mirror of
				https://github.com/PowerShell/openssh-portable.git
				synced 2025-10-31 03:24:37 +01:00 
			
		
		
		
	UMAC_OUTPUT_LEN Coverity CID 291845; ok dtucker@ OpenBSD-Commit-ID: 2eb017d10705bb623d4418691f961c930eafaec0
		
			
				
	
	
		
			1284 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1284 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* $OpenBSD: umac.c,v 1.23 2023/03/07 01:30:52 djm Exp $ */
 | |
| /* -----------------------------------------------------------------------
 | |
|  *
 | |
|  * umac.c -- C Implementation UMAC Message Authentication
 | |
|  *
 | |
|  * Version 0.93b of rfc4418.txt -- 2006 July 18
 | |
|  *
 | |
|  * For a full description of UMAC message authentication see the UMAC
 | |
|  * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
 | |
|  * Please report bugs and suggestions to the UMAC webpage.
 | |
|  *
 | |
|  * Copyright (c) 1999-2006 Ted Krovetz
 | |
|  *
 | |
|  * Permission to use, copy, modify, and distribute this software and
 | |
|  * its documentation for any purpose and with or without fee, is hereby
 | |
|  * granted provided that the above copyright notice appears in all copies
 | |
|  * and in supporting documentation, and that the name of the copyright
 | |
|  * holder not be used in advertising or publicity pertaining to
 | |
|  * distribution of the software without specific, written prior permission.
 | |
|  *
 | |
|  * Comments should be directed to Ted Krovetz (tdk@acm.org)
 | |
|  *
 | |
|  * ---------------------------------------------------------------------- */
 | |
| 
 | |
|  /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
 | |
|   *
 | |
|   * 1) This version does not work properly on messages larger than 16MB
 | |
|   *
 | |
|   * 2) If you set the switch to use SSE2, then all data must be 16-byte
 | |
|   *    aligned
 | |
|   *
 | |
|   * 3) When calling the function umac(), it is assumed that msg is in
 | |
|   * a writable buffer of length divisible by 32 bytes. The message itself
 | |
|   * does not have to fill the entire buffer, but bytes beyond msg may be
 | |
|   * zeroed.
 | |
|   *
 | |
|   * 4) Three free AES implementations are supported by this implementation of
 | |
|   * UMAC. Paulo Barreto's version is in the public domain and can be found
 | |
|   * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
 | |
|   * "Barreto"). The only two files needed are rijndael-alg-fst.c and
 | |
|   * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
 | |
|   * Public license at http://fp.gladman.plus.com/AES/index.htm. It
 | |
|   * includes a fast IA-32 assembly version. The OpenSSL crypo library is
 | |
|   * the third.
 | |
|   *
 | |
|   * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
 | |
|   * produced under gcc with optimizations set -O3 or higher. Dunno why.
 | |
|   *
 | |
|   /////////////////////////////////////////////////////////////////////// */
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* --- User Switches ---------------------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| #ifndef UMAC_OUTPUT_LEN
 | |
| #define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
 | |
| #endif
 | |
| 
 | |
| #if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \
 | |
|     UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16
 | |
| # error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16
 | |
| #endif
 | |
| 
 | |
| /* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
 | |
| /* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
 | |
| /* #define SSE2                0  Is SSE2 is available?                   */
 | |
| /* #define RUN_TESTS           0  Run basic correctness/speed tests       */
 | |
| /* #define UMAC_AE_SUPPORT     0  Enable authenticated encryption         */
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* -- Global Includes --------------------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| #include "includes.h"
 | |
| #include <sys/types.h>
 | |
| #include <string.h>
 | |
| #include <stdarg.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <stddef.h>
 | |
| 
 | |
| #include "xmalloc.h"
 | |
| #include "umac.h"
 | |
| #include "misc.h"
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* --- Primitive Data Types ---                                           */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| /* The following assumptions may need change on your system */
 | |
| typedef u_int8_t	UINT8;  /* 1 byte   */
 | |
| typedef u_int16_t	UINT16; /* 2 byte   */
 | |
| typedef u_int32_t	UINT32; /* 4 byte   */
 | |
| typedef u_int64_t	UINT64; /* 8 bytes  */
 | |
| typedef unsigned int	UWORD;  /* Register */
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* --- Constants -------------------------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| #define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */
 | |
| 
 | |
| /* Message "words" are read from memory in an endian-specific manner.     */
 | |
| /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
 | |
| /* be set true if the host computer is little-endian.                     */
 | |
| 
 | |
| #if BYTE_ORDER == LITTLE_ENDIAN
 | |
| #define __LITTLE_ENDIAN__ 1
 | |
| #else
 | |
| #define __LITTLE_ENDIAN__ 0
 | |
| #endif
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ----- Architecture Specific ------------------------------------------ */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ----- Primitive Routines --------------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* --- Endian Conversion --- Forcing assembly on some platforms           */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| #if (__LITTLE_ENDIAN__)
 | |
| #define LOAD_UINT32_REVERSED(p)		get_u32(p)
 | |
| #define STORE_UINT32_REVERSED(p,v)	put_u32(p,v)
 | |
| #else
 | |
| #define LOAD_UINT32_REVERSED(p)		get_u32_le(p)
 | |
| #define STORE_UINT32_REVERSED(p,v)	put_u32_le(p,v)
 | |
| #endif
 | |
| 
 | |
| #define LOAD_UINT32_LITTLE(p)		(get_u32_le(p))
 | |
| #define STORE_UINT32_BIG(p,v)		put_u32(p, v)
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ----- Begin KDF & PDF Section ---------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| /* UMAC uses AES with 16 byte block and key lengths */
 | |
| #define AES_BLOCK_LEN  16
 | |
| 
 | |
| /* OpenSSL's AES */
 | |
| #ifdef WITH_OPENSSL
 | |
| #include "openbsd-compat/openssl-compat.h"
 | |
| #ifndef USE_BUILTIN_RIJNDAEL
 | |
| # include <openssl/aes.h>
 | |
| #endif
 | |
| typedef AES_KEY aes_int_key[1];
 | |
| #define aes_encryption(in,out,int_key)                  \
 | |
|   AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
 | |
| #define aes_key_setup(key,int_key)                      \
 | |
|   AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
 | |
| #else
 | |
| #include "rijndael.h"
 | |
| #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
 | |
| typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4];	/* AES internal */
 | |
| #define aes_encryption(in,out,int_key) \
 | |
|   rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
 | |
| #define aes_key_setup(key,int_key) \
 | |
|   rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
 | |
|   UMAC_KEY_LEN*8)
 | |
| #endif
 | |
| 
 | |
| /* The user-supplied UMAC key is stretched using AES in a counter
 | |
|  * mode to supply all random bits needed by UMAC. The kdf function takes
 | |
|  * an AES internal key representation 'key' and writes a stream of
 | |
|  * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct
 | |
|  * 'ndx' causes a distinct byte stream.
