openssh-portable/key.c

669 lines
14 KiB
C

/*
* read_bignum():
* Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
*
* As far as I am concerned, the code I have written for this software
* can be used freely for any purpose. Any derived versions of this
* software must be clearly marked as such, and if the derived work is
* incompatible with the protocol description in the RFC file, it must be
* called by a name other than "ssh" or "Secure Shell".
*
*
* Copyright (c) 2000 Markus Friedl. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "includes.h"
#include "ssh.h"
#include <openssl/rsa.h>
#include <openssl/dsa.h>
#include <openssl/evp.h>
#include "xmalloc.h"
#include "key.h"
#include "rsa.h"
#include "ssh-dss.h"
#include "ssh-rsa.h"
#include "uuencode.h"
#include "buffer.h"
#include "bufaux.h"
RCSID("$OpenBSD: key.c,v 1.14 2001/01/16 19:20:06 markus Exp $");
Key *
key_new(int type)
{
Key *k;
RSA *rsa;
DSA *dsa;
k = xmalloc(sizeof(*k));
k->type = type;
k->dsa = NULL;
k->rsa = NULL;
switch (k->type) {
case KEY_RSA1:
case KEY_RSA:
rsa = RSA_new();
rsa->n = BN_new();
rsa->e = BN_new();
k->rsa = rsa;
break;
case KEY_DSA:
dsa = DSA_new();
dsa->p = BN_new();
dsa->q = BN_new();
dsa->g = BN_new();
dsa->pub_key = BN_new();
k->dsa = dsa;
break;
case KEY_UNSPEC:
break;
default:
fatal("key_new: bad key type %d", k->type);
break;
}
return k;
}
Key *
key_new_private(int type)
{
Key *k = key_new(type);
switch (k->type) {
case KEY_RSA1:
case KEY_RSA:
k->rsa->d = BN_new();
k->rsa->iqmp = BN_new();
k->rsa->q = BN_new();
k->rsa->p = BN_new();
k->rsa->dmq1 = BN_new();
k->rsa->dmp1 = BN_new();
break;
case KEY_DSA:
k->dsa->priv_key = BN_new();
break;
case KEY_UNSPEC:
break;
default:
break;
}
return k;
}
void
key_free(Key *k)
{
switch (k->type) {
case KEY_RSA1:
case KEY_RSA:
if (k->rsa != NULL)
RSA_free(k->rsa);
k->rsa = NULL;
break;
case KEY_DSA:
if (k->dsa != NULL)
DSA_free(k->dsa);
k->dsa = NULL;
break;
case KEY_UNSPEC:
break;
default:
fatal("key_free: bad key type %d", k->type);
break;
}
xfree(k);
}
int
key_equal(Key *a, Key *b)
{
if (a == NULL || b == NULL || a->type != b->type)
return 0;
switch (a->type) {
case KEY_RSA1:
case KEY_RSA:
return a->rsa != NULL && b->rsa != NULL &&
BN_cmp(a->rsa->e, b->rsa->e) == 0 &&
BN_cmp(a->rsa->n, b->rsa->n) == 0;
break;
case KEY_DSA:
return a->dsa != NULL && b->dsa != NULL &&
BN_cmp(a->dsa->p, b->dsa->p) == 0 &&
BN_cmp(a->dsa->q, b->dsa->q) == 0 &&
BN_cmp(a->dsa->g, b->dsa->g) == 0 &&
BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0;
break;
default:
fatal("key_equal: bad key type %d", a->type);
break;
}
return 0;
}
/*
* Generate key fingerprint in ascii format.
