Now that we no longer support SSHv1, replace the contents
of this file with a pointer to
https://tools.ietf.org/html/draft-miller-ssh-agent-00 It's better edited,
doesn't need to document stuff we no longer implement and does document stuff
that we do implement (RSA SHA256/512 signature flags)
Upstream-ID: da8cdc46bbcc266efabd565ddddd0d8e556f846e
[PROTOCOL PROTOCOL.agent PROTOCOL.certkeys auth2-jpake.c authfd.c]
[authfile.c buffer.h dns.c kex.c kex.h key.c key.h monitor.c]
[monitor_wrap.c myproposal.h packet.c packet.h pathnames.h readconf.c]
[ssh-add.1 ssh-add.c ssh-agent.1 ssh-agent.c ssh-keygen.1 ssh-keygen.c]
[ssh-keyscan.1 ssh-keyscan.c ssh-keysign.8 ssh.1 ssh.c ssh2.h]
[ssh_config.5 sshconnect.c sshconnect2.c sshd.8 sshd.c sshd_config.5]
[uuencode.c uuencode.h bufec.c kexecdh.c kexecdhc.c kexecdhs.c ssh-ecdsa.c]
Implement Elliptic Curve Cryptography modes for key exchange (ECDH) and
host/user keys (ECDSA) as specified by RFC5656. ECDH and ECDSA offer
better performance than plain DH and DSA at the same equivalent symmetric
key length, as well as much shorter keys.
Only the mandatory sections of RFC5656 are implemented, specifically the
three REQUIRED curves nistp256, nistp384 and nistp521 and only ECDH and
ECDSA. Point compression (optional in RFC5656 is NOT implemented).
Certificate host and user keys using the new ECDSA key types are supported.
Note that this code has not been tested for interoperability and may be
subject to change.
feedback and ok markus@
- djm@cvs.openbsd.org 2010/02/26 20:29:54
[PROTOCOL PROTOCOL.agent PROTOCOL.certkeys addrmatch.c auth-options.c]
[auth-options.h auth.h auth2-pubkey.c authfd.c dns.c dns.h hostfile.c]
[hostfile.h kex.h kexdhs.c kexgexs.c key.c key.h match.h monitor.c]
[myproposal.h servconf.c servconf.h ssh-add.c ssh-agent.c ssh-dss.c]
[ssh-keygen.1 ssh-keygen.c ssh-rsa.c ssh.1 ssh.c ssh2.h sshconnect.c]
[sshconnect2.c sshd.8 sshd.c sshd_config.5]
Add support for certificate key types for users and hosts.
OpenSSH certificate key types are not X.509 certificates, but a much
simpler format that encodes a public key, identity information and
some validity constraints and signs it with a CA key. CA keys are
regular SSH keys. This certificate style avoids the attack surface
of X.509 certificates and is very easy to deploy.
Certified host keys allow automatic acceptance of new host keys
when a CA certificate is marked as sh/known_hosts.
see VERIFYING HOST KEYS in ssh(1) for details.
Certified user keys allow authentication of users when the signing
CA key is marked as trusted in authorized_keys. See "AUTHORIZED_KEYS
FILE FORMAT" in sshd(8) for details.
Certificates are minted using ssh-keygen(1), documentation is in
the "CERTIFICATES" section of that manpage.
Documentation on the format of certificates is in the file
PROTOCOL.certkeys
feedback and ok markus@