pandorafms/extras/anytermd/libpbe/include/init_array.hh

232 lines
5.7 KiB
C++
Raw Normal View History

// include/init_array.hh
// This file is part of libpbe; see http://decimail.org
// (C) 2007 Philip Endecott
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
// This work is based on Boost.Array, which is:
// (C) Copyright Nicolai M. Josuttis 2001.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef libpbe_init_array_hh
#define libpbe_init_array_hh
// pbe::init_array<T,N> is like boost::array<T,N>, except that it provides
// a constructor that takes a T and copy-constructs each of its elements
// using it.
#include <boost/assert.hpp>
#include <stdexcept>
namespace pbe {
template <typename T, int N>
class init_array {
char mem[sizeof(T)*N]; // worry about alignment
public:
// Unlike Boost.Array, elems is a function:
T* elems() { return reinterpret_cast<T*>(&mem); }
const T* elems() const { return reinterpret_cast<T*>(&mem); }
init_array() {
int i;
try {
for (i=0; i<N; ++i) {
new(elems()+i) T();
}
}
catch (...) {
--i;
for (; i>0; --i) {
(elems()+i) -> ~T();
}
throw;
}
}
init_array(T t) {
int i;
try {
for (i=0; i<N; ++i) {
new(elems()+i) T(t);
}
}
catch (...) {
--i;
for (; i>0; --i) {
(elems()+i) -> ~T();
}
throw;
}
}
~init_array() {
for (int i=N-1; i>=0; --i) {
(elems()+i) -> ~T();
}
}
// type definitions
typedef T value_type;
typedef T* iterator;
typedef const T* const_iterator;
typedef T& reference;
typedef const T& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
// iterator support
iterator begin() { return elems(); }
const_iterator begin() const { return elems(); }
iterator end() { return elems()+N; }
const_iterator end() const { return elems()+N; }
// reverse iterator support
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// operator[]
reference operator[](size_type i)
{
BOOST_ASSERT( i < N && "out of range" );
return elems()[i];
}
const_reference operator[](size_type i) const
{
BOOST_ASSERT( i < N && "out of range" );
return elems()[i];
}
// at() with range check
reference at(size_type i) { rangecheck(i); return elems()[i]; }
const_reference at(size_type i) const { rangecheck(i); return elems()[i]; }
// front() and back()
reference front()
{
return elems()[0];
}
const_reference front() const
{
return elems()[0];
}
reference back()
{
return elems()[N-1];
}
const_reference back() const
{
return elems()[N-1];
}
// size is constant
static size_type size() { return N; }
static bool empty() { return false; }
static size_type max_size() { return N; }
enum { static_size = N };
// swap (note: linear complexity)
void swap (init_array<T,N>& y) {
std::swap_ranges(begin(),end(),y.begin());
}
// direct access to data (read-only)
const T* data() const { return elems(); }
// use array as C array (direct read/write access to data)
T* c_array() { return elems(); }
// assignment with type conversion
template <typename T2>
init_array<T,N>& operator= (const init_array<T2,N>& rhs) {
std::copy(rhs.begin(),rhs.end(), begin());
return *this;
}
// assign one value to all elements
void assign (const T& value)
{
std::fill_n(begin(),size(),value);
}
// check range (may be private because it is static)
static void rangecheck (size_type i) {
if (i >= size()) {
throw std::range_error("init_array<>: index out of range");
}
}
};
// comparisons
template<class T, std::size_t N>
bool operator== (const init_array<T,N>& x, const init_array<T,N>& y) {
return std::equal(x.begin(), x.end(), y.begin());
}
template<class T, std::size_t N>
bool operator< (const init_array<T,N>& x, const init_array<T,N>& y) {
return std::lexicographical_compare(x.begin(),x.end(),y.begin(),y.end());
}
template<class T, std::size_t N>
bool operator!= (const init_array<T,N>& x, const init_array<T,N>& y) {
return !(x==y);
}
template<class T, std::size_t N>
bool operator> (const init_array<T,N>& x, const init_array<T,N>& y) {
return y<x;
}
template<class T, std::size_t N>
bool operator<= (const init_array<T,N>& x, const init_array<T,N>& y) {
return !(y<x);
}
template<class T, std::size_t N>
bool operator>= (const init_array<T,N>& x, const init_array<T,N>& y) {
return !(x<y);
}
// global swap()
template<class T, std::size_t N>
inline void swap (init_array<T,N>& x, init_array<T,N>& y) {
x.swap(y);
}
};
#endif