* Based on ideas and code from Bjoern Groenvall <bg@sics.se>
*/
char *
key_fingerprint(Key *k)
{
static char retval[(EVP_MAX_MD_SIZE+1)*3];
u_char *blob = NULL;
int len = 0;
int nlen, elen;
retval[0] = '\0';
switch (k->type) {
case KEY_RSA1:
nlen = BN_num_bytes(k->rsa->n);
elen = BN_num_bytes(k->rsa->e);
len = nlen + elen;
blob = xmalloc(len);
BN_bn2bin(k->rsa->n, blob);
BN_bn2bin(k->rsa->e, blob + nlen);
break;
case KEY_DSA:
case KEY_RSA:
key_to_blob(k, &blob, &len);
break;
case KEY_UNSPEC:
return retval;
break;
default:
fatal("key_fingerprint: bad key type %d", k->type);
break;
}
if (blob != NULL) {
int i;
u_char digest[EVP_MAX_MD_SIZE];
EVP_MD *md = EVP_md5();
EVP_MD_CTX ctx;
EVP_DigestInit(&ctx, md);
EVP_DigestUpdate(&ctx, blob, len);
EVP_DigestFinal(&ctx, digest, NULL);
for(i = 0; i < md->md_size; i++) {
char hex[4];
snprintf(hex, sizeof(hex), "%02x:", digest[i]);
strlcat(retval, hex, sizeof(retval));
}
retval[strlen(retval) - 1] = '\0';
memset(blob, 0, len);
xfree(blob);
}
return retval;
}
/*
* Reads a multiple-precision integer in decimal from the buffer, and advances
* the pointer. The integer must already be initialized. This function is
* permitted to modify the buffer. This leaves *cpp to point just beyond the
* last processed (and maybe modified) character. Note that this may modify
* the buffer containing the number.
*/
int
read_bignum(char **cpp, BIGNUM * value)
{
char *cp = *cpp;
int old;
/* Skip any leading whitespace. */
for (; *cp == ' ' || *cp == '\t'; cp++)
;
/* Check that it begins with a decimal digit. */
if (*cp < '0' || *cp > '9')
return 0;
/* Save starting position. */
*cpp = cp;
/* Move forward until all decimal digits skipped. */
for (; *cp >= '0' && *cp <= '9'; cp++)
;
/* Save the old terminating character, and replace it by \0. */
old = *cp;
*cp = 0;
/* Parse the number. */
if (BN_dec2bn(&value, *cpp) == 0)
return 0;
/* Restore old terminating character. */
*cp = old;
/* Move beyond the number and return success. */
*cpp = cp;
return 1;
}
int
write_bignum(FILE *f, BIGNUM *num)
{
char *buf = BN_bn2dec(num);
if (buf == NULL) {
error("write_bignum: BN_bn2dec() failed");
return 0;
}
fprintf(f, " %s", buf);
free(buf);
return 1;
}
/* returns 1 ok, -1 error, 0 type mismatch */
int
key_read(Key *ret, char **cpp)
{
Key *k;
int success = -1;
char *cp, *space;
int len, n, type;
u_int bits;
u_char *blob;
cp = *cpp;
switch(ret->type) {
case KEY_RSA1:
/* Get number of bits. */
if (*cp < '0' || *cp > '9')
return -1; /* Bad bit count... */
for (bits = 0; *cp >= '0' && *cp <= '9'; cp++)
bits = 10 * bits + *cp - '0';
if (bits == 0)
return -1;
*cpp = cp;
/* Get public exponent, public modulus. */
if (!read_bignum(cpp, ret->rsa->e))
return -1;
if (!read_bignum(cpp, ret->rsa->n))
return -1;
success = 1;
break;
case KEY_UNSPEC:
case KEY_RSA:
case KEY_DSA:
space = strchr(cp, ' ');
if (space == NULL) {
debug3("key_read: no space");
return -1;
}
*space = '\0';
type = key_type_from_name(cp);
*space = ' ';
if (type == KEY_UNSPEC) {
debug3("key_read: no key found");
return -1;
}
cp = space+1;
if (*cp == '\0') {
debug3("key_read: short string");
return -1;
}
if (ret->type == KEY_UNSPEC) {
ret->type = type;
} else if (ret->type != type) {
/* is a key, but different type */
