// https://d3js.org v7.8.5 Copyright 2010-2023 Mike Bostock (function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : typeof define === 'function' && define.amd ? define(['exports'], factory) : (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.d3 = global.d3 || {})); })(this, (function (exports) { 'use strict'; var version = "7.8.5"; function ascending$3(a, b) { return a == null || b == null ? NaN : a < b ? -1 : a > b ? 1 : a >= b ? 0 : NaN; } function descending$2(a, b) { return a == null || b == null ? NaN : b < a ? -1 : b > a ? 1 : b >= a ? 0 : NaN; } function bisector(f) { let compare1, compare2, delta; // If an accessor is specified, promote it to a comparator. In this case we // can test whether the search value is (self-) comparable. We can’t do this // for a comparator (except for specific, known comparators) because we can’t // tell if the comparator is symmetric, and an asymmetric comparator can’t be // used to test whether a single value is comparable. if (f.length !== 2) { compare1 = ascending$3; compare2 = (d, x) => ascending$3(f(d), x); delta = (d, x) => f(d) - x; } else { compare1 = f === ascending$3 || f === descending$2 ? f : zero$1; compare2 = f; delta = f; } function left(a, x, lo = 0, hi = a.length) { if (lo < hi) { if (compare1(x, x) !== 0) return hi; do { const mid = (lo + hi) >>> 1; if (compare2(a[mid], x) < 0) lo = mid + 1; else hi = mid; } while (lo < hi); } return lo; } function right(a, x, lo = 0, hi = a.length) { if (lo < hi) { if (compare1(x, x) !== 0) return hi; do { const mid = (lo + hi) >>> 1; if (compare2(a[mid], x) <= 0) lo = mid + 1; else hi = mid; } while (lo < hi); } return lo; } function center(a, x, lo = 0, hi = a.length) { const i = left(a, x, lo, hi - 1); return i > lo && delta(a[i - 1], x) > -delta(a[i], x) ? i - 1 : i; } return {left, center, right}; } function zero$1() { return 0; } function number$3(x) { return x === null ? NaN : +x; } function* numbers(values, valueof) { if (valueof === undefined) { for (let value of values) { if (value != null && (value = +value) >= value) { yield value; } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (value = +value) >= value) { yield value; } } } } const ascendingBisect = bisector(ascending$3); const bisectRight = ascendingBisect.right; const bisectLeft = ascendingBisect.left; const bisectCenter = bisector(number$3).center; var bisect = bisectRight; function blur(values, r) { if (!((r = +r) >= 0)) throw new RangeError("invalid r"); let length = values.length; if (!((length = Math.floor(length)) >= 0)) throw new RangeError("invalid length"); if (!length || !r) return values; const blur = blurf(r); const temp = values.slice(); blur(values, temp, 0, length, 1); blur(temp, values, 0, length, 1); blur(values, temp, 0, length, 1); return values; } const blur2 = Blur2(blurf); const blurImage = Blur2(blurfImage); function Blur2(blur) { return function(data, rx, ry = rx) { if (!((rx = +rx) >= 0)) throw new RangeError("invalid rx"); if (!((ry = +ry) >= 0)) throw new RangeError("invalid ry"); let {data: values, width, height} = data; if (!((width = Math.floor(width)) >= 0)) throw new RangeError("invalid width"); if (!((height = Math.floor(height !== undefined ? height : values.length / width)) >= 0)) throw new RangeError("invalid height"); if (!width || !height || (!rx && !ry)) return data; const blurx = rx && blur(rx); const blury = ry && blur(ry); const temp = values.slice(); if (blurx && blury) { blurh(blurx, temp, values, width, height); blurh(blurx, values, temp, width, height); blurh(blurx, temp, values, width, height); blurv(blury, values, temp, width, height); blurv(blury, temp, values, width, height); blurv(blury, values, temp, width, height); } else if (blurx) { blurh(blurx, values, temp, width, height); blurh(blurx, temp, values, width, height); blurh(blurx, values, temp, width, height); } else if (blury) { blurv(blury, values, temp, width, height); blurv(blury, temp, values, width, height); blurv(blury, values, temp, width, height); } return data; }; } function blurh(blur, T, S, w, h) { for (let y = 0, n = w * h; y < n;) { blur(T, S, y, y += w, 1); } } function blurv(blur, T, S, w, h) { for (let x = 0, n = w * h; x < w; ++x) { blur(T, S, x, x + n, w); } } function blurfImage(radius) { const blur = blurf(radius); return (T, S, start, stop, step) => { start <<= 2, stop <<= 2, step <<= 2; blur(T, S, start + 0, stop + 0, step); blur(T, S, start + 1, stop + 1, step); blur(T, S, start + 2, stop + 2, step); blur(T, S, start + 3, stop + 3, step); }; } // Given a target array T, a source array S, sets each value T[i] to the average // of {S[i - r], …, S[i], …, S[i + r]}, where r = ⌊radius⌋, start <= i < stop, // for each i, i + step, i + 2 * step, etc., and where S[j] is clamped between // S[start] (inclusive) and S[stop] (exclusive). If the given radius is not an // integer, S[i - r - 1] and S[i + r + 1] are added to the sum, each weighted // according to r - ⌊radius⌋. function blurf(radius) { const radius0 = Math.floor(radius); if (radius0 === radius) return bluri(radius); const t = radius - radius0; const w = 2 * radius + 1; return (T, S, start, stop, step) => { // stop must be aligned! if (!((stop -= step) >= start)) return; // inclusive stop let sum = radius0 * S[start]; const s0 = step * radius0; const s1 = s0 + step; for (let i = start, j = start + s0; i < j; i += step) { sum += S[Math.min(stop, i)]; } for (let i = start, j = stop; i <= j; i += step) { sum += S[Math.min(stop, i + s0)]; T[i] = (sum + t * (S[Math.max(start, i - s1)] + S[Math.min(stop, i + s1)])) / w; sum -= S[Math.max(start, i - s0)]; } }; } // Like blurf, but optimized for integer radius. function bluri(radius) { const w = 2 * radius + 1; return (T, S, start, stop, step) => { // stop must be aligned! if (!((stop -= step) >= start)) return; // inclusive stop let sum = radius * S[start]; const s = step * radius; for (let i = start, j = start + s; i < j; i += step) { sum += S[Math.min(stop, i)]; } for (let i = start, j = stop; i <= j; i += step) { sum += S[Math.min(stop, i + s)]; T[i] = sum / w; sum -= S[Math.max(start, i - s)]; } }; } function count$1(values, valueof) { let count = 0; if (valueof === undefined) { for (let value of values) { if (value != null && (value = +value) >= value) { ++count; } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (value = +value) >= value) { ++count; } } } return count; } function length$3(array) { return array.length | 0; } function empty$2(length) { return !(length > 0); } function arrayify(values) { return typeof values !== "object" || "length" in values ? values : Array.from(values); } function reducer(reduce) { return values => reduce(...values); } function cross$2(...values) { const reduce = typeof values[values.length - 1] === "function" && reducer(values.pop()); values = values.map(arrayify); const lengths = values.map(length$3); const j = values.length - 1; const index = new Array(j + 1).fill(0); const product = []; if (j < 0 || lengths.some(empty$2)) return product; while (true) { product.push(index.map((j, i) => values[i][j])); let i = j; while (++index[i] === lengths[i]) { if (i === 0) return reduce ? product.map(reduce) : product; index[i--] = 0; } } } function cumsum(values, valueof) { var sum = 0, index = 0; return Float64Array.from(values, valueof === undefined ? v => (sum += +v || 0) : v => (sum += +valueof(v, index++, values) || 0)); } function variance(values, valueof) { let count = 0; let delta; let mean = 0; let sum = 0; if (valueof === undefined) { for (let value of values) { if (value != null && (value = +value) >= value) { delta = value - mean; mean += delta / ++count; sum += delta * (value - mean); } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (value = +value) >= value) { delta = value - mean; mean += delta / ++count; sum += delta * (value - mean); } } } if (count > 1) return sum / (count - 1); } function deviation(values, valueof) { const v = variance(values, valueof); return v ? Math.sqrt(v) : v; } function extent$1(values, valueof) { let min; let max; if (valueof === undefined) { for (const value of values) { if (value != null) { if (min === undefined) { if (value >= value) min = max = value; } else { if (min > value) min = value; if (max < value) max = value; } } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null) { if (min === undefined) { if (value >= value) min = max = value; } else { if (min > value) min = value; if (max < value) max = value; } } } } return [min, max]; } // https://github.com/python/cpython/blob/a74eea238f5baba15797e2e8b570d153bc8690a7/Modules/mathmodule.c#L1423 class Adder { constructor() { this._partials = new Float64Array(32); this._n = 0; } add(x) { const p = this._partials; let i = 0; for (let j = 0; j < this._n && j < 32; j++) { const y = p[j], hi = x + y, lo = Math.abs(x) < Math.abs(y) ? x - (hi - y) : y - (hi - x); if (lo) p[i++] = lo; x = hi; } p[i] = x; this._n = i + 1; return this; } valueOf() { const p = this._partials; let n = this._n, x, y, lo, hi = 0; if (n > 0) { hi = p[--n]; while (n > 0) { x = hi; y = p[--n]; hi = x + y; lo = y - (hi - x); if (lo) break; } if (n > 0 && ((lo < 0 && p[n - 1] < 0) || (lo > 0 && p[n - 1] > 0))) { y = lo * 2; x = hi + y; if (y == x - hi) hi = x; } } return hi; } } function fsum(values, valueof) { const adder = new Adder(); if (valueof === undefined) { for (let value of values) { if (value = +value) { adder.add(value); } } } else { let index = -1; for (let value of values) { if (value = +valueof(value, ++index, values)) { adder.add(value); } } } return +adder; } function fcumsum(values, valueof) { const adder = new Adder(); let index = -1; return Float64Array.from(values, valueof === undefined ? v => adder.add(+v || 0) : v => adder.add(+valueof(v, ++index, values) || 0) ); } class InternMap extends Map { constructor(entries, key = keyof) { super(); Object.defineProperties(this, {_intern: {value: new Map()}, _key: {value: key}}); if (entries != null) for (const [key, value] of entries) this.set(key, value); } get(key) { return super.get(intern_get(this, key)); } has(key) { return super.has(intern_get(this, key)); } set(key, value) { return super.set(intern_set(this, key), value); } delete(key) { return super.delete(intern_delete(this, key)); } } class InternSet extends Set { constructor(values, key = keyof) { super(); Object.defineProperties(this, {_intern: {value: new Map()}, _key: {value: key}}); if (values != null) for (const value of values) this.add(value); } has(value) { return super.has(intern_get(this, value)); } add(value) { return super.add(intern_set(this, value)); } delete(value) { return super.delete(intern_delete(this, value)); } } function intern_get({_intern, _key}, value) { const key = _key(value); return _intern.has(key) ? _intern.get(key) : value; } function intern_set({_intern, _key}, value) { const key = _key(value); if (_intern.has(key)) return _intern.get(key); _intern.set(key, value); return value; } function intern_delete({_intern, _key}, value) { const key = _key(value); if (_intern.has(key)) { value = _intern.get(key); _intern.delete(key); } return value; } function keyof(value) { return value !== null && typeof value === "object" ? value.valueOf() : value; } function identity$9(x) { return x; } function group(values, ...keys) { return nest(values, identity$9, identity$9, keys); } function groups(values, ...keys) { return nest(values, Array.from, identity$9, keys); } function flatten$1(groups, keys) { for (let i = 1, n = keys.length; i < n; ++i) { groups = groups.flatMap(g => g.pop().map(([key, value]) => [...g, key, value])); } return groups; } function flatGroup(values, ...keys) { return flatten$1(groups(values, ...keys), keys); } function flatRollup(values, reduce, ...keys) { return flatten$1(rollups(values, reduce, ...keys), keys); } function rollup(values, reduce, ...keys) { return nest(values, identity$9, reduce, keys); } function rollups(values, reduce, ...keys) { return nest(values, Array.from, reduce, keys); } function index$4(values, ...keys) { return nest(values, identity$9, unique, keys); } function indexes(values, ...keys) { return nest(values, Array.from, unique, keys); } function unique(values) { if (values.length !== 1) throw new Error("duplicate key"); return values[0]; } function nest(values, map, reduce, keys) { return (function regroup(values, i) { if (i >= keys.length) return reduce(values); const groups = new InternMap(); const keyof = keys[i++]; let index = -1; for (const value of values) { const key = keyof(value, ++index, values); const group = groups.get(key); if (group) group.push(value); else groups.set(key, [value]); } for (const [key, values] of groups) { groups.set(key, regroup(values, i)); } return map(groups); })(values, 0); } function permute(source, keys) { return Array.from(keys, key => source[key]); } function sort(values, ...F) { if (typeof values[Symbol.iterator] !