server.x509.signature_algorithm`*::
+
--
Identifier for certificate signature algorithm. We recommend using names found in Go Lang Crypto library. See https://github.com/golang/go/blob/go1.14/src/crypto/x509/x509.go#L337-L353.
type: keyword
example: SHA256-RSA
--
*`tls.server.x509.subject.common_name`*::
+
--
List of common names (CN) of subject.
type: keyword
example: shared.global.example.net
--
*`tls.server.x509.subject.country`*::
+
--
List of country (C) code
type: keyword
example: US
--
*`tls.server.x509.subject.distinguished_name`*::
+
--
Distinguished name (DN) of the certificate subject entity.
type: keyword
example: C=US, ST=California, L=San Francisco, O=Example, Inc., CN=shared.global.example.net
--
*`tls.server.x509.subject.locality`*::
+
--
List of locality names (L)
type: keyword
example: San Francisco
--
*`tls.server.x509.subject.organization`*::
+
--
List of organizations (O) of subject.
type: keyword
example: Example, Inc.
--
*`tls.server.x509.subject.organizational_unit`*::
+
--
List of organizational units (OU) of subject.
type: keyword
--
*`tls.server.x509.subject.state_or_province`*::
+
--
List of state or province names (ST, S, or P)
type: keyword
example: California
--
*`tls.server.x509.version_number`*::
+
--
Version of x509 format.
type: keyword
example: 3
--
*`tls.version`*::
+
--
Numeric part of the version parsed from the original string.
type: keyword
example: 1.2
--
*`tls.version_protocol`*::
+
--
Normalized lowercase protocol name parsed from original string.
type: keyword
example: tls
--
*`span.id`*::
+
--
Unique identifier of the span within the scope of its trace.
A span represents an operation within a transaction, such as a request to another service, or a database query.
type: keyword
example: 3ff9a8981b7ccd5a
--
*`trace.id`*::
+
--
Unique identifier of the trace.
A trace groups multiple events like transactions that belong together. For example, a user request handled by multiple inter-connected services.
type: keyword
example: 4bf92f3577b34da6a3ce929d0e0e4736
--
*`transaction.id`*::
+
--
Unique identifier of the transaction within the scope of its trace.
A transaction is the highest level of work measured within a service, such as a request to a server.
type: keyword
example: 00f067aa0ba902b7
--
[float]
=== url
URL fields provide support for complete or partial URLs, and supports the breaking down into scheme, domain, path, and so on.
*`url.domain`*::
+
--
Domain of the url, such as "www.elastic.co".
In some cases a URL may refer to an IP and/or port directly, without a domain name. In this case, the IP address would go to the `domain` field.
If the URL contains a literal IPv6 address enclosed by `[` and `]` (IETF RFC 2732), the `[` and `]` characters should also be captured in the `domain` field.
type: keyword
example: www.elastic.co
--
*`url.extension`*::
+
--
The field contains the file extension from the original request url, excluding the leading dot.
The file extension is only set if it exists, as not every url has a file extension.
The leading period must not be included. For example, the value must be "png", not ".png".
Note that when the file name has multiple extensions (example.tar.gz), only the last one should be captured ("gz", not "tar.gz").
type: keyword
example: png
--
*`url.fragment`*::
+
--
Portion of the url after the `#`, such as "top".
The `#` is not part of the fragment.
type: keyword
--
*`url.full`*::
+
--
If full URLs are important to your use case, they should be stored in `url.full`, whether this field is reconstructed or present in the event source.
type: keyword
example: https://www.elastic.co:443/search?q=elasticsearch#top
--
*`url.full.text`*::
+
--
type: text
--
*`url.original`*::
+
--
Unmodified original url as seen in the event source.
Note that in network monitoring, the observed URL may be a full URL, whereas in access logs, the URL is often just represented as a path.
This field is meant to represent the URL as it was observed, complete or not.
type: keyword
example: https://www.elastic.co:443/search?q=elasticsearch#top or /search?q=elasticsearch
--
*`url.original.text`*::
+
--
type: text
--
*`url.password`*::
+
--
Password of the request.
type: keyword
--
*`url.path`*::
+
--
Path of the request, such as "/search".
type: keyword
--
*`url.port`*::
+
--
Port of the request, such as 443.
type: long
example: 443
format: string
--
*`url.query`*::
+
--
The query field describes the query string of the request, such as "q=elasticsearch".
The `?` is excluded from the query string. If a URL contains no `?`, there is no query field. If there is a `?` but no query, the query field exists with an empty string. The `exists` query can be used to differentiate between the two cases.
type: keyword
--
*`url.registered_domain`*::
+
--
The highest registered url domain, stripped of the subdomain.
For example, the registered domain for "foo.example.com" is "example.com".