 | |
|  */
 | |
| static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
 | |
| {
 | |
|     UINT8 in_buf[AES_BLOCK_LEN] = {0};
 | |
|     UINT8 out_buf[AES_BLOCK_LEN];
 | |
|     UINT8 *dst_buf = (UINT8 *)bufp;
 | |
|     int i;
 | |
| 
 | |
|     /* Setup the initial value */
 | |
|     in_buf[AES_BLOCK_LEN-9] = ndx;
 | |
|     in_buf[AES_BLOCK_LEN-1] = i = 1;
 | |
| 
 | |
|     while (nbytes >= AES_BLOCK_LEN) {
 | |
|         aes_encryption(in_buf, out_buf, key);
 | |
|         memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
 | |
|         in_buf[AES_BLOCK_LEN-1] = ++i;
 | |
|         nbytes -= AES_BLOCK_LEN;
 | |
|         dst_buf += AES_BLOCK_LEN;
 | |
|     }
 | |
|     if (nbytes) {
 | |
|         aes_encryption(in_buf, out_buf, key);
 | |
|         memcpy(dst_buf,out_buf,nbytes);
 | |
|     }
 | |
|     explicit_bzero(in_buf, sizeof(in_buf));
 | |
|     explicit_bzero(out_buf, sizeof(out_buf));
 | |
| }
 | |
| 
 | |
| /* The final UHASH result is XOR'd with the output of a pseudorandom
 | |
|  * function. Here, we use AES to generate random output and
 | |
|  * xor the appropriate bytes depending on the last bits of nonce.
 | |
|  * This scheme is optimized for sequential, increasing big-endian nonces.
 | |
|  */
 | |
| 
 | |
| typedef struct {
 | |
|     UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
 | |
|     UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
 | |
|     aes_int_key prf_key;         /* Expanded AES key for PDF          */
 | |
| } pdf_ctx;
 | |
| 
 | |
| static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
 | |
| {
 | |
|     UINT8 buf[UMAC_KEY_LEN];
 | |
| 
 | |
|     kdf(buf, prf_key, 0, UMAC_KEY_LEN);
 | |
|     aes_key_setup(buf, pc->prf_key);
 | |
| 
 | |
|     /* Initialize pdf and cache */
 | |
|     memset(pc->nonce, 0, sizeof(pc->nonce));
 | |
|     aes_encryption(pc->nonce, pc->cache, pc->prf_key);
 | |
|     explicit_bzero(buf, sizeof(buf));
 | |
| }
 | |
| 
 | |
| static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8],
 | |
|     UINT8 buf[UMAC_OUTPUT_LEN])
 | |
| {
 | |
|     /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
 | |
|      * of the AES output. If last time around we returned the ndx-1st
 | |
|      * element, then we may have the result in the cache already.
 | |
|      */
 | |
| 
 | |
| #if (UMAC_OUTPUT_LEN == 4)
 | |
| #define LOW_BIT_MASK 3
 | |
| #elif (UMAC_OUTPUT_LEN == 8)
 | |
| #define LOW_BIT_MASK 1
 | |
| #elif (UMAC_OUTPUT_LEN > 8)
 | |
| #define LOW_BIT_MASK 0
 | |
| #endif
 | |
|     union {
 | |
|         UINT8 tmp_nonce_lo[4];
 | |
|         UINT32 align;
 | |
|     } t;
 | |
| #if LOW_BIT_MASK != 0
 | |
|     int ndx = nonce[7] & LOW_BIT_MASK;
 | |
| #endif
 | |
|     *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
 | |
|     t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
 | |
| 
 | |
|     if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
 | |
|          (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
 | |
|     {
 | |
|         ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
 | |
|         ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
 | |
|         aes_encryption(pc->nonce, pc->cache, pc->prf_key);
 | |
|     }
 | |
| 
 | |
| #if (UMAC_OUTPUT_LEN == 4)
 | |
|     *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
 | |
| #elif (UMAC_OUTPUT_LEN == 8)
 | |
|     *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
 | |
| #elif (UMAC_OUTPUT_LEN == 12)
 | |
|     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
 | |
|     ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
 | |
| #elif (UMAC_OUTPUT_LEN == 16)
 | |
|     ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
 | |
|     ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ----- Begin NH Hash Section ------------------------------------------ */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| /* The NH-based hash functions used in UMAC are described in the UMAC paper
 | |
|  * and specification, both of which can be found at the UMAC website.
 | |
|  * The interface to this implementation has two
 | |
|  * versions, one expects the entire message being hashed to be passed
 | |
|  * in a single buffer and returns the hash result immediately. The second
 | |
|  * allows the message to be passed in a sequence of buffers. In the
 | |
|  * multiple-buffer interface, the client calls the routine nh_update() as
 | |
|  * many times as necessary. When there is no more data to be fed to the
 | |
|  * hash, the client calls nh_final() which calculates the hash output.
 | |
|  * Before beginning another hash calculation the nh_reset() routine
 | |
|  * must be called. The single-buffer routine, nh(), is equivalent to
 | |
|  * the sequence of calls nh_update() and nh_final(); however it is
 | |
|  * optimized and should be preferred whenever the multiple-buffer interface
 | |
|  * is not necessary. When using either interface, it is the client's
 | |
|  * responsibility to pass no more than L1_KEY_LEN bytes per hash result.