debug3("key_read: type mismatch");
return 0;
}
len = 2*strlen(cp);
blob = xmalloc(len);
n = uudecode(cp, blob, len);
if (n < 0) {
error("key_read: uudecode %s failed", cp);
return -1;
}
k = key_from_blob(blob, n);
if (k == NULL) {
error("key_read: key_from_blob %s failed", cp);
return -1;
}
xfree(blob);
if (k->type != type) {
error("key_read: type mismatch: encoding error");
key_free(k);
return -1;
}
/*XXXX*/
if (ret->type == KEY_RSA) {
if (ret->rsa != NULL)
RSA_free(ret->rsa);
ret->rsa = k->rsa;
k->rsa = NULL;
success = 1;
#ifdef DEBUG_PK
RSA_print_fp(stderr, ret->rsa, 8);
#endif
} else {
if (ret->dsa != NULL)
DSA_free(ret->dsa);
ret->dsa = k->dsa;
k->dsa = NULL;
success = 1;
#ifdef DEBUG_PK
DSA_print_fp(stderr, ret->dsa, 8);
#endif
}
/*XXXX*/
if (success != 1)
break;
key_free(k);
/* advance cp: skip whitespace and data */
while (*cp == ' ' || *cp == '\t')
cp++;
while (*cp != '\0' && *cp != ' ' && *cp != '\t')
cp++;
*cpp = cp;
break;
default:
fatal("key_read: bad key type: %d", ret->type);
break;
}
return success;
}
int
key_write(Key *key, FILE *f)
{
int success = 0;
u_int bits = 0;
if (key->type == KEY_RSA1 && key->rsa != NULL) {
/* size of modulus 'n' */
bits = BN_num_bits(key->rsa->n);
fprintf(f, "%u", bits);
if (write_bignum(f, key->rsa->e) &&
write_bignum(f, key->rsa->n)) {
success = 1;
} else {
error("key_write: failed for RSA key");
}
} else if ((key->type == KEY_DSA && key->dsa != NULL) ||
(key->type == KEY_RSA && key->rsa != NULL)) {
int len, n;
u_char *blob, *uu;
key_to_blob(key, &blob, &len);
uu = xmalloc(2*len);
n = uuencode(blob, len, uu, 2*len);
if (n > 0) {
fprintf(f, "%s %s", key_ssh_name(key), uu);
success = 1;
}
xfree(blob);
xfree(uu);
}
return success;
}
char *
key_type(Key *k)
{
switch (k->type) {
case KEY_RSA1:
return "RSA1";
break;
case KEY_RSA:
return "RSA";
break;
case KEY_DSA:
return "DSA";
break;
}
return "unknown";
}
char *
key_ssh_name(Key *k)
{
switch (k->type) {
case KEY_RSA:
return "ssh-rsa";
break;
case KEY_DSA:
return "ssh-dss";
break;
}
return "ssh-unknown";
}
u_int
key_size(Key *k){
switch (k->type) {
case KEY_RSA1:
case KEY_RSA:
return BN_num_bits(k->rsa->n);
break;
case KEY_DSA:
return BN_num_bits(k->dsa->p);
break;
}
return 0;
}
RSA *
rsa_generate_private_key(u_int bits)
{
RSA *private;
private = RSA_generate_key(bits, 35, NULL, NULL);
if (private == NULL)
fatal("rsa_generate_private_key: key generation failed.");
return private;
}
DSA*
dsa_generate_private_key(u_int bits)
{
DSA *private = DSA_generate_parameters(bits, NULL, 0, NULL, NULL, NULL, NULL);
if (private == NULL)
fatal("dsa_generate_private_key: DSA_generate_parameters failed");
if (!DSA_generate_key(private))
fatal("dsa_generate_private_key: DSA_generate_key failed.");
if (private == NULL)
fatal("dsa_generate_private_key: NULL.");
return private;
}
Key *
key_generate(int type, u_int bits)
{
Key *k = key_new(KEY_UNSPEC);
switch (type) {
case KEY_DSA:
k->dsa = dsa_generate_private_key(bits);
break;
case KEY_RSA:
case KEY_RSA1:
k->rsa = rsa_generate_private_key(bits);
break;
default:
fatal("key_generate: unknown type %d", type);
}
k->type = type;
return k;
}
Key *
key_from_private(Key *k)
{
Key *n = NULL;
switch (k->type) {
case KEY_DSA:
n = key_new(k->type);
BN_copy(n->dsa->p, k->dsa->p);
