pandorafms/pandora_server/extras/pandoraPlugintools/threads.py

249 lines
6.9 KiB
Python
Raw Normal View History

import sys
from queue import Queue
from threading import Thread
2023-08-02 10:31:52 +02:00
from multiprocessing import Pool, Manager
####
# Define multi-processing internal global variables.
#########################################################################################
_MANAGER = Manager()
_SHARED_DICT = _MANAGER.dict()
_SHARED_DICT_LOCK = _MANAGER.Lock()
####
# Internal: Alias for output.print_debug function
#########################################################################################
def _print_debug(
var = "",
print_errors: bool = False
):
"""
2023-08-14 15:44:56 +02:00
Prints the provided variable in a JSON-like format.
Args:
var: The variable (list, dict, string, float, integer) to be printed.
print_errors (bool): If True, prints any errors that occur during formatting.
"""
from .output import print_debug
print_debug(var, print_errors)
####
# Internal use only: Run a given function in a thread
#########################################################################################
def _single_thread(
q = None,
function: callable = None,
errors: list = []
):
"""
2023-08-14 15:44:56 +02:00
Internal use only: Runs a given function in a thread.
Args:
q: A queue from which to get parameters for the function.
function (callable): The function to be executed in the thread.
errors (list): A list to store any errors encountered during execution.
"""
params=q.get()
q.task_done()
try:
function(params)
except Exception as e:
errors.append("Error while runing single thread: "+str(e))
####
# Run a given function for given items list in a given number of threads
#########################################################################################
def run_threads(
max_threads: int = 1,
function: callable = None,
2023-08-02 10:31:52 +02:00
items: list = [],
print_errors: bool = False
) -> bool:
"""
2023-08-14 15:44:56 +02:00
Run a given function for a list of items in multiple threads.
Args:
max_threads (int): Maximum number of threads to use.
function (callable): The function to be executed in each thread.
items (list): List of items to process.
print_errors (bool): Whether to print errors encountered during execution.
Returns:
bool: True if all threads executed successfully, False otherwise.
"""
2023-08-09 13:46:09 +02:00
from .output import print_stderr
# Assign threads
threads = max_threads
if threads > len(items):
threads = len(items)
if threads < 1:
threads = 1
# Distribute items per thread
items_per_thread = []
thread = 0
for item in items:
if not 0 <= thread < len(items_per_thread):
items_per_thread.append([])
items_per_thread[thread].append(item)
thread += 1
if thread >= threads:
thread=0
# Run threads
try:
q=Queue()
for n_thread in range(threads) :
q.put(items_per_thread[n_thread])
run_threads = []
errors = []
for n_thread in range(threads):
t = Thread(target=_single_thread, args=(q, function, errors))
t.daemon=True
t.start()
run_threads.append(t)
for t in run_threads:
t.join()
q.join()
2023-08-02 10:31:52 +02:00
if print_errors:
for error in errors:
2023-08-09 13:46:09 +02:00
print_stderr(str(error))
if len(errors) > 0:
return False
else:
return True
except Exception as e:
2023-08-02 10:31:52 +02:00
if print_errors:
2023-08-09 13:46:09 +02:00
print_stderr("Error while running threads: "+str(e))
2023-08-02 10:31:52 +02:00
return False
####
# Set a given value to a key in the internal shared dict.
# Used by all parallel processes.
#########################################################################################
def set_shared_dict_value(
key: str = None,
value = None
2023-08-18 12:53:03 +02:00
)-> None:
2023-08-02 10:31:52 +02:00
"""
2023-08-14 15:44:56 +02:00
Set a value for a key in the internal shared dictionary.
This function is used by all parallel processes.
Args:
key (str): The key in the shared dictionary.
value: The value to be assigned to the key.
2023-08-02 10:31:52 +02:00
"""
global _SHARED_DICT
2023-08-02 10:31:52 +02:00
if key is not None:
with _SHARED_DICT_LOCK:
_SHARED_DICT[key] = value
2023-08-02 10:31:52 +02:00
####
# Add a given value to a key in the internal shared dict.
# Used by all parallel processes.
#########################################################################################
def add_shared_dict_value(
key: str = None,
value = None
2023-08-18 12:53:03 +02:00
)-> None:
2023-08-02 10:31:52 +02:00
"""
2023-08-14 15:44:56 +02:00
Add a value to a key in the internal shared dictionary.
This function is used by all parallel processes.
Args:
key (str): The key in the shared dictionary.
value: The value to be added to the key.
2023-08-02 10:31:52 +02:00
"""
global _SHARED_DICT
2023-08-02 10:31:52 +02:00
if key is not None:
with _SHARED_DICT_LOCK:
if key in _SHARED_DICT:
_SHARED_DICT[key] += value
2023-08-02 10:31:52 +02:00
else:
set_shared_dict_value(key, value)
####
# Get the value of a key in the internal shared dict.
# Used by all parallel processes.
#########################################################################################
def get_shared_dict_value(
key: str = None
):
"""
2023-08-14 15:44:56 +02:00
Get the value of a key in the internal shared dictionary.
This function is used by all parallel processes.
Args:
key (str): The key in the shared dictionary.
Returns:
The value associated with the key, or None if the key does not exist.
2023-08-02 10:31:52 +02:00
"""
global _SHARED_DICT
2023-08-02 10:31:52 +02:00
with _SHARED_DICT_LOCK:
if key in _SHARED_DICT and key is not None:
return _SHARED_DICT[key]
2023-08-02 10:31:52 +02:00
else:
return None
####
# Run a given function for given items list in a given number of processes
# Given function receives each item as first parameter
#########################################################################################
def run_processes(
max_processes: int = 1,
function: callable = None,
items: list = [],
print_errors: bool = False
) -> bool:
"""
Run a given function for given items list in a given number of processes
2023-08-14 15:44:56 +02:00
Args:
max_processes (int): The maximum number of processes to run in parallel.
function (callable): The function to be executed for each item.
items (list): List of items to be processed.
print_errors (bool): Whether to print errors.
Returns:
bool: True if all processes completed successfully, False otherwise.
2023-08-02 10:31:52 +02:00
"""
2023-08-09 13:46:09 +02:00
from .output import print_stderr
2023-08-02 10:31:52 +02:00
# Assign processes
processes = max_processes
if processes > len(items):
processes = len(items)
if processes < 1:
processes = 1
# Run processes
with Pool(processes) as pool:
try:
pool.map(function, items)
result = True
except Exception as error:
if print_errors:
2023-08-09 13:46:09 +02:00
print_stderr(str(error))
2023-08-02 10:31:52 +02:00
result = False
return result