 | |
|  *
 | |
|  * The routine nh_init() initializes the nh_ctx data structure and
 | |
|  * must be called once, before any other PDF routine.
 | |
|  */
 | |
| 
 | |
|  /* The "nh_aux" routines do the actual NH hashing work. They
 | |
|   * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
 | |
|   * produce output for all STREAMS NH iterations in one call,
 | |
|   * allowing the parallel implementation of the streams.
 | |
|   */
 | |
| 
 | |
| #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
 | |
| #define L1_KEY_LEN         1024     /* Internal key bytes                 */
 | |
| #define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
 | |
| #define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
 | |
| #define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
 | |
| #define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */
 | |
| 
 | |
| typedef struct {
 | |
|     UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
 | |
|     UINT8  data   [HASH_BUF_BYTES];    /* Incoming data buffer           */
 | |
|     int next_data_empty;    /* Bookkeeping variable for data buffer.     */
 | |
|     int bytes_hashed;       /* Bytes (out of L1_KEY_LEN) incorporated.   */
 | |
|     UINT64 state[STREAMS];               /* on-line state     */
 | |
| } nh_ctx;
 | |
| 
 | |
| 
 | |
| #if (UMAC_OUTPUT_LEN == 4)
 | |
| 
 | |
| static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
 | |
| /* NH hashing primitive. Previous (partial) hash result is loaded and
 | |
| * then stored via hp pointer. The length of the data pointed at by "dp",
 | |
| * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
 | |
| * is expected to be endian compensated in memory at key setup.
 | |
| */
 | |
| {
 | |
|     UINT64 h;
 | |
|     UWORD c = dlen / 32;
 | |
|     UINT32 *k = (UINT32 *)kp;
 | |
|     const UINT32 *d = (const UINT32 *)dp;
 | |
|     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
 | |
|     UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
 | |
| 
 | |
|     h = *((UINT64 *)hp);
 | |
|     do {
 | |
|         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
 | |
|         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
 | |
|         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
 | |
|         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
 | |
|         k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
 | |
|         k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
 | |
|         h += MUL64((k0 + d0), (k4 + d4));
 | |
|         h += MUL64((k1 + d1), (k5 + d5));
 | |
|         h += MUL64((k2 + d2), (k6 + d6));
 | |
|         h += MUL64((k3 + d3), (k7 + d7));
 | |
| 
 | |
|         d += 8;
 | |
|         k += 8;
 | |
|     } while (--c);
 | |
|   *((UINT64 *)hp) = h;
 | |
| }
 | |
| 
 | |
| #elif (UMAC_OUTPUT_LEN == 8)
 | |
| 
 | |
| static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
 | |
| /* Same as previous nh_aux, but two streams are handled in one pass,
 | |
|  * reading and writing 16 bytes of hash-state per call.
 | |
|  */
 | |
| {
 | |
|   UINT64 h1,h2;
 | |
|   UWORD c = dlen / 32;
 | |
|   UINT32 *k = (UINT32 *)kp;
 | |
|   const UINT32 *d = (const UINT32 *)dp;
 | |
|   UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
 | |
|   UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
 | |
|         k8,k9,k10,k11;
 | |
| 
 | |
|   h1 = *((UINT64 *)hp);
 | |
|   h2 = *((UINT64 *)hp + 1);
 | |
|   k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
 | |
|   do {
 | |
|     d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
 | |
|     d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
 | |
|     d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
 | |
|     d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
 | |
|     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
 | |
|     k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
 | |
| 
 | |
|     h1 += MUL64((k0 + d0), (k4 + d4));
 | |
|     h2 += MUL64((k4 + d0), (k8 + d4));
 | |
| 
 | |
|     h1 += MUL64((k1 + d1), (k5 + d5));
 | |
|     h2 += MUL64((k5 + d1), (k9 + d5));
 | |
| 
 | |
|     h1 += MUL64((k2 + d2), (k6 + d6));
 | |
|     h2 += MUL64((k6 + d2), (k10 + d6));
 | |
| 
 | |
|     h1 += MUL64((k3 + d3), (k7 + d7));
 | |
|     h2 += MUL64((k7 + d3), (k11 + d7));
 | |
| 
 | |
|     k0 = k8; k1 = k9; k2 = k10; k3 = k11;
 | |
| 
 | |
|     d += 8;
 | |
|     k += 8;
 | |
|   } while (--c);
 | |
|   ((UINT64 *)hp)[0] = h1;
 | |
|   ((UINT64 *)hp)[1] = h2;
 | |
| }
 | |
| 
 | |
| #elif (UMAC_OUTPUT_LEN == 12)
 | |
| 
 | |
| static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
 | |
| /* Same as previous nh_aux, but two streams are handled in one pass,
 | |
|  * reading and writing 24 bytes of hash-state per call.
 | |
| */
 | |
| {
 | |
|     UINT64 h1,h2,h3;
 | |
|     UWORD c = dlen / 32;
 | |
|     UINT32 *k = (UINT32 *)kp;
 | |
|     const UINT32 *d = (const UINT32 *)dp;
 | |
|     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
 | |
|     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
 | |
|         k8,k9,k10,k11,k12,k13,k14,k15;
 | |
| 
 | |
|     h1 = *((UINT64 *)hp);
 | |
|     h2 = *((UINT64 *)hp + 1);
 | |
|     h3 = *((UINT64 *)hp + 2);
 | |
|     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
 | |
|     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
 | |
|     do {
 | |
|         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
 | |
|         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
 | |
|         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
 | |
|         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
 | |
|         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
 | |
|         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
 | |
| 
 | |
|         h1 += MUL64((k0 + d0), (k4 + d4));
 | |
|         h2 += MUL64((k4 + d0), (k8 + d4));
 | |
|         h3 += MUL64((k8 + d0), (k12 + d4));
 | |
| 
 | |
|         h1 += MUL64((k1 + d1), (k5 + d5));
 | |
|         h2 += MUL64((k5 + d1), (k9 + d5));
 | |
|         h3 += MUL64((k9 + d1), (k13 + d5));
 | |
| 
 | |
|         h1 += MUL64((k2 + d2), (k6 + d6));
 | |
|         h2 += MUL64((k6 + d2), (k10 + d6));
 | |
|         h3 += MUL64((k10 + d2), (k14 + d6));
 | |
| 
 | |
|         h1 += MUL64((k3 + d3), (k7 + d7));
 | |
|         h2 += MUL64((k7 + d3), (k11 + d7));
 | |
|         h3 += MUL64((k11 + d3), (k15 + d7));
 | |
| 
 | |
|         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
 | |
|         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
 | |
| 
 | |
|         d += 8;
 | |
|         k += 8;
 | |
|     } while (--c);
 | |
|     ((UINT64 *)hp)[0] = h1;
 | |
|     ((UINT64 *)hp)[1] = h2;
 | |
|     ((UINT64 *)hp)[2] = h3;
 | |
| }
 | |
| 
 | |
| #elif (UMAC_OUTPUT_LEN == 16)
 | |
| 
 | |
| static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
 | |
| /* Same as previous nh_aux, but two streams are handled in one pass,
 | |
|  * reading and writing 24 bytes of hash-state per call.
