upstream commit
whitespace at EOL (lots) OpenBSD-Commit-ID: 757257dd44116794ee1b5a45c6724973de181747
This commit is contained in:
parent
b77c29a07f
commit
d213547434
106
umac.c
106
umac.c
|
@ -1,4 +1,4 @@
|
|||
/* $OpenBSD: umac.c,v 1.12 2017/05/31 08:09:45 markus Exp $ */
|
||||
/* $OpenBSD: umac.c,v 1.13 2017/10/27 01:01:17 djm Exp $ */
|
||||
/* -----------------------------------------------------------------------
|
||||
*
|
||||
* umac.c -- C Implementation UMAC Message Authentication
|
||||
|
@ -21,7 +21,7 @@
|
|||
* Comments should be directed to Ted Krovetz (tdk@acm.org)
|
||||
*
|
||||
* ---------------------------------------------------------------------- */
|
||||
|
||||
|
||||
/* ////////////////////// IMPORTANT NOTES /////////////////////////////////
|
||||
*
|
||||
* 1) This version does not work properly on messages larger than 16MB
|
||||
|
@ -47,7 +47,7 @@
|
|||
* produced under gcc with optimizations set -O3 or higher. Dunno why.
|
||||
*
|
||||
/////////////////////////////////////////////////////////////////////// */
|
||||
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
/* --- User Switches ---------------------------------------------------- */
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
@ -187,11 +187,11 @@ static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
|
|||
UINT8 out_buf[AES_BLOCK_LEN];
|
||||
UINT8 *dst_buf = (UINT8 *)bufp;
|
||||
int i;
|
||||
|
||||
|
||||
/* Setup the initial value */
|
||||
in_buf[AES_BLOCK_LEN-9] = ndx;
|
||||
in_buf[AES_BLOCK_LEN-1] = i = 1;
|
||||
|
||||
|
||||
while (nbytes >= AES_BLOCK_LEN) {
|
||||
aes_encryption(in_buf, out_buf, key);
|
||||
memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
|
||||
|
@ -222,10 +222,10 @@ typedef struct {
|
|||
static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
|
||||
{
|
||||
UINT8 buf[UMAC_KEY_LEN];
|
||||
|
||||
|
||||
kdf(buf, prf_key, 0, UMAC_KEY_LEN);
|
||||
aes_key_setup(buf, pc->prf_key);
|
||||
|
||||
|
||||
/* Initialize pdf and cache */
|
||||
memset(pc->nonce, 0, sizeof(pc->nonce));
|
||||
aes_encryption(pc->nonce, pc->cache, pc->prf_key);
|
||||
|
@ -238,7 +238,7 @@ static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
|
|||
* of the AES output. If last time around we returned the ndx-1st
|
||||
* element, then we may have the result in the cache already.
|
||||
*/
|
||||
|
||||
|
||||
#if (UMAC_OUTPUT_LEN == 4)
|
||||
#define LOW_BIT_MASK 3
|
||||
#elif (UMAC_OUTPUT_LEN == 8)
|
||||
|
@ -255,7 +255,7 @@ static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
|
|||
#endif
|
||||
*(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
|
||||
t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
|
||||
|
||||
|
||||
if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
|
||||
(((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
|
||||
{
|
||||
|
@ -263,7 +263,7 @@ static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
|
|||
((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
|
||||
aes_encryption(pc->nonce, pc->cache, pc->prf_key);
|
||||
}
|
||||
|
||||
|
||||
#if (UMAC_OUTPUT_LEN == 4)
|
||||
*((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
|
||||
#elif (UMAC_OUTPUT_LEN == 8)
|
||||
|
@ -302,7 +302,7 @@ static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
|
|||
* The routine nh_init() initializes the nh_ctx data structure and
|
||||
* must be called once, before any other PDF routine.
