fixed forecast report
This commit is contained in:
parent
ed0d89ec73
commit
6312d2e38a
|
@ -20,31 +20,29 @@
|
|||
*/
|
||||
|
||||
/**
|
||||
* Create a prediction based on module data with least square method (linear regression)
|
||||
* Create a prediction based on module data with least square method (linear regression)
|
||||
*
|
||||
* @param int Module id.
|
||||
* @param int Period of the module data.
|
||||
* @param int Period of the prediction or false to use it in prediction_date function (see below).
|
||||
* @param int Period of the prediction or false to use it in prediction_date function (see below).
|
||||
* @param int Maximun value using this function for prediction_date.
|
||||
* @param int Minimun value using this function for prediction_date.
|
||||
* @param bool Result data for CSV file exportation.
|
||||
*
|
||||
*
|
||||
* @return array Void array or prediction of the module data.
|
||||
*/
|
||||
function forecast_projection_graph($module_id,
|
||||
$period = SECONDS_2MONTHS, $prediction_period, $max_value = false,
|
||||
$min_value = false, $csv = false) {
|
||||
|
||||
|
||||
global $config;
|
||||
|
||||
$max_exec_time = ini_get('max_execution_time');
|
||||
|
||||
|
||||
$max_exec_time = ini_get('max_execution_time');
|
||||
|
||||
if ($max_exec_time !== false) {
|
||||
|
||||
$max_exec_time = (int)$max_exec_time;
|
||||
|
||||
$max_exec_time = (int)$max_exec_time;
|
||||
}
|
||||
|
||||
|
||||
$begin_time = time();
|
||||
|
||||
$params =array(
|
||||
|
@ -54,16 +52,16 @@ function forecast_projection_graph($module_id,
|
|||
'projection' => true
|
||||
);
|
||||
|
||||
$module_data = grafico_modulo_sparse ($params);
|
||||
|
||||
$module_data = grafico_modulo_sparse($params);
|
||||
|
||||
if (empty($module_data)) {
|
||||
return array();
|
||||
return array();
|
||||
}
|
||||
// Prevents bad behaviour over image error
|
||||
// Prevents bad behaviour over image error
|
||||
else if (!is_array($module_data) and preg_match('/^<img(.)*$/', $module_data)) {
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
// Data initialization
|
||||
$sum_obs = 0;
|
||||
$sum_xi = 0;
|
||||
|
@ -113,35 +111,16 @@ function forecast_projection_graph($module_id,
|
|||
$cont++;
|
||||
}
|
||||
}
|
||||
|
||||
$cont--;
|
||||
|
||||
// Calculation over data above:
|
||||
// 1. Calculation of linear correlation coefficient...
|
||||
|
||||
// 1.1 Average for X: Sum(Xi)/Obs
|
||||
// 1.1 Average for X: Sum(Xi)/Obs
|
||||
// 1.2 Average for Y: Sum(Yi)/Obs
|
||||
// 2. Covariance between vars
|
||||
// 3.1 Standard deviation for X: sqrt((Sum(Xi²)/Obs) - (avg X)²)
|
||||
// 3.2 Standard deviation for Y: sqrt((Sum(Yi²)/Obs) - (avg Y)²)
|
||||
// 3.1 Standard deviation for X: sqrt((Sum(Xi²)/Obs) - (avg X)²)
|
||||
// 3.2 Standard deviation for Y: sqrt((Sum(Yi²)/Obs) - (avg Y)²)
|
||||
// Linear correlation coefficient:
|
||||
|
||||
|
||||
/*
|
||||
if ($cont != 0) {
|
||||
$covariance = $sum_xi_yi/$cont;
|
||||
$dev_x = sqrt(($sum_xi2/$cont) - ($avg_x*$avg_x));
|
||||
$dev_y = sqrt(($sum_yi2/$cont) - ($avg_y*$avg_y));
|
||||
} else {
|
||||
$covariance = 0;
|
||||
$dev_x = 0;
|
||||
$dev_y = 0;
|
||||
}
|
||||
// Prevents division by zero
|
||||
if ($dev_x != 0 and $dev_y != 0) {
|
||||
$linear_coef = $covariance / ($dev_x * $dev_y);
|
||||
}
|
||||
*/
|
||||
// Agent interval could be zero, 300 is the predefined
|
||||
if ($sum_obs == 0) {
|
||||
$agent_interval = SECONDS_5MINUTES;
|
||||
|
@ -149,37 +128,35 @@ function forecast_projection_graph($module_id,
|
|||
else {
|
||||
$agent_interval = $sum_diff_dates / $sum_obs;
|
||||
}
|
||||
|
||||
|
||||
// Could be a inverse correlation coefficient
|
||||
// if $linear_coef < 0.0
|
||||
// if $linear_coef >= -1.0 and $linear_coef <= -0.8999
|
||||
// Function variables have an inverse linear relathionship!