 | |
| */
 | |
| {
 | |
|     UINT64 h1,h2,h3,h4;
 | |
|     UWORD c = dlen / 32;
 | |
|     UINT32 *k = (UINT32 *)kp;
 | |
|     const UINT32 *d = (const UINT32 *)dp;
 | |
|     UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
 | |
|     UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
 | |
|         k8,k9,k10,k11,k12,k13,k14,k15,
 | |
|         k16,k17,k18,k19;
 | |
| 
 | |
|     h1 = *((UINT64 *)hp);
 | |
|     h2 = *((UINT64 *)hp + 1);
 | |
|     h3 = *((UINT64 *)hp + 2);
 | |
|     h4 = *((UINT64 *)hp + 3);
 | |
|     k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
 | |
|     k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
 | |
|     do {
 | |
|         d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
 | |
|         d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
 | |
|         d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
 | |
|         d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
 | |
|         k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
 | |
|         k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
 | |
|         k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
 | |
| 
 | |
|         h1 += MUL64((k0 + d0), (k4 + d4));
 | |
|         h2 += MUL64((k4 + d0), (k8 + d4));
 | |
|         h3 += MUL64((k8 + d0), (k12 + d4));
 | |
|         h4 += MUL64((k12 + d0), (k16 + d4));
 | |
| 
 | |
|         h1 += MUL64((k1 + d1), (k5 + d5));
 | |
|         h2 += MUL64((k5 + d1), (k9 + d5));
 | |
|         h3 += MUL64((k9 + d1), (k13 + d5));
 | |
|         h4 += MUL64((k13 + d1), (k17 + d5));
 | |
| 
 | |
|         h1 += MUL64((k2 + d2), (k6 + d6));
 | |
|         h2 += MUL64((k6 + d2), (k10 + d6));
 | |
|         h3 += MUL64((k10 + d2), (k14 + d6));
 | |
|         h4 += MUL64((k14 + d2), (k18 + d6));
 | |
| 
 | |
|         h1 += MUL64((k3 + d3), (k7 + d7));
 | |
|         h2 += MUL64((k7 + d3), (k11 + d7));
 | |
|         h3 += MUL64((k11 + d3), (k15 + d7));
 | |
|         h4 += MUL64((k15 + d3), (k19 + d7));
 | |
| 
 | |
|         k0 = k8; k1 = k9; k2 = k10; k3 = k11;
 | |
|         k4 = k12; k5 = k13; k6 = k14; k7 = k15;
 | |
|         k8 = k16; k9 = k17; k10 = k18; k11 = k19;
 | |
| 
 | |
|         d += 8;
 | |
|         k += 8;
 | |
|     } while (--c);
 | |
|     ((UINT64 *)hp)[0] = h1;
 | |
|     ((UINT64 *)hp)[1] = h2;
 | |
|     ((UINT64 *)hp)[2] = h3;
 | |
|     ((UINT64 *)hp)[3] = h4;
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| #endif  /* UMAC_OUTPUT_LENGTH */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
 | |
| /* This function is a wrapper for the primitive NH hash functions. It takes
 | |
|  * as argument "hc" the current hash context and a buffer which must be a
 | |
|  * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
 | |
|  * appropriately according to how much message has been hashed already.
 | |
|  */
 | |
| {
 | |
|     UINT8 *key;
 | |
| 
 | |
|     key = hc->nh_key + hc->bytes_hashed;
 | |
|     nh_aux(key, buf, hc->state, nbytes);
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| #if (__LITTLE_ENDIAN__)
 | |
| static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
 | |
| /* We endian convert the keys on little-endian computers to               */
 | |
| /* compensate for the lack of big-endian memory reads during hashing.     */
 | |
| {
 | |
|     UWORD iters = num_bytes / bpw;
 | |
|     if (bpw == 4) {
 | |
|         UINT32 *p = (UINT32 *)buf;
 | |
|         do {
 | |
|             *p = LOAD_UINT32_REVERSED(p);
 | |
|             p++;
 | |
|         } while (--iters);
 | |
|     } else if (bpw == 8) {
 | |
|         UINT32 *p = (UINT32 *)buf;
 | |
|         UINT32 t;
 | |
|         do {
 | |
|             t = LOAD_UINT32_REVERSED(p+1);
 | |
|             p[1] = LOAD_UINT32_REVERSED(p);
 | |
|             p[0] = t;
 | |
|             p += 2;
 | |
|         } while (--iters);
 | |
|     }
 | |
| }
 | |
| #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
 | |
| #else
 | |
| #define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
 | |
| #endif
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| static void nh_reset(nh_ctx *hc)
 | |
| /* Reset nh_ctx to ready for hashing of new data */
 | |
| {
 | |
|     hc->bytes_hashed = 0;
 | |
|     hc->next_data_empty = 0;
 | |
|     hc->state[0] = 0;
 | |
| #if (UMAC_OUTPUT_LEN >= 8)
 | |
|     hc->state[1] = 0;
 | |
| #endif
 | |
| #if (UMAC_OUTPUT_LEN >= 12)
 | |
|     hc->state[2] = 0;
 | |
| #endif
 | |
| #if (UMAC_OUTPUT_LEN == 16)
 | |
|     hc->state[3] = 0;
 | |
| #endif
 | |
| 
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| static void nh_init(nh_ctx *hc, aes_int_key prf_key)
 | |
| /* Generate nh_key, endian convert and reset to be ready for hashing.   */
 | |
| {
 | |
|     kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
 | |
|     endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
 | |
|     nh_reset(hc);
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
 | |
| /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
 | |
| /* even multiple of HASH_BUF_BYTES.                                       */
 | |
| {