|
||||
*/
|
||||
|
||||
|
||||
/* The "nh_aux" routines do the actual NH hashing work. They
|
||||
* expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
|
||||
* produce output for all STREAMS NH iterations in one call,
|
||||
|
@ -340,7 +340,7 @@ static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
|
|||
const UINT32 *d = (const UINT32 *)dp;
|
||||
UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
|
||||
UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
|
||||
|
||||
|
||||
h = *((UINT64 *)hp);
|
||||
do {
|
||||
d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
|
||||
|
@ -353,7 +353,7 @@ static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
|
|||
h += MUL64((k1 + d1), (k5 + d5));
|
||||
h += MUL64((k2 + d2), (k6 + d6));
|
||||
h += MUL64((k3 + d3), (k7 + d7));
|
||||
|
||||
|
||||
d += 8;
|
||||
k += 8;
|
||||
} while (--c);
|
||||
|
@ -421,7 +421,7 @@ static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
|
|||
UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
|
||||
UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
|
||||
k8,k9,k10,k11,k12,k13,k14,k15;
|
||||
|
||||
|
||||
h1 = *((UINT64 *)hp);
|
||||
h2 = *((UINT64 *)hp + 1);
|
||||
h3 = *((UINT64 *)hp + 2);
|
||||
|
@ -434,26 +434,26 @@ static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
|
|||
d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
|
||||
k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
|
||||
k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
|
||||
|
||||
|
||||
h1 += MUL64((k0 + d0), (k4 + d4));
|
||||
h2 += MUL64((k4 + d0), (k8 + d4));
|
||||
h3 += MUL64((k8 + d0), (k12 + d4));
|
||||
|
||||
|
||||
h1 += MUL64((k1 + d1), (k5 + d5));
|
||||
h2 += MUL64((k5 + d1), (k9 + d5));
|
||||
h3 += MUL64((k9 + d1), (k13 + d5));
|
||||
|
||||
|
||||
h1 += MUL64((k2 + d2), (k6 + d6));
|
||||
h2 += MUL64((k6 + d2), (k10 + d6));
|
||||
h3 += MUL64((k10 + d2), (k14 + d6));
|
||||
|
||||
|
||||
h1 += MUL64((k3 + d3), (k7 + d7));
|
||||
h2 += MUL64((k7 + d3), (k11 + d7));
|
||||
h3 += MUL64((k11 + d3), (k15 + d7));
|
||||
|
||||
|
||||
k0 = k8; k1 = k9; k2 = k10; k3 = k11;
|
||||
k4 = k12; k5 = k13; k6 = k14; k7 = k15;
|
||||
|
||||
|
||||
d += 8;
|
||||
k += 8;
|
||||
} while (--c);
|
||||
|
@ -477,7 +477,7 @@ static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
|
|||
UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
|
||||
k8,k9,k10,k11,k12,k13,k14,k15,
|
||||
k16,k17,k18,k19;
|
||||
|
||||
|
||||
h1 = *((UINT64 *)hp);
|
||||
h2 = *((UINT64 *)hp + 1);
|
||||
h3 = *((UINT64 *)hp + 2);
|
||||
|
@ -492,31 +492,31 @@ static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
|
|||
k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
|
||||
k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
|
||||
k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
|
||||
|
||||
|
||||
h1 += MUL64((k0 + d0), (k4 + d4));
|
||||
h2 += MUL64((k4 + d0), (k8 + d4));
|
||||
h3 += MUL64((k8 + d0), (k12 + d4));
|
||||
h4 += MUL64((k12 + d0), (k16 + d4));
|
||||
|
||||
|
||||
h1 += MUL64((k1 + d1), (k5 + d5));
|
||||
h2 += MUL64((k5 + d1), (k9 + d5));
|
||||
h3 += MUL64((k9 + d1), (k13 + d5));
|
||||
h4 += MUL64((k13 + d1), (k17 + d5));
|
||||
|
||||
|
||||
h1 += MUL64((k2 + d2), (k6 + d6));
|
||||
h2 += MUL64((k6 + d2), (k10 + d6));
|
||||
h3 += MUL64((k10 + d2), (k14 + d6));
|
||||
h4 += MUL64((k14 + d2), (k18 + d6));
|
||||
|
||||
|
||||
h1 += MUL64((k3 + d3), (k7 + d7));
|
||||