This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last two labels will not work well for TLDs such as "co.uk".
type: keyword
example: example.com
--
*`url.scheme`*::
+
--
Scheme of the request, such as "https".
Note: The `:` is not part of the scheme.
type: keyword
example: https
--
*`url.subdomain`*::
+
--
The subdomain portion of a fully qualified domain name includes all of the names except the host name under the registered_domain. In a partially qualified domain, or if the the qualification level of the full name cannot be determined, subdomain contains all of the names below the registered domain.
For example the subdomain portion of "www.east.mydomain.co.uk" is "east". If the domain has multiple levels of subdomain, such as "sub2.sub1.example.com", the subdomain field should contain "sub2.sub1", with no trailing period.
type: keyword
example: east
--
*`url.top_level_domain`*::
+
--
The effective top level domain (eTLD), also known as the domain suffix, is the last part of the domain name. For example, the top level domain for example.com is "com".
This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last label will not work well for effective TLDs such as "co.uk".
type: keyword
example: co.uk
--
*`url.username`*::
+
--
Username of the request.
type: keyword
--
[float]
=== user
The user fields describe information about the user that is relevant to the event.
Fields can have one entry or multiple entries. If a user has more than one id, provide an array that includes all of them.
*`user.changes.domain`*::
+
--
Name of the directory the user is a member of.
For example, an LDAP or Active Directory domain name.
type: keyword
--
*`user.changes.email`*::
+
--
User email address.
type: keyword
--
*`user.changes.full_name`*::
+
--
User's full name, if available.
type: keyword
example: Albert Einstein
--
*`user.changes.full_name.text`*::
+
--
type: text
--
*`user.changes.group.domain`*::
+
--
Name of the directory the group is a member of.
For example, an LDAP or Active Directory domain name.
type: keyword
--
*`user.changes.group.id`*::
+
--
Unique identifier for the group on the system/platform.
type: keyword
--
*`user.changes.group.name`*::
+
--
Name of the group.
type: keyword
--
*`user.changes.hash`*::
+
--
Unique user hash to correlate information for a user in anonymized form.
Useful if `user.id` or `user.name` contain confidential information and cannot be used.
type: keyword
--
*`user.changes.id`*::
+
--
Unique identifier of the user.
type: keyword
--
*`user.changes.name`*::
+
--
Short name or login of the user.
type: keyword
example: albert
--
*`user.changes.name.text`*::
+
--
type: text
--
*`user.changes.roles`*::
+
--
Array of user roles at the time of the event.
type: keyword
example: ["kibana_admin", "reporting_user"]
--
*`user.domain`*::
+
--
Name of the directory the user is a member of.
For example, an LDAP or Active Directory domain name.
type: keyword
--
*`user.effective.domain`*::
+
--
Name of the directory the user is a member of.
For example, an LDAP or Active Directory domain name.
type: keyword
--
*`user.effective.email`*::
+
--
User email address.
type: keyword
--
*`user.effective.full_name`*::
+
--
User's full name, if available.
type: keyword
example: Albert Einstein
--
*`user.effective.full_name.text`*::
+
--
type: text
--
*`user.effective.group.domain`*::
+
--
Name of the directory the group is a member of.
For example, an LDAP or Active Directory domain name.
type: keyword
--
*`user.effective.group.id`*::
+
--
Unique identifier for the group on the system/platform.
type: keyword
--
*`user.effective.group.name`*::
+
--
Name of the group.
type: keyword
--
*`user.effective.hash`*::
+
--
Unique user hash to correlate information for a user in anonymized form.
Useful if `user.id` or `user.name` contain confidential information and cannot be used.
type: keyword
--
*`user.effective.id`*::
+
--
Unique identifier of the user.
type: keyword
--
*`user.effective.name`*::
+
--
Short name or login of the user.
type: keyword
example: albert
--
*`user.effective.name.text`*::
+
--
type: text
--
*`user.effective.roles`*::
+
--
Array of user roles at the time of the event.
type: keyword
example: ["kibana_admin", "reporting_user"]
--
*`user.email`*::
+
--
User email address.
type: keyword
--
*`user.full_name`*::
+
--
User's full name, if available.
type: keyword
example: Albert Einstein
--
*`user.full_name.text`*::
+
--
type: text
--
*`user.group.domain`*::
+
--
Name of the directory the group is a member of.
For example, an LDAP or Active Directory domain name.
type: keyword
--
*`user.group.id`*::
+
--
Unique identifier for the group on the system/platform.
type: keyword
--
*`user.group.name`*::
+
--
Name of the group.
type: keyword
--
*`user.hash`*::
+
--
Unique user hash to correlate information for a user in anonymized form.