 | |
|     UINT32 i,j;
 | |
| 
 | |
|     j = hc->next_data_empty;
 | |
|     if ((j + nbytes) >= HASH_BUF_BYTES) {
 | |
|         if (j) {
 | |
|             i = HASH_BUF_BYTES - j;
 | |
|             memcpy(hc->data+j, buf, i);
 | |
|             nh_transform(hc,hc->data,HASH_BUF_BYTES);
 | |
|             nbytes -= i;
 | |
|             buf += i;
 | |
|             hc->bytes_hashed += HASH_BUF_BYTES;
 | |
|         }
 | |
|         if (nbytes >= HASH_BUF_BYTES) {
 | |
|             i = nbytes & ~(HASH_BUF_BYTES - 1);
 | |
|             nh_transform(hc, buf, i);
 | |
|             nbytes -= i;
 | |
|             buf += i;
 | |
|             hc->bytes_hashed += i;
 | |
|         }
 | |
|         j = 0;
 | |
|     }
 | |
|     memcpy(hc->data + j, buf, nbytes);
 | |
|     hc->next_data_empty = j + nbytes;
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| static void zero_pad(UINT8 *p, int nbytes)
 | |
| {
 | |
| /* Write "nbytes" of zeroes, beginning at "p" */
 | |
|     if (nbytes >= (int)sizeof(UWORD)) {
 | |
|         while ((ptrdiff_t)p % sizeof(UWORD)) {
 | |
|             *p = 0;
 | |
|             nbytes--;
 | |
|             p++;
 | |
|         }
 | |
|         while (nbytes >= (int)sizeof(UWORD)) {
 | |
|             *(UWORD *)p = 0;
 | |
|             nbytes -= sizeof(UWORD);
 | |
|             p += sizeof(UWORD);
 | |
|         }
 | |
|     }
 | |
|     while (nbytes) {
 | |
|         *p = 0;
 | |
|         nbytes--;
 | |
|         p++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| static void nh_final(nh_ctx *hc, UINT8 *result)
 | |
| /* After passing some number of data buffers to nh_update() for integration
 | |
|  * into an NH context, nh_final is called to produce a hash result. If any
 | |
|  * bytes are in the buffer hc->data, incorporate them into the
 | |
|  * NH context. Finally, add into the NH accumulation "state" the total number
 | |
|  * of bits hashed. The resulting numbers are written to the buffer "result".
 | |
|  * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
 | |
|  */
 | |
| {
 | |
|     int nh_len, nbits;
 | |
| 
 | |
|     if (hc->next_data_empty != 0) {
 | |
|         nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
 | |
|                                                 ~(L1_PAD_BOUNDARY - 1));
 | |
|         zero_pad(hc->data + hc->next_data_empty,
 | |
|                                           nh_len - hc->next_data_empty);
 | |
|         nh_transform(hc, hc->data, nh_len);
 | |
|         hc->bytes_hashed += hc->next_data_empty;
 | |
|     } else if (hc->bytes_hashed == 0) {
 | |
| 	nh_len = L1_PAD_BOUNDARY;
 | |
|         zero_pad(hc->data, L1_PAD_BOUNDARY);
 | |
|         nh_transform(hc, hc->data, nh_len);
 | |
|     }
 | |
| 
 | |
|     nbits = (hc->bytes_hashed << 3);
 | |
|     ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
 | |
| #if (UMAC_OUTPUT_LEN >= 8)
 | |
|     ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
 | |
| #endif
 | |
| #if (UMAC_OUTPUT_LEN >= 12)
 | |
|     ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
 | |
| #endif
 | |
| #if (UMAC_OUTPUT_LEN == 16)
 | |
|     ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
 | |
| #endif
 | |
|     nh_reset(hc);
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
 | |
|                UINT32 unpadded_len, UINT8 *result)
 | |
| /* All-in-one nh_update() and nh_final() equivalent.
 | |
|  * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
 | |
|  * well aligned
 | |
|  */
 | |
| {
 | |
|     UINT32 nbits;
 | |
| 
 | |
|     /* Initialize the hash state */
 | |
|     nbits = (unpadded_len << 3);
 | |
| 
 | |
|     ((UINT64 *)result)[0] = nbits;
 | |
| #if (UMAC_OUTPUT_LEN >= 8)
 | |
|     ((UINT64 *)result)[1] = nbits;
 | |
| #endif
 | |
| #if (UMAC_OUTPUT_LEN >= 12)
 | |
|     ((UINT64 *)result)[2] = nbits;
 | |
| #endif
 | |
| #if (UMAC_OUTPUT_LEN == 16)
 | |
|     ((UINT64 *)result)[3] = nbits;
 | |
| #endif
 | |
| 
 | |
|     nh_aux(hc->nh_key, buf, result, padded_len);
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ----- Begin UHASH Section -------------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
 | |
|  * hashed by NH. The NH output is then hashed by a polynomial-hash layer
 | |
|  * unless the initial data to be hashed is short. After the polynomial-
 | |
|  * layer, an inner-product hash is used to produce the final UHASH output.
 | |
|  *
 | |
|  * UHASH provides two interfaces, one all-at-once and another where data
 | |
|  * buffers are presented sequentially. In the sequential interface, the
 | |
|  * UHASH client calls the routine uhash_update() as many times as necessary.
 | |
|  * When there is no more data to be fed to UHASH, the client calls
 | |
|  * uhash_final() which
 | |
|  * calculates the UHASH output. Before beginning another UHASH calculation
 | |
|  * the uhash_reset() routine must be called. The all-at-once UHASH routine,
 | |
|  * uhash(), is equivalent to the sequence of calls uhash_update() and
 | |
|  * uhash_final(); however it is optimized and should be
 | |
|  * used whenever the sequential interface is not necessary.