== "function") throw new TypeError("values is not iterable"); values = Array.from(values); let [f] = F; if ((f && f.length !== 2) || F.length > 1) { const index = Uint32Array.from(values, (d, i) => i); if (F.length > 1) { F = F.map(f => values.map(f)); index.sort((i, j) => { for (const f of F) { const c = ascendingDefined(f[i], f[j]); if (c) return c; } }); } else { f = values.map(f); index.sort((i, j) => ascendingDefined(f[i], f[j])); } return permute(values, index); } return values.sort(compareDefined(f)); } function compareDefined(compare = ascending$3) { if (compare === ascending$3) return ascendingDefined; if (typeof compare !== "function") throw new TypeError("compare is not a function"); return (a, b) => { const x = compare(a, b); if (x || x === 0) return x; return (compare(b, b) === 0) - (compare(a, a) === 0); }; } function ascendingDefined(a, b) { return (a == null || !(a >= a)) - (b == null || !(b >= b)) || (a < b ? -1 : a > b ? 1 : 0); } function groupSort(values, reduce, key) { return (reduce.length !== 2 ? sort(rollup(values, reduce, key), (([ak, av], [bk, bv]) => ascending$3(av, bv) || ascending$3(ak, bk))) : sort(group(values, key), (([ak, av], [bk, bv]) => reduce(av, bv) || ascending$3(ak, bk)))) .map(([key]) => key); } var array$5 = Array.prototype; var slice$3 = array$5.slice; function constant$b(x) { return () => x; } const e10 = Math.sqrt(50), e5 = Math.sqrt(10), e2 = Math.sqrt(2); function tickSpec(start, stop, count) { const step = (stop - start) / Math.max(0, count), power = Math.floor(Math.log10(step)), error = step / Math.pow(10, power), factor = error >= e10 ? 10 : error >= e5 ? 5 : error >= e2 ? 2 : 1; let i1, i2, inc; if (power < 0) { inc = Math.pow(10, -power) / factor; i1 = Math.round(start * inc); i2 = Math.round(stop * inc); if (i1 / inc < start) ++i1; if (i2 / inc > stop) --i2; inc = -inc; } else { inc = Math.pow(10, power) * factor; i1 = Math.round(start / inc); i2 = Math.round(stop / inc); if (i1 * inc < start) ++i1; if (i2 * inc > stop) --i2; } if (i2 < i1 && 0.5 <= count && count < 2) return tickSpec(start, stop, count * 2); return [i1, i2, inc]; } function ticks(start, stop, count) { stop = +stop, start = +start, count = +count; if (!(count > 0)) return []; if (start === stop) return [start]; const reverse = stop < start, [i1, i2, inc] = reverse ? tickSpec(stop, start, count) : tickSpec(start, stop, count); if (!(i2 >= i1)) return []; const n = i2 - i1 + 1, ticks = new Array(n); if (reverse) { if (inc < 0) for (let i = 0; i < n; ++i) ticks[i] = (i2 - i) / -inc; else for (let i = 0; i < n; ++i) ticks[i] = (i2 - i) * inc; } else { if (inc < 0) for (let i = 0; i < n; ++i) ticks[i] = (i1 + i) / -inc; else for (let i = 0; i < n; ++i) ticks[i] = (i1 + i) * inc; } return ticks; } function tickIncrement(start, stop, count) { stop = +stop, start = +start, count = +count; return tickSpec(start, stop, count)[2]; } function tickStep(start, stop, count) { stop = +stop, start = +start, count = +count; const reverse = stop < start, inc = reverse ? tickIncrement(stop, start, count) : tickIncrement(start, stop, count); return (reverse ? -1 : 1) * (inc < 0 ? 1 / -inc : inc); } function nice$1(start, stop, count) { let prestep; while (true) { const step = tickIncrement(start, stop, count); if (step === prestep || step === 0 || !isFinite(step)) { return [start, stop]; } else if (step > 0) { start = Math.floor(start / step) * step; stop = Math.ceil(stop / step) * step; } else if (step < 0) { start = Math.ceil(start * step) / step; stop = Math.floor(stop * step) / step; } prestep = step; } } function thresholdSturges(values) { return Math.max(1, Math.ceil(Math.log(count$1(values)) / Math.LN2) + 1); } function bin() { var value = identity$9, domain = extent$1, threshold = thresholdSturges; function histogram(data) { if (!Array.isArray(data)) data = Array.from(data); var i, n = data.length, x, step, values = new Array(n); for (i = 0; i < n; ++i) { values[i] = value(data[i], i, data); } var xz = domain(values), x0 = xz[0], x1 = xz[1], tz = threshold(values, x0, x1); // Convert number of thresholds into uniform thresholds, and nice the // default domain accordingly. if (!Array.isArray(tz)) { const max = x1, tn = +tz; if (domain === extent$1) [x0, x1] = nice$1(x0, x1, tn); tz = ticks(x0, x1, tn); // If the domain is aligned with the first tick (which it will by // default), then we can use quantization rather than bisection to bin // values, which is substantially faster. if (tz[0] <= x0) step = tickIncrement(x0, x1, tn); // If the last threshold is coincident with the domain’s upper bound, the // last bin will be zero-width. If the default domain is used, and this // last threshold is coincident with the maximum input value, we can // extend the niced upper bound by one tick to ensure uniform bin widths; // otherwise, we simply remove the last threshold. Note that we don’t // coerce values or the domain to numbers, and thus must be careful to // compare order (>=) rather than strict equality (===)! if (tz[tz.length - 1] >= x1) { if (max >= x1 && domain === extent$1) { const step = tickIncrement(x0, x1, tn); if (isFinite(step)) { if (step > 0) { x1 = (Math.floor(x1 / step) + 1) * step; } else if (step < 0) { x1 = (Math.ceil(x1 * -step) + 1) / -step; } } } else { tz.pop(); } } } // Remove any thresholds outside the domain. // Be careful not to mutate an array owned by the user! var m = tz.length, a = 0, b = m; while (tz[a] <= x0) ++a; while (tz[b - 1] > x1) --b; if (a || b < m) tz = tz.slice(a, b), m = b - a; var bins = new Array(m + 1), bin; // Initialize bins. for (i = 0; i <= m; ++i) { bin = bins[i] = []; bin.x0 = i > 0 ? tz[i - 1] : x0; bin.x1 = i < m ? tz[i] : x1; } // Assign data to bins by value, ignoring any outside the domain. if (isFinite(step)) { if (step > 0) { for (i = 0; i < n; ++i) { if ((x = values[i]) != null && x0 <= x && x <= x1) { bins[Math.min(m, Math.floor((x - x0) / step))].push(data[i]); } } } else if (step < 0) { for (i = 0; i < n; ++i) { if ((x = values[i]) != null && x0 <= x && x <= x1) { const j = Math.floor((x0 - x) * step); bins[Math.min(m, j + (tz[j] <= x))].push(data[i]); // handle off-by-one due to rounding } } } } else { for (i = 0; i < n; ++i) { if ((x = values[i]) != null && x0 <= x && x <= x1) { bins[bisect(tz, x, 0, m)].push(data[i]); } } } return bins; } histogram.value = function(_) { return arguments.length ? (value = typeof _ === "function" ? _ : constant$b(_), histogram) : value; }; histogram.domain = function(_) { return arguments.length ? (domain = typeof _ === "function" ? _ : constant$b([_[0], _[1]]), histogram) : domain; }; histogram.thresholds = function(_) { return arguments.length ? (threshold = typeof _ === "function" ? _ : constant$b(Array.isArray(_) ? slice$3.call(_) : _), histogram) : threshold; }; return histogram; } function max$3(values, valueof) { let max; if (valueof === undefined) { for (const value of values) { if (value != null && (max < value || (max === undefined && value >= value))) { max = value; } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (max < value || (max === undefined && value >= value))) { max = value; } } } return max; } function maxIndex(values, valueof) { let max; let maxIndex = -1; let index = -1; if (valueof === undefined) { for (const value of values) { ++index; if (value != null && (max < value || (max === undefined && value >= value))) { max = value, maxIndex = index; } } } else { for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (max < value || (max === undefined && value >= value))) { max = value, maxIndex = index; } } } return maxIndex; } function min$2(values, valueof) { let min; if (valueof === undefined) { for (const value of values) { if (value != null && (min > value || (min === undefined && value >= value))) { min = value; } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (min > value || (min === undefined && value >= value))) { min = value; } } } return min; } function minIndex(values, valueof) { let min; let minIndex = -1; let index = -1; if (valueof === undefined) { for (const value of values) { ++index; if (value != null && (min > value || (min === undefined && value >= value))) { min = value, minIndex = index; } } } else { for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (min > value || (min === undefined && value >= value))) { min = value, minIndex = index; } } } return minIndex; } // Based on https://github.com/mourner/quickselect // ISC license, Copyright 2018 Vladimir Agafonkin. function quickselect(array, k, left = 0, right = Infinity, compare) { k = Math.floor(k); left = Math.floor(Math.max(0, left)); right = Math.floor(Math.min(array.length - 1, right)); if (!