Useful if `user.id` or `user.name` contain confidential information and cannot be used.
type: keyword
--
*`user.id`*::
+
--
Unique identifier of the user.
type: keyword
--
*`user.name`*::
+
--
Short name or login of the user.
type: keyword
example: albert
--
*`user.name.text`*::
+
--
type: text
--
*`user.roles`*::
+
--
Array of user roles at the time of the event.
type: keyword
example: ["kibana_admin", "reporting_user"]
--
*`user.target.domain`*::
+
--
Name of the directory the user is a member of.
For example, an LDAP or Active Directory domain name.
type: keyword
--
*`user.target.email`*::
+
--
User email address.
type: keyword
--
*`user.target.full_name`*::
+
--
User's full name, if available.
type: keyword
example: Albert Einstein
--
*`user.target.full_name.text`*::
+
--
type: text
--
*`user.target.group.domain`*::
+
--
Name of the directory the group is a member of.
For example, an LDAP or Active Directory domain name.
type: keyword
--
*`user.target.group.id`*::
+
--
Unique identifier for the group on the system/platform.
type: keyword
--
*`user.target.group.name`*::
+
--
Name of the group.
type: keyword
--
*`user.target.hash`*::
+
--
Unique user hash to correlate information for a user in anonymized form.
Useful if `user.id` or `user.name` contain confidential information and cannot be used.
type: keyword
--
*`user.target.id`*::
+
--
Unique identifier of the user.
type: keyword
--
*`user.target.name`*::
+
--
Short name or login of the user.
type: keyword
example: albert
--
*`user.target.name.text`*::
+
--
type: text
--
*`user.target.roles`*::
+
--
Array of user roles at the time of the event.
type: keyword
example: ["kibana_admin", "reporting_user"]
--
[float]
=== user_agent
The user_agent fields normally come from a browser request.
They often show up in web service logs coming from the parsed user agent string.
*`user_agent.device.name`*::
+
--
Name of the device.
type: keyword
example: iPhone
--
*`user_agent.name`*::
+
--
Name of the user agent.
type: keyword
example: Safari
--
*`user_agent.original`*::
+
--
Unparsed user_agent string.
type: keyword
example: Mozilla/5.0 (iPhone; CPU iPhone OS 12_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/12.0 Mobile/15E148 Safari/604.1
--
*`user_agent.original.text`*::
+
--
type: text
--
*`user_agent.os.family`*::
+
--
OS family (such as redhat, debian, freebsd, windows).
type: keyword
example: debian
--
*`user_agent.os.full`*::
+
--
Operating system name, including the version or code name.
type: keyword
example: Mac OS Mojave
--
*`user_agent.os.full.text`*::
+
--
type: text
--
*`user_agent.os.kernel`*::
+
--
Operating system kernel version as a raw string.
type: keyword
example: 4.4.0-112-generic
--
*`user_agent.os.name`*::
+
--
Operating system name, without the version.
type: keyword
example: Mac OS X
--
*`user_agent.os.name.text`*::
+
--
type: text
--
*`user_agent.os.platform`*::
+
--
Operating system platform (such centos, ubuntu, windows).
type: keyword
example: darwin
--
*`user_agent.os.type`*::
+
--
Use the `os.type` field to categorize the operating system into one of the broad commercial families.
One of these following values should be used (lowercase): linux, macos, unix, windows.
If the OS you're dealing with is not in the list, the field should not be populated. Please let us know by opening an issue with ECS, to propose its addition.
type: keyword
example: macos
--
*`user_agent.os.version`*::
+
--
Operating system version as a raw string.
type: keyword
example: 10.14.1
--
*`user_agent.version`*::
+
--
Version of the user agent.
type: keyword
example: 12.0
--
[float]
=== vlan
The VLAN fields are used to identify 802.1q tag(s) of a packet, as well as ingress and egress VLAN associations of an observer in relation to a specific packet or connection.
Network.vlan fields are used to record a single VLAN tag, or the outer tag in the case of q-in-q encapsulations, for a packet or connection as observed, typically provided by a network sensor (e.g. Zeek, Wireshark) passively reporting on traffic.
Network.inner VLAN fields are used to report inner q-in-q 802.1q tags (multiple 802.1q encapsulations) as observed, typically provided by a network sensor (e.g. Zeek, Wireshark) passively reporting on traffic. Network.inner VLAN fields should only be used in addition to network.vlan fields to indicate q-in-q tagging.
Observer.ingress and observer.egress VLAN values are used to record observer specific information when observer events contain discrete ingress and egress VLAN information, typically provided by firewalls, routers, or load balancers.
*`vlan.id`*::
+
--
VLAN ID as reported by the observer.
type: keyword
example: 10
--
*`vlan.name`*::
+
--
Optional VLAN name as reported by the observer.
type: keyword
example: outside
--
[float]
=== vulnerability
The vulnerability fields describe information about a vulnerability that is relevant to an event.