 | |
|  *
 | |
|  * The routine uhash_init() initializes the uhash_ctx data structure and
 | |
|  * must be called once, before any other UHASH routine.
 | |
|  */
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ----- Constants and uhash_ctx ---------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ----- Poly hash and Inner-Product hash Constants --------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| /* Primes and masks */
 | |
| #define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
 | |
| #define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
 | |
| #define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */
 | |
| 
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| typedef struct uhash_ctx {
 | |
|     nh_ctx hash;                          /* Hash context for L1 NH hash  */
 | |
|     UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
 | |
|     UINT64 poly_accum[STREAMS];           /* poly hash result             */
 | |
|     UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
 | |
|     UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
 | |
|     UINT32 msg_len;                       /* Total length of data passed  */
 | |
|                                           /* to uhash */
 | |
| } uhash_ctx;
 | |
| typedef struct uhash_ctx *uhash_ctx_t;
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| 
 | |
| /* The polynomial hashes use Horner's rule to evaluate a polynomial one
 | |
|  * word at a time. As described in the specification, poly32 and poly64
 | |
|  * require keys from special domains. The following implementations exploit
 | |
|  * the special domains to avoid overflow. The results are not guaranteed to
 | |
|  * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
 | |
|  * patches any errant values.
 | |
|  */
 | |
| 
 | |
| static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
 | |
| {
 | |
|     UINT32 key_hi = (UINT32)(key >> 32),
 | |
|            key_lo = (UINT32)key,
 | |
|            cur_hi = (UINT32)(cur >> 32),
 | |
|            cur_lo = (UINT32)cur,
 | |
|            x_lo,
 | |
|            x_hi;
 | |
|     UINT64 X,T,res;
 | |
| 
 | |
|     X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
 | |
|     x_lo = (UINT32)X;
 | |
|     x_hi = (UINT32)(X >> 32);
 | |
| 
 | |
|     res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
 | |
| 
 | |
|     T = ((UINT64)x_lo << 32);
 | |
|     res += T;
 | |
|     if (res < T)
 | |
|         res += 59;
 | |
| 
 | |
|     res += data;
 | |
|     if (res < data)
 | |
|         res += 59;
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Although UMAC is specified to use a ramped polynomial hash scheme, this
 | |
|  * implementation does not handle all ramp levels. Because we don't handle
 | |
|  * the ramp up to p128 modulus in this implementation, we are limited to
 | |
|  * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
 | |
|  * bytes input to UMAC per tag, ie. 16MB).
 | |
|  */
 | |
| static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
 | |
| {
 | |
|     int i;
 | |
|     UINT64 *data=(UINT64*)data_in;
 | |
| 
 | |
|     for (i = 0; i < STREAMS; i++) {
 | |
|         if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
 | |
|             hc->poly_accum[i] = poly64(hc->poly_accum[i],
 | |
|                                        hc->poly_key_8[i], p64 - 1);
 | |
|             hc->poly_accum[i] = poly64(hc->poly_accum[i],
 | |
|                                        hc->poly_key_8[i], (data[i] - 59));
 | |
|         } else {
 | |
|             hc->poly_accum[i] = poly64(hc->poly_accum[i],
 | |
|                                        hc->poly_key_8[i], data[i]);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| 
 | |
| /* The final step in UHASH is an inner-product hash. The poly hash
 | |
|  * produces a result not necessarily WORD_LEN bytes long. The inner-
 | |
|  * product hash breaks the polyhash output into 16-bit chunks and
 | |
|  * multiplies each with a 36 bit key.
 | |
|  */
 | |
| 
 | |
| static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
 | |
| {
 | |
|     t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
 | |
|     t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
 | |
|     t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
 | |
|     t = t + ipkp[3] * (UINT64)(UINT16)(data);
 | |
| 
 | |
|     return t;
 | |
| }
 | |
| 
 | |
| static UINT32 ip_reduce_p36(UINT64 t)
 | |
| {
 | |
| /* Divisionless modular reduction */
 | |
|     UINT64 ret;
 | |
| 
 | |
|     ret = (t & m36) + 5 * (t >> 36);
 | |
|     if (ret >= p36)
 | |
|         ret -= p36;
 | |
| 
 | |
|     /* return least significant 32 bits */
 | |
|     return (UINT32)(ret);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
 | |
|  * the polyhash stage is skipped and ip_short is applied directly to the
 | |
|  * NH output.
 | |
|  */
 | |
| static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
 | |
| {
 | |
|     UINT64 t;
 | |
|     UINT64 *nhp = (UINT64 *)nh_res;
 | |
| 
 | |
|     t  = ip_aux(0,ahc->ip_keys, nhp[0]);
 | |
|     STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
 | |
| #if (UMAC_OUTPUT_LEN >= 8)
 | |
|     t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
 | |
|     STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
 | |
| #endif
 | |
| #if (UMAC_OUTPUT_LEN >= 12)
 | |
|     t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
 | |
|     STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
 | |
| #endif
 | |
| #if (UMAC_OUTPUT_LEN == 16)
 | |
|     t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
 | |
|     STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
 | |
|  * the polyhash stage is not skipped and ip_long is applied to the
 | |
|  * polyhash output.