BN_copy(n->dsa->q, k->dsa->q);
BN_copy(n->dsa->g, k->dsa->g);
BN_copy(n->dsa->pub_key, k->dsa->pub_key);
break;
case KEY_RSA:
case KEY_RSA1:
n = key_new(k->type);
BN_copy(n->rsa->n, k->rsa->n);
BN_copy(n->rsa->e, k->rsa->e);
break;
default:
fatal("key_from_private: unknown type %d", k->type);
break;
}
return n;
}
int
key_type_from_name(char *name)
{
if (strcmp(name, "rsa1") == 0){
return KEY_RSA1;
} else if (strcmp(name, "rsa") == 0){
return KEY_RSA;
} else if (strcmp(name, "dsa") == 0){
return KEY_DSA;
} else if (strcmp(name, "ssh-rsa") == 0){
return KEY_RSA;
} else if (strcmp(name, "ssh-dss") == 0){
return KEY_DSA;
}
debug("key_type_from_name: unknown key type '%s'", name);
return KEY_UNSPEC;
}
Key *
key_from_blob(char *blob, int blen)
{
Buffer b;
char *ktype;
int rlen, type;
Key *key = NULL;
#ifdef DEBUG_PK
dump_base64(stderr, blob, blen);
#endif
buffer_init(&b);
buffer_append(&b, blob, blen);
ktype = buffer_get_string(&b, NULL);
type = key_type_from_name(ktype);
switch(type){
case KEY_RSA:
key = key_new(type);
buffer_get_bignum2(&b, key->rsa->e);
buffer_get_bignum2(&b, key->rsa->n);
#ifdef DEBUG_PK
RSA_print_fp(stderr, key->rsa, 8);
#endif
break;
case KEY_DSA:
key = key_new(type);
buffer_get_bignum2(&b, key->dsa->p);
buffer_get_bignum2(&b, key->dsa->q);
buffer_get_bignum2(&b, key->dsa->g);
buffer_get_bignum2(&b, key->dsa->pub_key);
#ifdef DEBUG_PK
DSA_print_fp(stderr, key->dsa, 8);
#endif
break;
case KEY_UNSPEC:
key = key_new(type);
break;
default:
error("key_from_blob: cannot handle type %s", ktype);
break;
}
rlen = buffer_len(&b);
if (key != NULL && rlen != 0)
error("key_from_blob: remaining bytes in key blob %d", rlen);
xfree(ktype);
buffer_free(&b);
return key;
}
int
key_to_blob(Key *key, u_char **blobp, u_int *lenp)
{
Buffer b;
int len;
u_char *buf;
if (key == NULL) {
error("key_to_blob: key == NULL");
return 0;
}
buffer_init(&b);
switch(key->type){
case KEY_DSA:
buffer_put_cstring(&b, key_ssh_name(key));
buffer_put_bignum2(&b, key->dsa->p);
buffer_put_bignum2(&b, key->dsa->q);
buffer_put_bignum2(&b, key->dsa->g);
buffer_put_bignum2(&b, key->dsa->pub_key);
break;
case KEY_RSA:
buffer_put_cstring(&b, key_ssh_name(key));
buffer_put_bignum2(&b, key->rsa->e);
buffer_put_bignum2(&b, key->rsa->n);
break;
default:
error("key_to_blob: illegal key type %d", key->type);
break;
}
len = buffer_len(&b);
buf = xmalloc(len);
memcpy(buf, buffer_ptr(&b), len);
memset(buffer_ptr(&b), 0, len);
buffer_free(&b);
if (lenp != NULL)
*lenp = len;
if (blobp != NULL)
*blobp = buf;
return len;
}
int
key_sign(
Key *key,
u_char **sigp, int *lenp,
u_char *data, int datalen)
{
switch(key->type){
case KEY_DSA:
return ssh_dss_sign(key, sigp, lenp, data, datalen);
break;
case KEY_RSA:
return ssh_rsa_sign(key, sigp, lenp, data, datalen);
break;
default:
error("key_sign: illegal key type %d", key->type);
return -1;
break;
}
}
int
key_verify(
Key *key,
u_char *signature, int signaturelen,
u_char *data, int datalen)
{
switch(key->type){
case KEY_DSA:
return ssh_dss_verify(key, signature, signaturelen, data, datalen);
break;
case KEY_RSA:
return ssh_rsa_verify(key, signature, signaturelen, data, datalen);
break;
default:
error("key_verify: illegal key type %d", key->type);
return -1;
break;
}
}