*`vulnerability.category`*::
+
--
The type of system or architecture that the vulnerability affects. These may be platform-specific (for example, Debian or SUSE) or general (for example, Database or Firewall). For example (https://qualysguard.qualys.com/qwebhelp/fo_portal/knowledgebase/vulnerability_categories.htm[Qualys vulnerability categories])
This field must be an array.
type: keyword
example: ["Firewall"]
--
*`vulnerability.classification`*::
+
--
The classification of the vulnerability scoring system. For example (https://www.first.org/cvss/)
type: keyword
example: CVSS
--
*`vulnerability.description`*::
+
--
The description of the vulnerability that provides additional context of the vulnerability. For example (https://cve.mitre.org/about/faqs.html#cve_entry_descriptions_created[Common Vulnerabilities and Exposure CVE description])
type: keyword
example: In macOS before 2.12.6, there is a vulnerability in the RPC...
--
*`vulnerability.description.text`*::
+
--
type: text
--
*`vulnerability.enumeration`*::
+
--
The type of identifier used for this vulnerability. For example (https://cve.mitre.org/about/)
type: keyword
example: CVE
--
*`vulnerability.id`*::
+
--
The identification (ID) is the number portion of a vulnerability entry. It includes a unique identification number for the vulnerability. For example (https://cve.mitre.org/about/faqs.html#what_is_cve_id)[Common Vulnerabilities and Exposure CVE ID]
type: keyword
example: CVE-2019-00001
--
*`vulnerability.reference`*::
+
--
A resource that provides additional information, context, and mitigations for the identified vulnerability.
type: keyword
example: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-6111
--
*`vulnerability.report_id`*::
+
--
The report or scan identification number.
type: keyword
example: 20191018.0001
--
*`vulnerability.scanner.vendor`*::
+
--
The name of the vulnerability scanner vendor.
type: keyword
example: Tenable
--
*`vulnerability.score.base`*::
+
--
Scores can range from 0.0 to 10.0, with 10.0 being the most severe.
Base scores cover an assessment for exploitability metrics (attack vector, complexity, privileges, and user interaction), impact metrics (confidentiality, integrity, and availability), and scope. For example (https://www.first.org/cvss/specification-document)
type: float
example: 5.5
--
*`vulnerability.score.environmental`*::
+
--
Scores can range from 0.0 to 10.0, with 10.0 being the most severe.
Environmental scores cover an assessment for any modified Base metrics, confidentiality, integrity, and availability requirements. For example (https://www.first.org/cvss/specification-document)
type: float
example: 5.5
--
*`vulnerability.score.temporal`*::
+
--
Scores can range from 0.0 to 10.0, with 10.0 being the most severe.
Temporal scores cover an assessment for code maturity, remediation level, and confidence. For example (https://www.first.org/cvss/specification-document)
type: float
--
*`vulnerability.score.version`*::
+
--
The National Vulnerability Database (NVD) provides qualitative severity rankings of "Low", "Medium", and "High" for CVSS v2.0 base score ranges in addition to the severity ratings for CVSS v3.0 as they are defined in the CVSS v3.0 specification.
CVSS is owned and managed by FIRST.Org, Inc. (FIRST), a US-based non-profit organization, whose mission is to help computer security incident response teams across the world. For example (https://nvd.nist.gov/vuln-metrics/cvss)
type: keyword
example: 2.0
--
*`vulnerability.severity`*::
+
--
The severity of the vulnerability can help with metrics and internal prioritization regarding remediation. For example (https://nvd.nist.gov/vuln-metrics/cvss)
type: keyword
example: Critical
--
[float]
=== x509
This implements the common core fields for x509 certificates. This information is likely logged with TLS sessions, digital signatures found in executable binaries, S/MIME information in email bodies, or analysis of files on disk.
When the certificate relates to a file, use the fields at `file.x509`. When hashes of the DER-encoded certificate are available, the `hash` data set should be populated as well (e.g. `file.hash.sha256`).
Events that contain certificate information about network connections, should use the x509 fields under the relevant TLS fields: `tls.server.x509` and/or `tls.client.x509`.
*`x509.alternative_names`*::
+
--
List of subject alternative names (SAN). Name types vary by certificate authority and certificate type but commonly contain IP addresses, DNS names (and wildcards), and email addresses.
type: keyword
example: *.elastic.co
--
*`x509.issuer.common_name`*::
+
--
List of common name (CN) of issuing certificate authority.
type: keyword
example: Example SHA2 High Assurance Server CA
--
*`x509.issuer.country`*::
+
--
List of country (C) codes
type: keyword
example: US
--
*`x509.issuer.distinguished_name`*::
+
--
Distinguished name (DN) of issuing certificate authority.