 | |
|  */
 | |
| static void ip_long(uhash_ctx_t ahc, u_char *res)
 | |
| {
 | |
|     int i;
 | |
|     UINT64 t;
 | |
| 
 | |
|     for (i = 0; i < STREAMS; i++) {
 | |
|         /* fix polyhash output not in Z_p64 */
 | |
|         if (ahc->poly_accum[i] >= p64)
 | |
|             ahc->poly_accum[i] -= p64;
 | |
|         t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
 | |
|         STORE_UINT32_BIG((UINT32 *)res+i,
 | |
|                          ip_reduce_p36(t) ^ ahc->ip_trans[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| /* Reset uhash context for next hash session */
 | |
| static int uhash_reset(uhash_ctx_t pc)
 | |
| {
 | |
|     nh_reset(&pc->hash);
 | |
|     pc->msg_len = 0;
 | |
|     pc->poly_accum[0] = 1;
 | |
| #if (UMAC_OUTPUT_LEN >= 8)
 | |
|     pc->poly_accum[1] = 1;
 | |
| #endif
 | |
| #if (UMAC_OUTPUT_LEN >= 12)
 | |
|     pc->poly_accum[2] = 1;
 | |
| #endif
 | |
| #if (UMAC_OUTPUT_LEN == 16)
 | |
|     pc->poly_accum[3] = 1;
 | |
| #endif
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| /* Given a pointer to the internal key needed by kdf() and a uhash context,
 | |
|  * initialize the NH context and generate keys needed for poly and inner-
 | |
|  * product hashing. All keys are endian adjusted in memory so that native
 | |
|  * loads cause correct keys to be in registers during calculation.
 | |
|  */
 | |
| static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
 | |
| {
 | |
|     int i;
 | |
|     UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
 | |
| 
 | |
|     /* Zero the entire uhash context */
 | |
|     memset(ahc, 0, sizeof(uhash_ctx));
 | |
| 
 | |
|     /* Initialize the L1 hash */
 | |
|     nh_init(&ahc->hash, prf_key);
 | |
| 
 | |
|     /* Setup L2 hash variables */
 | |
|     kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
 | |
|     for (i = 0; i < STREAMS; i++) {
 | |
|         /* Fill keys from the buffer, skipping bytes in the buffer not
 | |
|          * used by this implementation. Endian reverse the keys if on a
 | |
|          * little-endian computer.
 | |
|          */
 | |
|         memcpy(ahc->poly_key_8+i, buf+24*i, 8);
 | |
|         endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
 | |
|         /* Mask the 64-bit keys to their special domain */
 | |
|         ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
 | |
|         ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
 | |
|     }
 | |
| 
 | |
|     /* Setup L3-1 hash variables */
 | |
|     kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
 | |
|     for (i = 0; i < STREAMS; i++)
 | |
|           memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
 | |
|                                                  4*sizeof(UINT64));
 | |
|     endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
 | |
|                                                   sizeof(ahc->ip_keys));
 | |
|     for (i = 0; i < STREAMS*4; i++)
 | |
|         ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
 | |
| 
 | |
|     /* Setup L3-2 hash variables    */
 | |
|     /* Fill buffer with index 4 key */
 | |
|     kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
 | |
|     endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
 | |
|                          STREAMS * sizeof(UINT32));
 | |
|     explicit_bzero(buf, sizeof(buf));
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| #if 0
 | |
| static uhash_ctx_t uhash_alloc(u_char key[])
 | |
| {
 | |
| /* Allocate memory and force to a 16-byte boundary. */
 | |
|     uhash_ctx_t ctx;
 | |
|     u_char bytes_to_add;
 | |
|     aes_int_key prf_key;
 | |
| 
 | |
|     ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
 | |
|     if (ctx) {
 | |
|         if (ALLOC_BOUNDARY) {
 | |
|             bytes_to_add = ALLOC_BOUNDARY -
 | |
|                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
 | |
|             ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
 | |
|             *((u_char *)ctx - 1) = bytes_to_add;
 | |
|         }
 | |
|         aes_key_setup(key,prf_key);
 | |
|         uhash_init(ctx, prf_key);
 | |
|     }
 | |
|     return (ctx);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| #if 0
 | |
| static int uhash_free(uhash_ctx_t ctx)
 | |
| {
 | |
| /* Free memory allocated by uhash_alloc */
 | |
|     u_char bytes_to_sub;
 | |
| 
 | |
|     if (ctx) {
 | |
|         if (ALLOC_BOUNDARY) {
 | |
|             bytes_to_sub = *((u_char *)ctx - 1);
 | |
|             ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
 | |
|         }
 | |
|         free(ctx);
 | |
|     }
 | |
|     return (1);
 | |
| }
 | |
| #endif
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
 | |
| /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
 | |
|  * hash each one with NH, calling the polyhash on each NH output.
 | |
|  */
 | |
| {
 | |
|     UWORD bytes_hashed, bytes_remaining;
 | |
|     UINT64 result_buf[STREAMS];
 | |
|     UINT8 *nh_result = (UINT8 *)&result_buf;
 | |
| 
 | |
|     if (ctx->msg_len + len <= L1_KEY_LEN) {
 | |
|         nh_update(&ctx->hash, (const UINT8 *)input, len);
 | |
|         ctx->msg_len += len;
 | |
|     } else {
 | |
| 
 | |
|          bytes_hashed = ctx->msg_len % L1_KEY_LEN;
 | |
|          if (ctx->msg_len == L1_KEY_LEN)
 | |
|              bytes_hashed = L1_KEY_LEN;
 | |
| 
 | |
|          if (bytes_hashed + len >= L1_KEY_LEN) {
 | |
| 
 | |
|              /* If some bytes have been passed to the hash function      */
 | |
|              /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
 | |
|              /* bytes to complete the current nh_block.                  */
 | |
|              if (bytes_hashed) {
 | |
|                  bytes_remaining = (L1_KEY_LEN - bytes_hashed);
 | |
|                  nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
 | |
|                  nh_final(&ctx->hash, nh_result);
 | |
|                  ctx->msg_len += bytes_remaining;
 | |
|                  poly_hash(ctx,(UINT32 *)nh_result);
 | |
|                  len -= bytes_remaining;
 | |
|                  input += bytes_remaining;
 | |
|              }
 | |
| 
 | |
|              /* Hash directly from input stream if enough bytes */
 | |
|              while (len >= L1_KEY_LEN) {
 | |
|                  nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
 | |
|                                    L1_KEY_LEN, nh_result);
 | |
|                  ctx->msg_len += L1_KEY_LEN;
 | |
|                  len -= L1_KEY_LEN;
 | |
|                  input += L1_KEY_LEN;
 | |
|                  poly_hash(ctx,(UINT32 *)nh_result);
 | |
|              }
 | |
|          }
 | |
| 
 | |
|          /* pass remaining < L1_KEY_LEN bytes of input data to NH */
 | |
|          if (len) {
 | |
|              nh_update(&ctx->hash, (const UINT8 *)input, len);
 | |
|              ctx->msg_len += len;
 | |
|          }
 | |
|      }
 | |
| 
 | |
|     return (1);
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| static int uhash_final(uhash_ctx_t ctx, u_char *res)
 | |
| /* Incorporate any pending data, pad, and generate tag */
 | |
| {
 | |
|     UINT64 result_buf[STREAMS];
 | |
|     UINT8 *nh_result = (UINT8 *)&result_buf;
 | |
| 
 | |
|     if (ctx->msg_len > L1_KEY_LEN) {
 | |
|         if (ctx->msg_len % L1_KEY_LEN) {
 | |
|             nh_final(&ctx->hash, nh_result);
 | |
|             poly_hash(ctx,(UINT32 *)nh_result);
 | |
|         }
 | |
|         ip_long(ctx, res);
 | |
|     } else {
 | |
|         nh_final(&ctx->hash, nh_result);
 | |
|         ip_short(ctx,nh_result, res);
 | |
|     }
 | |
|     uhash_reset(ctx);
 | |
|     return (1);
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| #if 0
 | |
| static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
 | |
| /* assumes that msg is in a writable buffer of length divisible by */
 | |
| /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
 | |
| {
 | |
|     UINT8 nh_result[STREAMS*sizeof(UINT64)];
 | |
|     UINT32 nh_len;
 | |
|     int extra_zeroes_needed;
 | |
| 
 | |
|     /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
 | |
|      * the polyhash.