|
||||
// else
|
||||
// Function variables don't have an inverse linear relathionship!
|
||||
|
||||
// else
|
||||
// Function variables don't have an inverse linear relathionship!
|
||||
// Could be a direct correlation coefficient
|
||||
// else
|
||||
// else
|
||||
// if ($linear_coef >= 0.8999 and $linear_coef <= 1.0) {
|
||||
// Function variables have a direct linear relathionship!
|
||||
// else
|
||||
// else
|
||||
// Function variables don't have a direct linear relathionship!
|
||||
|
||||
// 2. Calculation of linear regresion...
|
||||
|
||||
|
||||
$b_num = (($cont * $sum_xi_yi) - ($sum_xi * $sum_yi));
|
||||
$b_den = (($cont * $sum_xi2) - ($sum_xi * $sum_xi));
|
||||
if ($b_den == 0)
|
||||
return;
|
||||
$b = $b_num / $b_den;
|
||||
|
||||
|
||||
$a_num = ($sum_yi) - ($b * $sum_xi);
|
||||
|
||||
|
||||
if ($cont != 0) {
|
||||
$a = $a_num / $cont;
|
||||
} else {
|
||||
$a = 0;
|
||||
}
|
||||
|
||||
|
||||
// Data inicialization
|
||||
$output_data = array();
|
||||
if ($prediction_period != false) {
|
||||
|
@ -188,11 +165,11 @@ function forecast_projection_graph($module_id,
|
|||
$current_ts = $last_timestamp;
|
||||
$in_range = true;
|
||||
$time_format_2 = '';
|
||||
|
||||
|
||||
$temp_range = $period;
|
||||
if ($period < $prediction_period)
|
||||
$temp_range = $prediction_period;
|
||||
|
||||
|
||||
if ($temp_range <= SECONDS_6HOURS) {
|
||||
$time_format = 'H:i:s';
|
||||
}
|
||||
|
@ -206,15 +183,15 @@ function forecast_projection_graph($module_id,
|
|||
elseif ($temp_range <= SECONDS_1MONTH) {
|
||||
$time_format = 'M d';
|
||||
$time_format_2 = 'H\h';
|
||||
}
|
||||
}
|
||||
else {
|
||||
$time_format = 'M d';
|
||||
}
|
||||
|
||||
// Aplying linear regression to module data in order to do the prediction
|
||||
$output_data = array();
|
||||
|
||||
// Aplying linear regression to module data in order to do the prediction
|
||||
$idx = 0;
|
||||
// Create data in graph format like
|
||||
|
||||
while ($in_range) {
|
||||
$now = time();
|
||||
|
||||
|
@ -242,9 +219,10 @@ function forecast_projection_graph($module_id,
|
|||
if ($current_ts - $last_timestamp >= 94608000) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// Found it
|
||||
if ($max_value >= $output_data[$idx][0] and $min_value <= $output_data[$idx][0]) {
|
||||
if (($max_value >= $output_data[$idx][0]) &&
|
||||
($min_value <= $output_data[$idx][0]) ) {
|
||||
return $current_ts;
|
||||
}
|
||||
}
|
||||
|
@ -254,7 +232,6 @@ function forecast_projection_graph($module_id,
|
|||
$current_ts = $current_ts + $agent_interval;
|
||||
$idx++;
|
||||
}
|
||||
|
||||
return $output_data;
|
||||
}
|
||||
|
||||
|
@ -264,8 +241,8 @@ function forecast_projection_graph($module_id,
|
|||
* @param int Module id.
|
||||
* @param int Given data period to make the prediction
|
||||
* @param int Max value in the interval.
|
||||
* @param int Min value in the interval.
|
||||
*
|
||||
* @param int Min value in the interval.