type: keyword
example: C=US, O=Example Inc, OU=www.example.com, CN=Example SHA2 High Assurance Server CA
--
*`x509.issuer.locality`*::
+
--
List of locality names (L)
type: keyword
example: Mountain View
--
*`x509.issuer.organization`*::
+
--
List of organizations (O) of issuing certificate authority.
type: keyword
example: Example Inc
--
*`x509.issuer.organizational_unit`*::
+
--
List of organizational units (OU) of issuing certificate authority.
type: keyword
example: www.example.com
--
*`x509.issuer.state_or_province`*::
+
--
List of state or province names (ST, S, or P)
type: keyword
example: California
--
*`x509.not_after`*::
+
--
Time at which the certificate is no longer considered valid.
type: date
example: 2020-07-16 03:15:39+00:00
--
*`x509.not_before`*::
+
--
Time at which the certificate is first considered valid.
type: date
example: 2019-08-16 01:40:25+00:00
--
*`x509.public_key_algorithm`*::
+
--
Algorithm used to generate the public key.
type: keyword
example: RSA
--
*`x509.public_key_curve`*::
+
--
The curve used by the elliptic curve public key algorithm. This is algorithm specific.
type: keyword
example: nistp521
--
*`x509.public_key_exponent`*::
+
--
Exponent used to derive the public key. This is algorithm specific.
type: long
example: 65537
Field is not indexed.
--
*`x509.public_key_size`*::
+
--
The size of the public key space in bits.
type: long
example: 2048
--
*`x509.serial_number`*::
+
--
Unique serial number issued by the certificate authority. For consistency, if this value is alphanumeric, it should be formatted without colons and uppercase characters.
type: keyword
example: 55FBB9C7DEBF09809D12CCAA
--
*`x509.signature_algorithm`*::
+
--
Identifier for certificate signature algorithm. We recommend using names found in Go Lang Crypto library. See https://github.com/golang/go/blob/go1.14/src/crypto/x509/x509.go#L337-L353.
type: keyword
example: SHA256-RSA
--
*`x509.subject.common_name`*::
+
--
List of common names (CN) of subject.
type: keyword
example: shared.global.example.net
--
*`x509.subject.country`*::
+
--
List of country (C) code
type: keyword
example: US
--
*`x509.subject.distinguished_name`*::
+
--
Distinguished name (DN) of the certificate subject entity.
type: keyword
example: C=US, ST=California, L=San Francisco, O=Example, Inc., CN=shared.global.example.net
--
*`x509.subject.locality`*::
+
--
List of locality names (L)
type: keyword
example: San Francisco
--
*`x509.subject.organization`*::
+
--
List of organizations (O) of subject.
type: keyword
example: Example, Inc.
--
*`x509.subject.organizational_unit`*::
+
--
List of organizational units (OU) of subject.
type: keyword
--
*`x509.subject.state_or_province`*::
+
--
List of state or province names (ST, S, or P)
type: keyword
example: California
--
*`x509.version_number`*::
+
--
Version of x509 format.
type: keyword
example: 3
--
[[exported-fields-host-processor]]
== Host fields
Info collected for the host machine.
*`host.containerized`*::
+
--
If the host is a container.
type: boolean
--
*`host.os.build`*::
+
--
OS build information.
type: keyword
example: 18D109
--
*`host.os.codename`*::
+
--
OS codename, if any.
type: keyword
example: stretch
--
[[exported-fields-icingabeat]]
== icingabeat fields
Data received from the Icinga 2 API
*`type`*::
+
--
Type of the document
type: keyword
--
*`icinga.timestamp`*::
+
--
Timestamp of event occurrence
type: date
--
*`icinga.type`*::
+
--
Type of the document
type: keyword
--
*`icinga.host`*::
+
--
Host that triggered the event
type: keyword
--
*`icinga.service`*::
+
--
Service that triggered the event
type: keyword
--
*`icinga.state`*::
+
--
State of the check
type: integer
--
*`icinga.state_type`*::
+
--
State type of the check
type: integer
--
*`icinga.author`*::
+
--
Author of a message
type: keyword
--
*`icinga.notification_type`*::
+
--
Type of notification
type: keyword
--
*`icinga.text`*::
+
--
Text of a message
type: text
--
*`icinga.users`*::
+
--
Affected users of a notification
type: keyword
--
*`icinga.acknowledgement_type`*::
+
--
Type of an acknowledgement
type: integer
--
*`icinga.expiry`*::
+
--
Expiry of an acknowledgement
type: date
--
*`icinga.notify`*::
+
--
If has been sent out
type: keyword
--
*`icinga.check_result.active`*::
+
--
If check was active or passive
type: boolean
--