 | |
|      */
 | |
|     if (len <= L1_KEY_LEN) {
 | |
| 	if (len == 0)                  /* If zero length messages will not */
 | |
| 		nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */
 | |
| 	else
 | |
| 		nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
 | |
|         extra_zeroes_needed = nh_len - len;
 | |
|         zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
 | |
|         nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
 | |
|         ip_short(ahc,nh_result, res);
 | |
|     } else {
 | |
|         /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
 | |
|          * output to poly_hash().
 | |
|          */
 | |
|         do {
 | |
|             nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
 | |
|             poly_hash(ahc,(UINT32 *)nh_result);
 | |
|             len -= L1_KEY_LEN;
 | |
|             msg += L1_KEY_LEN;
 | |
|         } while (len >= L1_KEY_LEN);
 | |
|         if (len) {
 | |
|             nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
 | |
|             extra_zeroes_needed = nh_len - len;
 | |
|             zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
 | |
|             nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
 | |
|             poly_hash(ahc,(UINT32 *)nh_result);
 | |
|         }
 | |
| 
 | |
|         ip_long(ahc, res);
 | |
|     }
 | |
| 
 | |
|     uhash_reset(ahc);
 | |
|     return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ----- Begin UMAC Section --------------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| /* The UMAC interface has two interfaces, an all-at-once interface where
 | |
|  * the entire message to be authenticated is passed to UMAC in one buffer,
 | |
|  * and a sequential interface where the message is presented a little at a
 | |
|  * time. The all-at-once is more optimized than the sequential version and
 | |
|  * should be preferred when the sequential interface is not required.
 | |
|  */
 | |
| struct umac_ctx {
 | |
|     uhash_ctx hash;          /* Hash function for message compression    */
 | |
|     pdf_ctx pdf;             /* PDF for hashed output                    */
 | |
|     void *free_ptr;          /* Address to free this struct via          */
 | |
| } umac_ctx;
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| #if 0
 | |
| int umac_reset(struct umac_ctx *ctx)
 | |
| /* Reset the hash function to begin a new authentication.        */
 | |
| {
 | |
|     uhash_reset(&ctx->hash);
 | |
|     return (1);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| int umac_delete(struct umac_ctx *ctx)
 | |
| /* Deallocate the ctx structure */
 | |
| {
 | |
|     if (ctx) {
 | |
|         if (ALLOC_BOUNDARY)
 | |
|             ctx = (struct umac_ctx *)ctx->free_ptr;
 | |
|         freezero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY);
 | |
|     }
 | |
|     return (1);
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| struct umac_ctx *umac_new(const u_char key[])
 | |
| /* Dynamically allocate a umac_ctx struct, initialize variables,
 | |
|  * generate subkeys from key. Align to 16-byte boundary.
 | |
|  */
 | |
| {
 | |
|     struct umac_ctx *ctx, *octx;
 | |
|     size_t bytes_to_add;
 | |
|     aes_int_key prf_key;
 | |
| 
 | |
|     octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
 | |
|     if (ctx) {
 | |
|         if (ALLOC_BOUNDARY) {
 | |
|             bytes_to_add = ALLOC_BOUNDARY -
 | |
|                               ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
 | |
|             ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
 | |
|         }
 | |
|         ctx->free_ptr = octx;
 | |
|         aes_key_setup(key, prf_key);
 | |
|         pdf_init(&ctx->pdf, prf_key);
 | |
|         uhash_init(&ctx->hash, prf_key);
 | |
|         explicit_bzero(prf_key, sizeof(prf_key));
 | |
|     }
 | |
| 
 | |
|     return (ctx);
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
 | |
| /* Incorporate any pending data, pad, and generate tag */
 | |
| {
 | |
|     uhash_final(&ctx->hash, (u_char *)tag);
 | |
|     pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
 | |
| 
 | |
|     return (1);
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
 | |
| /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
 | |
| /* hash each one, calling the PDF on the hashed output whenever the hash- */
 | |
| /* output buffer is full.                                                 */
 | |
| {
 | |
|     uhash_update(&ctx->hash, input, len);
 | |
|     return (1);
 | |
| }
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| 
 | |
| #if 0
 | |
| int umac(struct umac_ctx *ctx, u_char *input,
 | |
|          long len, u_char tag[],
 | |
|          u_char nonce[8])
 | |
| /* All-in-one version simply calls umac_update() and umac_final().        */
 | |
| {
 | |
|     uhash(&ctx->hash, input, len, (u_char *)tag);
 | |
|     pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
 | |
| 
 | |
|     return (1);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ----- End UMAC Section ----------------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 | |
| /* ---------------------------------------------------------------------- */
 |