(left <= k && k <= right)) return array; compare = compare === undefined ? ascendingDefined : compareDefined(compare); while (right > left) { if (right - left > 600) { const n = right - left + 1; const m = k - left + 1; const z = Math.log(n); const s = 0.5 * Math.exp(2 * z / 3); const sd = 0.5 * Math.sqrt(z * s * (n - s) / n) * (m - n / 2 < 0 ? -1 : 1); const newLeft = Math.max(left, Math.floor(k - m * s / n + sd)); const newRight = Math.min(right, Math.floor(k + (n - m) * s / n + sd)); quickselect(array, k, newLeft, newRight, compare); } const t = array[k]; let i = left; let j = right; swap$1(array, left, k); if (compare(array[right], t) > 0) swap$1(array, left, right); while (i < j) { swap$1(array, i, j), ++i, --j; while (compare(array[i], t) < 0) ++i; while (compare(array[j], t) > 0) --j; } if (compare(array[left], t) === 0) swap$1(array, left, j); else ++j, swap$1(array, j, right); if (j <= k) left = j + 1; if (k <= j) right = j - 1; } return array; } function swap$1(array, i, j) { const t = array[i]; array[i] = array[j]; array[j] = t; } function greatest(values, compare = ascending$3) { let max; let defined = false; if (compare.length === 1) { let maxValue; for (const element of values) { const value = compare(element); if (defined ? ascending$3(value, maxValue) > 0 : ascending$3(value, value) === 0) { max = element; maxValue = value; defined = true; } } } else { for (const value of values) { if (defined ? compare(value, max) > 0 : compare(value, value) === 0) { max = value; defined = true; } } } return max; } function quantile$1(values, p, valueof) { values = Float64Array.from(numbers(values, valueof)); if (!(n = values.length) || isNaN(p = +p)) return; if (p <= 0 || n < 2) return min$2(values); if (p >= 1) return max$3(values); var n, i = (n - 1) * p, i0 = Math.floor(i), value0 = max$3(quickselect(values, i0).subarray(0, i0 + 1)), value1 = min$2(values.subarray(i0 + 1)); return value0 + (value1 - value0) * (i - i0); } function quantileSorted(values, p, valueof = number$3) { if (!(n = values.length) || isNaN(p = +p)) return; if (p <= 0 || n < 2) return +valueof(values[0], 0, values); if (p >= 1) return +valueof(values[n - 1], n - 1, values); var n, i = (n - 1) * p, i0 = Math.floor(i), value0 = +valueof(values[i0], i0, values), value1 = +valueof(values[i0 + 1], i0 + 1, values); return value0 + (value1 - value0) * (i - i0); } function quantileIndex(values, p, valueof = number$3) { if (isNaN(p = +p)) return; numbers = Float64Array.from(values, (_, i) => number$3(valueof(values[i], i, values))); if (p <= 0) return minIndex(numbers); if (p >= 1) return maxIndex(numbers); var numbers, index = Uint32Array.from(values, (_, i) => i), j = numbers.length - 1, i = Math.floor(j * p); quickselect(index, i, 0, j, (i, j) => ascendingDefined(numbers[i], numbers[j])); i = greatest(index.subarray(0, i + 1), (i) => numbers[i]); return i >= 0 ? i : -1; } function thresholdFreedmanDiaconis(values, min, max) { const c = count$1(values), d = quantile$1(values, 0.75) - quantile$1(values, 0.25); return c && d ? Math.ceil((max - min) / (2 * d * Math.pow(c, -1 / 3))) : 1; } function thresholdScott(values, min, max) { const c = count$1(values), d = deviation(values); return c && d ? Math.ceil((max - min) * Math.cbrt(c) / (3.49 * d)) : 1; } function mean(values, valueof) { let count = 0; let sum = 0; if (valueof === undefined) { for (let value of values) { if (value != null && (value = +value) >= value) { ++count, sum += value; } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null && (value = +value) >= value) { ++count, sum += value; } } } if (count) return sum / count; } function median(values, valueof) { return