*`icinga.check_result.check_source`*::
+
--
Icinga instance that scheduled the check
type: keyword
--
*`icinga.check_result.command`*::
+
--
Command that was executed
type: text
--
*`icinga.check_result.execution_end`*::
+
--
Time when execution of check ended
type: date
--
*`icinga.check_result.execution_start`*::
+
--
Time when execution of check started
type: date
--
*`icinga.check_result.exit_status`*::
+
--
Exit status
type: integer
--
*`icinga.check_result.output`*::
+
--
Output of check
type: text
--
*`icinga.check_result.performance_data`*::
+
--
Performance data in text format
type: text
--
*`icinga.check_result.schedule_end`*::
+
--
Time when scheduling of the check ended
type: date
--
*`icinga.check_result.schedule_start`*::
+
--
Time when check was scheduled
type: date
--
*`icinga.check_result.state`*::
+
--
State of the check
type: integer
--
*`icinga.check_result.ttl`*::
+
--
TTL, only valid if passive check
type: integer
--
*`icinga.check_result.type`*::
+
--
Type of this event
type: keyword
--
*`icinga.check_result.vars_after.attempt`*::
+
--
Check attempt after check execution
type: integer
--
*`icinga.check_result.vars_after.reachable`*::
+
--
Reachable state after check execution
type: boolean
--
*`icinga.check_result.vars_after.state`*::
+
--
State of the check after execution
type: integer
--
*`icinga.check_result.vars_after.state_type`*::
+
--
State type after execution
type: integer
--
*`icinga.check_result.vars_before.attempt`*::
+
--
Check attempt before check execution
type: integer
--
*`icinga.check_result.vars_before.reachable`*::
+
--
Reachable state before check execution
type: boolean
--
*`icinga.check_result.vars_before.state`*::
+
--
Check state before check execution
type: integer
--
*`icinga.check_result.vars_before.state_type`*::
+
--
State type before check execution
type: integer
--
*`icinga.comment.__name`*::
+
--
Unique identifier of a comment
type: text
--
*`icinga.comment.author`*::
+
--
Author of a comment
type: keyword
--
*`icinga.comment.entry_time`*::
+
--
Entry time of a comment
type: date
--
*`icinga.comment.entry_type`*::
+
--
Entry type of a comment
type: integer
--
*`icinga.comment.expire_time`*::
+
--
Expire time of a comment
type: date
--
*`icinga.comment.host_name`*::
+
--
Host name of a comment
type: keyword
--
*`icinga.comment.legacy_id`*::
+
--
Legacy ID of a comment
type: integer
--
*`icinga.comment.name`*::
+
--
Identifier of a comment
type: keyword
--
*`icinga.comment.package`*::
+
--
Config package of a comment
type: keyword
--
*`icinga.comment.service_name`*::
+
--
Service name of a comment
type: keyword
--
*`icinga.comment.templates`*::
+
--
Templates used by a comment
type: text
--
*`icinga.comment.text`*::
+
--
Text of a comment
type: text
--
*`icinga.comment.type`*::
+
--
Comment type
type: keyword
--
*`icinga.comment.version`*::
+
--
Config version of comment object
type: keyword
--
*`icinga.comment.zone`*::
+
--
Zone where comment was generated
type: keyword
--
*`icinga.downtime.__name`*::
+
--
Unique identifier of a downtime
type: text
--
*`icinga.downtime.author`*::
+
--
Author of a downtime
type: keyword
--
*`icinga.downtime.comment`*::
+
--
Text of a downtime
type: text
--
*`icinga.downtime.config_owner`*::
+
--
Config owner
type: text
--
*`icinga.downtime.duration`*::
+
--
Duration of a downtime
type: integer
--
*`icinga.downtime.end_time`*::
+
--
Timestamp of downtime end
type: date
--
*`icinga.downtime.entry_time`*::
+
--
Timestamp when downtime was created
type: date
--
*`icinga.downtime.fixed`*::
+
--
If downtime is fixed or flexible
type: boolean
--
*`icinga.downtime.host_name`*::
+
--
Hostname of a downtime
type: keyword
--
*`icinga.downtime.legacy_id`*::
+
--
The integer ID of a downtime
type: integer
--
*`icinga.downtime.name`*::
+
--
Downtime config identifier
type: keyword
--
*`icinga.downtime.package`*::
+
--
Configuration package of downtime
type: keyword
--
*`icinga.downtime.scheduled_by`*::
+
--
By whom downtime was scheduled
type: text
--
*`icinga.downtime.service_name`*::
+
--
Service name of a downtime
type: keyword
--
*`icinga.downtime.start_time`*::
+
--
Timestamp when downtime starts
type: date
--
*`icinga.downtime.templates`*::
+
--
Templates used by this downtime
type: text
--
*`icinga.downtime.trigger_time`*::
+
--
Timestamp when downtime was triggered