h2 += MUL64((k7 + d3), (k11 + d7));
|
||||
h3 += MUL64((k11 + d3), (k15 + d7));
|
||||
h4 += MUL64((k15 + d3), (k19 + d7));
|
||||
|
||||
|
||||
k0 = k8; k1 = k9; k2 = k10; k3 = k11;
|
||||
k4 = k12; k5 = k13; k6 = k14; k7 = k15;
|
||||
k8 = k16; k9 = k17; k10 = k18; k11 = k19;
|
||||
|
||||
|
||||
d += 8;
|
||||
k += 8;
|
||||
} while (--c);
|
||||
|
@ -541,7 +541,7 @@ static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
|
|||
*/
|
||||
{
|
||||
UINT8 *key;
|
||||
|
||||
|
||||
key = hc->nh_key + hc->bytes_hashed;
|
||||
nh_aux(key, buf, hc->state, nbytes);
|
||||
}
|
||||
|
@ -613,7 +613,7 @@ static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
|
|||
/* even multiple of HASH_BUF_BYTES. */
|
||||
{
|
||||
UINT32 i,j;
|
||||
|
||||
|
||||
j = hc->next_data_empty;
|
||||
if ((j + nbytes) >= HASH_BUF_BYTES) {
|
||||
if (j) {
|
||||
|
@ -711,10 +711,10 @@ static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
|
|||
*/
|
||||
{
|
||||
UINT32 nbits;
|
||||
|
||||
|
||||
/* Initialize the hash state */
|
||||
nbits = (unpadded_len << 3);
|
||||
|
||||
|
||||
((UINT64 *)result)[0] = nbits;
|
||||
#if (UMAC_OUTPUT_LEN >= 8)
|
||||
((UINT64 *)result)[1] = nbits;
|
||||
|
@ -725,7 +725,7 @@ static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
|
|||
#if (UMAC_OUTPUT_LEN == 16)
|
||||
((UINT64 *)result)[3] = nbits;
|
||||
#endif
|
||||
|
||||
|
||||
nh_aux(hc->nh_key, buf, result, padded_len);
|
||||
}
|
||||
|
||||
|
@ -802,13 +802,13 @@ static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
|
|||
x_lo,
|
||||
x_hi;
|
||||
UINT64 X,T,res;
|
||||
|
||||
|
||||
X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
|
||||
x_lo = (UINT32)X;
|
||||
x_hi = (UINT32)(X >> 32);
|
||||
|
||||
|
||||
res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
|
||||
|
||||
|
||||
T = ((UINT64)x_lo << 32);
|
||||
res += T;
|
||||
if (res < T)
|
||||
|
@ -832,7 +832,7 @@ static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
|
|||
{
|
||||
int i;
|
||||
UINT64 *data=(UINT64*)data_in;
|
||||
|
||||
|
||||
for (i = 0; i < STREAMS; i++) {
|
||||
if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
|
||||
hc->poly_accum[i] = poly64(hc->poly_accum[i],
|
||||
|
@ -862,7 +862,7 @@ static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
|
|||
t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
|
||||
t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
|
||||
t = t + ipkp[3] * (UINT64)(UINT16)(data);
|
||||
|
||||
|
||||
return t;
|
||||
}
|
||||
|
||||
|
@ -870,7 +870,7 @@ static UINT32 ip_reduce_p36(UINT64 t)
|
|||
{
|
||||
/* Divisionless modular reduction */
|
||||
UINT64 ret;
|
||||
|
||||
|
||||
ret = (t & m36) + 5 * (t >> 36);
|
||||
if (ret >= p36)
|
||||
ret -= p36;
|
||||
|
@ -888,7 +888,7 @@ static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
|
|||
{
|
||||
UINT64 t;
|
||||
UINT64 *nhp = (UINT64 *)nh_res;
|
||||
|
||||
|
||||
t = ip_aux(0,ahc->ip_keys, nhp[0]);
|
||||
STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
|
||||
#if (UMAC_OUTPUT_LEN >= 8)
|
||||
|
@ -958,13 +958,13 @@ static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
|
|||
{
|
||||
int i;
|
||||
UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
|
||||
|
||||
|
||||
/* Zero the entire uhash context */
|
||||
memset(ahc, 0, sizeof(uhash_ctx));
|
||||
|
||||
/* Initialize the L1 hash */
|
||||
nh_init(&ahc->hash, prf_key);
|
||||
|
||||
|
||||
/* Setup L2 hash variables */
|
||||
kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */
|
||||
for (i = 0; i < STREAMS; i++) {
|
||||
|
@ -978,7 +978,7 @@ static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
|
|||
ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
|
||||
ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */
|
||||
}
|
||||
|
||||
|
||||
/* Setup L3-1 hash variables */
|
||||
kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
|
||||
for (i = 0; i < STREAMS; i++)
|
||||
|
@ -988,7 +988,7 @@ static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
|
|||
sizeof(ahc->ip_keys));
|
||||
for (i = 0; i < STREAMS*4; i++)
|
||||
ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */
|
||||
|
||||
|
||||
/* Setup L3-2 hash variables */
|
||||
/* Fill buffer with index 4 key */
|
||||
kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
|
||||
|
@ -1006,7 +1006,7 @@ static uhash_ctx_t uhash_alloc(u_char key[])
|
|||
uhash_ctx_t ctx;
|
||||
u_char bytes_to_add;
|
||||
aes_int_key prf_key;
|
||||
|
||||
|
||||
ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
|
||||
if (ctx) {
|
||||
if (ALLOC_BOUNDARY) {
|
||||
|
@ -1029,7 +1029,7 @@ static int uhash_free(uhash_ctx_t ctx)
|
|||
{
|
||||
/* Free memory allocated by uhash_alloc */
|
||||
u_char bytes_to_sub;
|
||||
|
||||
|
||||
if (ctx) {
|
||||
if (ALLOC_BOUNDARY) {
|
||||
bytes_to_sub = *((u_char *)ctx - 1);
|
||||
|
@ -1050,12 +1050,12 @@ static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
|
|||
UWORD bytes_hashed, bytes_remaining;
|
||||
UINT64 result_buf[STREAMS];
|
||||
UINT8 *nh_result = (UINT8 *)&result_buf;
|
||||
|
||||
|
||||
if (ctx->msg_len + len <= L1_KEY_LEN) {
|
||||
nh_update(&ctx->hash, (const UINT8 *)input, len);
|
||||
ctx->msg_len += len;
|
||||
} else {
|
||||
|
||||
|
||||
bytes_hashed = ctx->msg_len % L1_KEY_LEN;
|
||||
if (ctx->msg_len == L1_KEY_LEN)
|
||||
bytes_hashed = L1_KEY_LEN;
|
||||
|
@ -1128,7 +1128,7 @@ static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
|
|||
UINT8 nh_result[STREAMS*sizeof(UINT64)];
|
||||
UINT32 nh_len;
|
||||
int extra_zeroes_needed;
|
||||
|
||||
|
||||
/* If the message to be hashed is no longer than L1_HASH_LEN, we skip
|
||||
* the polyhash.
|
||||
*/
|
||||
|
@ -1161,7 +1161,7 @@ static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
|
|||
|
||||
ip_long(ahc, res);
|
||||
}
|
||||
|
||||
|
||||
uhash_reset(ahc);
|
||||
return 1;
|
||||
}
|
||||
|
@ -1220,7 +1220,7 @@ struct umac_ctx *umac_new(const u_char key[])
|
|||
struct umac_ctx *ctx, *octx;
|
||||
size_t bytes_to_add;
|
||||
aes_int_key prf_key;
|
||||
|
||||
|
||||
octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
|
||||
if (ctx) {
|
||||
if (ALLOC_BOUNDARY) {
|
||||
|
@ -1234,7 +1234,7 @@ struct umac_ctx *umac_new(const u_char key[])
|
|||
uhash_init(&ctx->hash, prf_key);
|
||||
explicit_bzero(prf_key, sizeof(prf_key));
|
||||
}
|
||||
|
||||
|
||||
return (ctx);
|
||||
}
|
||||
|
||||
|
@ -1245,7 +1245,7 @@ int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
|
|||
{
|
||||
uhash_final(&ctx->hash, (u_char *)tag);
|
||||
pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
|
||||
|
||||
|
||||
return (1);
|
||||
}
|
||||
|
||||
|
@ -1270,7 +1270,7 @@ int umac(struct umac_ctx *ctx, u_char *input,
|
|||
{
|
||||
uhash(&ctx->hash, input, len, (u_char *)tag);
|
||||
pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
|
||||
|
||||
|
||||
return (1);
|
||||
}
|
||||
#endif
|
||||
|
|
Loading…
Reference in New Issue