|
||||
*
|
||||
* @return mixed timestamp with the prediction date or false
|
||||
*/
|
||||
function forecast_prediction_date ($module_id,
|
||||
|
@ -274,6 +251,5 @@ function forecast_prediction_date ($module_id,
|
|||
if ($min_value > $max_value) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return forecast_projection_graph($module_id, $period, false, $max_value, $min_value);
|
||||
}
|
||||
|
|
|
@ -264,9 +264,7 @@ function grafico_modulo_sparse_data_chart (
|
|||
$data_module_graph['id_module_type'] == 18 ||
|
||||
$data_module_graph['id_module_type'] == 9 ||
|
||||
$data_module_graph['id_module_type'] == 31 ||
|
||||
$data_module_graph['id_module_type'] == 100 ||
|
||||
$params['projection']
|
||||
){
|
||||
$data_module_graph['id_module_type'] == 100 ){
|
||||
|
||||
$data = db_get_all_rows_filter (
|
||||
'tagente_datos',
|
||||
|
@ -421,8 +419,7 @@ function grafico_modulo_sparse_data(
|
|||
$data_module_graph['id_module_type'] == 18 ||
|
||||
$data_module_graph['id_module_type'] == 9 ||
|
||||
$data_module_graph['id_module_type'] == 31 ||
|
||||
$data_module_graph['id_module_type'] == 100 ||
|
||||
$params['projection'] ){
|
||||
$data_module_graph['id_module_type'] == 100 ){
|
||||
$array_data = grafico_modulo_sparse_data_chart (
|
||||
$agent_module_id,
|
||||
$date_array,
|
||||
|
@ -924,7 +921,6 @@ function grafico_modulo_sparse ($params) {
|
|||
$legend = array();
|
||||
$array_events_alerts = array();
|
||||
|
||||
|
||||
$date_array = array();
|
||||
$date_array["period"] = $params['period'];
|
||||
$date_array["final_date"] = $params['date'];
|
||||
|
@ -1226,7 +1222,7 @@ function graphic_combined_module (
|
|||
}
|
||||
else{
|
||||
$params['stacked'] = 'area';
|
||||
$params['projection'] = $params_combined['projection'];
|
||||
$params['projection'] = true;
|
||||
}
|
||||
|
||||
if(!isset($params_combined['labels'])){
|
||||
|
@ -1519,6 +1515,14 @@ function graphic_combined_module (
|
|||
$date_array["final_date"] = $params['date'];
|
||||
$date_array["start_date"] = $params['date'] - $params['period'];
|
||||
|
||||
if($params_combined['projection']){
|
||||
$output_projection = forecast_projection_graph(
|
||||
$module_list[0],
|
||||
$params['period'],
|
||||
$params_combined['projection']
|
||||
);
|
||||
}
|
||||
|
||||
$i=0;
|
||||
$array_data = array();
|
||||
foreach ($module_list as $key => $agent_module_id) {
|
||||
|
@ -1585,10 +1589,13 @@ function graphic_combined_module (
|
|||
$i++;
|
||||
}
|
||||
|
||||
if($params_combined['projection'] && is_array($params_combined['projection'])){
|
||||
$date_array_projection = max($params_combined['projection']);
|
||||
$date_array['final_date'] = $date_array_projection[0] / 1000;
|
||||
$array_data['projection']['data']= $params_combined['projection'];
|
||||
if($params_combined['projection']){
|
||||
// If projection doesn't have data then don't draw graph
|
||||
if ($output_projection != NULL) {
|
||||
$date_array_projection = max($output_projection);
|
||||
$date_array['final_date'] = $date_array_projection[0] / 1000;
|
||||
$array_data['projection']['data']= $output_projection;
|
||||
}
|
||||
}
|
||||
|
||||
//summatory and average series
|
||||
|
|
|
@ -3557,17 +3557,6 @@ function reporting_projection_graph($report, $content,
|
|||
switch ($type) {
|
||||
case 'dinamic':
|
||||
case 'static':
|
||||
$output_projection = forecast_projection_graph(
|
||||
$content['id_agent_module'],
|
||||
$content['period'],
|
||||
$content['top_n_value']
|
||||
);
|
||||
|
||||
// If projection doesn't have data then don't draw graph
|
||||
if ($output_projection == NULL) {
|
||||
$output_projection = false;
|
||||
}
|
||||
|
||||
$params =array(
|
||||
'period' => $content['period'],
|
||||
'width' => $width,
|
||||
|
@ -3581,7 +3570,7 @@ function reporting_projection_graph($report, $content,
|
|||
);
|
||||
|
||||
$params_combined = array(
|
||||
'projection' => $output_projection
|
||||
'projection' => $content['top_n_value'],
|
||||
);
|
||||
|
||||
$return['chart'] = graphic_combined_module(
|
||||
|
|
Loading…
Reference in New Issue