type: date
--
*`icinga.downtime.triggered_by`*::
+
--
By whom downtime was triggered
type: text
--
*`icinga.downtime.triggers`*::
+
--
Downtime triggers
type: text
--
*`icinga.downtime.type`*::
+
--
Downtime type
type: keyword
--
*`icinga.downtime.version`*::
+
--
Config version of downtime
type: keyword
--
*`icinga.downtime.was_cancelled`*::
+
--
If downtime was cancelled
type: boolean
--
*`icinga.downtime.zone`*::
+
--
Zone of downtime
type: keyword
--
*`icinga.status.active_host_checks`*::
+
--
Active host checks
type: integer
--
*`icinga.status.active_host_checks_15min`*::
+
--
Active host checks in the last 15 minutes
type: integer
--
*`icinga.status.active_host_checks_1min`*::
+
--
Acitve host checks in the last minute
type: integer
--
*`icinga.status.active_host_checks_5min`*::
+
--
Active host checks in the last 5 minutes
type: integer
--
*`icinga.status.active_service_checks`*::
+
--
Active service checks
type: integer
--
*`icinga.status.active_service_checks_15min`*::
+
--
Active service checks in the last 15 minutes
type: integer
--
*`icinga.status.active_service_checks_1min`*::
+
--
Active service checks in the last minute
type: integer
--
*`icinga.status.active_service_checks_5min`*::
+
--
Active service checks in the last 5 minutes
type: integer
--
*`icinga.status.api.identity`*::
+
--
API identity
type: keyword
--
*`icinga.status.api.num_conn_endpoints`*::
+
--
Number of connected endpoints
type: integer
--
*`icinga.status.api.num_endpoints`*::
+
--
Total number of endpoints
type: integer
--
*`icinga.status.api.num_not_conn_endpoints`*::
+
--
Number of not connected endpoints
type: integer
--
*`icinga.status.avg_execution_time`*::
+
--
Average execution time of checks
type: integer
--
*`icinga.status.avg_latency`*::
+
--
Average latency time
type: integer
--
*`icinga.status.checkercomponent.checker.idle`*::
+
--
Idle checks
type: integer
--
*`icinga.status.checkercomponent.checker.pending`*::
+
--
Pending checks
type: integer
--
*`icinga.status.filelogger.main-log`*::
+
--
Mainlog enabled
type: integer
--
*`icinga.status.icingaapplication.app.enable_event_handlers`*::
+
--
Event handlers enabled
type: boolean
--
*`icinga.status.icingaapplication.app.enable_flapping`*::
+
--
Flapping detection enabled
type: boolean
--
*`icinga.status.icingaapplication.app.enable_host_checks`*::
+
--
Host checks enabled
type: boolean
--
*`icinga.status.icingaapplication.app.enable_notifications`*::
+
--
Notifications enabled
type: boolean
--
*`icinga.status.icingaapplication.app.enable_perfdata`*::
+
--
Perfdata enabled
type: boolean
--
*`icinga.status.icingaapplication.app.enable_service_checks`*::
+
--
Service checks enabled
type: boolean
--
*`icinga.status.icingaapplication.app.node_name`*::
+
--
Node name
type: keyword
--
*`icinga.status.icingaapplication.app.pid`*::
+
--
PID
type: integer
--
*`icinga.status.icingaapplication.app.program_start`*::
+
--
Time when Icinga started
type: integer
--
*`icinga.status.icingaapplication.app.version`*::
+
--
Version
type: keyword
--
*`icinga.status.idomysqlconnection.ido-mysql.connected`*::
+
--
IDO connected
type: boolean
--
*`icinga.status.idomysqlconnection.ido-mysql.instance_name`*::
+
--
IDO Instance name
type: keyword
--
*`icinga.status.idomysqlconnection.ido-mysql.query_queue_items`*::
+
--
IDO query items in the queue
type: integer
--
*`icinga.status.idomysqlconnection.ido-mysql.version`*::
+
--
IDO schema version
type: keyword
--
*`icinga.status.max_execution_time`*::
+
--
Max execution time
type: integer
--
*`icinga.status.max_latency`*::
+
--
Max latency
type: integer
--
*`icinga.status.min_execution_time`*::
+
--
Min execution time
type: integer
--
*`icinga.status.min_latency`*::
+
--
Min latency
type: integer
--
*`icinga.status.notificationcomponent.notification`*::
+
--
Notification
type: integer
--
*`icinga.status.num_hosts_acknowledged`*::
+
--
Amount of acknowledged hosts
type: integer
--
*`icinga.status.num_hosts_down`*::
+
--
Amount of down hosts
type: integer
--
*`icinga.status.num_hosts_flapping`*::
+
--
Amount of flapping hosts
type: integer
--
*`icinga.status.num_hosts_in_downtime`*::
+
--
Amount of hosts in downtime
type: integer
--
*`icinga.status.num_hosts_pending`*::
+
--
Amount of pending hosts
type: integer
--
*`icinga.status.num_hosts_unreachable`*::
+
--
Amount of unreachable hosts