quantile$1(values, 0.5, valueof); } function medianIndex(values, valueof) { return quantileIndex(values, 0.5, valueof); } function* flatten(arrays) { for (const array of arrays) { yield* array; } } function merge(arrays) { return Array.from(flatten(arrays)); } function mode(values, valueof) { const counts = new InternMap(); if (valueof === undefined) { for (let value of values) { if (value != null && value >= value) { counts.set(value, (counts.get(value) || 0) + 1); } } } else { let index = -1; for (let value of values) { if ((value = valueof(value, ++index, values)) != null && value >= value) { counts.set(value, (counts.get(value) || 0) + 1); } } } let modeValue; let modeCount = 0; for (const [value, count] of counts) { if (count > modeCount) { modeCount = count; modeValue = value; } } return modeValue; } function pairs(values, pairof = pair) { const pairs = []; let previous; let first = false; for (const value of values) { if (first) pairs.push(pairof(previous, value)); previous = value; first = true; } return pairs; } function pair(a, b) { return [a, b]; } function range$2(start, stop, step) { start = +start, stop = +stop, step = (n = arguments.length) < 2 ? (stop = start, start = 0, 1) : n < 3 ? 1 : +step; var i = -1, n = Math.max(0, Math.ceil((stop - start) / step)) | 0, range = new Array(n); while (++i < n) { range[i] = start + i * step; } return range; } function rank(values, valueof = ascending$3) { if (typeof values[Symbol.iterator] !== "function") throw new TypeError("values is not iterable"); let V = Array.from(values); const R = new Float64Array(V.length); if (valueof.length !== 2) V = V.map(valueof), valueof = ascending$3; const compareIndex = (i, j) => valueof(V[i], V[j]); let k, r; values = Uint32Array.from(V, (_, i) => i); // Risky chaining due to Safari 14 https://github.com/d3/d3-array/issues/123 values.sort(valueof === ascending$3 ? (i, j) => ascendingDefined(V[i], V[j]) : compareDefined(compareIndex)); values.forEach((j, i) => { const c = compareIndex(j, k === undefined ? j : k); if (c >= 0) { if (k === undefined || c > 0) k = j, r = i; R[j] = r; } else { R[j] = NaN; } }); return R; } function least(values, compare = ascending$3) { let min; let defined = false; if (compare.length === 1) { let minValue; for (const element of values) { const value = compare(element); if (defined ? ascending$3(value, minValue) < 0 : ascending$3(value, value) === 0) { min = element; minValue = value; defined = true; } } } else { for (const value of values) { if (defined ? compare(value, min) < 0 : compare(value, value) === 0) { min = value; defined = true; } } } return min; } function leastIndex(values, compare = ascending$3) { if (compare.length === 1) return minIndex(values, compare); let minValue; let min = -1; let index = -1; for (const value of values) { ++index; if (min < 0 ? compare(value, value) === 0 : compare(value, minValue) < 0) { minValue = value; min = index; } } return min; } function greatestIndex(values, compare = ascending$3) { if (compare.length === 1) return maxIndex(values, compare); let maxValue; let max = -1; let index = -1; for (const value of values) { ++index; if (max < 0 ? compare(value, value) === 0 : compare(value, maxValue) > 0) { maxValue = value; max = index; } } return max; } function scan(values, compare) { const index = leastIndex(values, compare); return index < 0 ? undefined : index; } var shuffle$1 = shuffler(Math.random); function shuffler(random) { return function shuffle(array, i0 = 0, i1 = array.length) { let m = i1 - (i0 = +i0); while (m) { const i = random() * m-- | 0, t = array[m + i0]; array[m + i0] = array[i + i0]; array[i + i0] = t; } return array; }; } function sum$2(values, valueof) { let sum = 0; if (valueof === undefined) { for (let value of values) { if (value = +value) { sum += value; } } } else { let index = -1; for (let value of values) { if (value = +valueof(value, ++index, values)) { sum += value; } } } return sum; } function transpose(matrix) { if (!(n = matrix.length)) return []; for (var i = -1, m = min$2(matrix, length$2), transpose = new Array(m); ++i < m;) { for (var j = -1, n, row = transpose[i] = new Array(n); ++j < n;) { row[j] = matrix[j][i]; } } return transpose; } function length$2(d) { return d.length; } function zip() { return transpose(arguments); } function every(values, test) { if (typeof test !