type: integer
--
*`icinga.status.num_hosts_up`*::
+
--
Amount of hosts in up state
type: integer
--
*`icinga.status.num_services_acknowledged`*::
+
--
Amount of acknowledged services
type: integer
--
*`icinga.status.num_services_critical`*::
+
--
Amount of critical services
type: integer
--
*`icinga.status.num_services_flapping`*::
+
--
Amount of flapping services
type: integer
--
*`icinga.status.num_services_in_downtime`*::
+
--
Amount of services in downtime
type: integer
--
*`icinga.status.num_services_ok`*::
+
--
Amount of services in ok state
type: integer
--
*`icinga.status.num_services_pending`*::
+
--
Amount of pending services
type: integer
--
*`icinga.status.num_services_unknown`*::
+
--
Amount of unknown services
type: integer
--
*`icinga.status.num_services_unreachable`*::
+
--
Amount of unreachable services
type: integer
--
*`icinga.status.num_services_warning`*::
+
--
Amount of services in warning state
type: integer
--
*`icinga.status.passive_host_checks`*::
+
--
Amount of passive host checks
type: integer
--
*`icinga.status.passive_host_checks_15min`*::
+
--
Amount of passive host checks in the last 15 minutes
type: integer
--
*`icinga.status.passive_host_checks_1min`*::
+
--
Amount of passive host checks in the last minute
type: integer
--
*`icinga.status.passive_host_checks_5min`*::
+
--
Amount of passive host checks in the last 5 minutes
type: integer
--
*`icinga.status.passive_service_checks`*::
+
--
Amount of passive service checks
type: integer
--
*`icinga.status.passive_service_checks_15min`*::
+
--
Amount of passive service checks in the last 15 minutes
type: integer
--
*`icinga.status.passive_service_checks_1min`*::
+
--
Amount of passive service checks in the last minute
type: integer
--
*`icinga.status.passive_service_checks_5min`*::
+
--
Amount of passive service checks in the last 5 minutes
type: integer
--
*`icinga.status.uptime`*::
+
--
Uptime
type: integer
--
[[exported-fields-jolokia-autodiscover]]
== Jolokia Discovery autodiscover provider fields
Metadata from Jolokia Discovery added by the jolokia provider.
*`jolokia.agent.version`*::
+
--
Version number of jolokia agent.
type: keyword
--
*`jolokia.agent.id`*::
+
--
Each agent has a unique id which can be either provided during startup of the agent in form of a configuration parameter or being autodetected. If autodected, the id has several parts: The IP, the process id, hashcode of the agent and its type.
type: keyword
--
*`jolokia.server.product`*::
+
--
The container product if detected.
type: keyword
--
*`jolokia.server.version`*::
+
--
The container's version (if detected).
type: keyword
--
*`jolokia.server.vendor`*::
+
--
The vendor of the container the agent is running in.
type: keyword
--
*`jolokia.url`*::
+
--
The URL how this agent can be contacted.
type: keyword
--
*`jolokia.secured`*::
+
--
Whether the agent was configured for authentication or not.
type: boolean
--
[[exported-fields-kubernetes-processor]]
== Kubernetes fields
Kubernetes metadata added by the kubernetes processor
*`kubernetes.pod.name`*::
+
--
Kubernetes pod name
type: keyword
--
*`kubernetes.pod.uid`*::
+
--
Kubernetes Pod UID
type: keyword
--
*`kubernetes.pod.ip`*::
+
--
Kubernetes Pod IP
type: ip
--
*`kubernetes.namespace`*::
+
--
Kubernetes namespace
type: keyword
--
*`kubernetes.node.name`*::
+
--
Kubernetes node name
type: keyword
--
*`kubernetes.node.hostname`*::
+
--
Kubernetes hostname as reported by the nodes kernel
type: keyword
--
*`kubernetes.labels.*`*::
+
--
Kubernetes labels map
type: object
--
*`kubernetes.annotations.*`*::
+
--
Kubernetes annotations map
type: object
--
*`kubernetes.selectors.*`*::
+
--
Kubernetes selectors map
type: object
--
*`kubernetes.replicaset.name`*::
+
--
Kubernetes replicaset name
type: keyword
--
*`kubernetes.deployment.name`*::
+
--
Kubernetes deployment name
type: keyword
--
*`kubernetes.statefulset.name`*::
+
--
Kubernetes statefulset name
type: keyword
--
*`kubernetes.container.name`*::
+
--
Kubernetes container name (different than the name from the runtime)
type: keyword
--
*`kubernetes.container.image`*::
+
--
Kubernetes container image
type: alias
alias to: container.image.name
--
[[exported-fields-process]]
== Process fields
Process metadata fields
*`process.exe`*::
+
--
type: alias
alias to: process.executable
--