== "function") throw new TypeError("test is not a function"); let index = -1; for (const value of values) { if (!test(value, ++index, values)) { return false; } } return true; } function some(values, test) { if (typeof test !== "function") throw new TypeError("test is not a function"); let index = -1; for (const value of values) { if (test(value, ++index, values)) { return true; } } return false; } function filter$1(values, test) { if (typeof test !== "function") throw new TypeError("test is not a function"); const array = []; let index = -1; for (const value of values) { if (test(value, ++index, values)) { array.push(value); } } return array; } function map$1(values, mapper) { if (typeof values[Symbol.iterator] !== "function") throw new TypeError("values is not iterable"); if (typeof mapper !== "function") throw new TypeError("mapper is not a function"); return Array.from(values, (value, index) => mapper(value, index, values)); } function reduce(values, reducer, value) { if (typeof reducer !== "function") throw new TypeError("reducer is not a function"); const iterator = values[Symbol.iterator](); let done, next, index = -1; if (arguments.length < 3) { ({done, value} = iterator.next()); if (done) return; ++index; } while (({done, value: next} = iterator.next()), !done) { value = reducer(value, next, ++index, values); } return value; } function reverse$1(values) { if (typeof values[Symbol.iterator] !== "function") throw new TypeError("values is not iterable"); return Array.from(values).reverse(); } function difference(values, ...others) { values = new InternSet(values); for (const other of others) { for (const value of other) { values.delete(value); } } return values; } function disjoint(values, other) { const iterator = other[Symbol.iterator](), set = new InternSet(); for (const v of values) { if (set.has(v)) return false; let value, done; while (({value, done} = iterator.next())) { if (done) break; if (Object.is(v, value)) return false; set.add(value); } } return true; } function intersection(values, ...others) { values = new InternSet(values); others = others.map(set$2); out: for (const value of values) { for (const other of others) { if (!other.has(value)) { values.delete(value); continue out; } } } return values; } function set$2(values) { return values instanceof InternSet ? values : new InternSet(values); } function superset(values, other) { const iterator = values[Symbol.iterator](), set = new Set(); for (const o of other) { const io = intern(o); if (set.has(io)) continue; let value, done; while (({value, done} = iterator.next())) { if (done) return false; const ivalue = intern(value); set.add(ivalue); if (Object.is(io, ivalue)) break; } } return true; } function intern(value) { return value !== null && typeof value === "object" ? value.valueOf() : value; } function subset(values, other) { return superset(other, values); } function union(...others) { const set = new InternSet(); for (const other of others) { for (const o of other) { set.add(o); } } return set; } function identity$8(x) { return x; } var top = 1, right = 2, bottom = 3, left = 4, epsilon$6 = 1e-6; function translateX(x) { return "translate(" + x + ",0)"; } function translateY(y) { return "translate(0," + y + ")"; } function number$2(scale) { return d => +scale(d); } function center$1(scale, offset) { offset = Math.max(0, scale.bandwidth() - offset * 2) / 2; if (scale.round()) offset = Math.round(offset); return d => +scale(d) + offset; } function entering() { return !this.__axis; } function axis(orient, scale) { var tickArguments = [], tickValues = null, tickFormat = null, tickSizeInner = 6, tickSizeOuter = 6, tickPadding = 3, offset = typeof window !== "undefined" && window.devicePixelRatio > 1 ? 0 : 0.5, k = orient === top || orient === left ? -1 : 1, x = orient === left || orient === right ? "x" : "y", transform = orient === top || orient === bottom ? translateX : translateY; function axis(context) { var values = tickValues == null ? (scale.ticks ? scale.ticks.apply(scale, tickArguments) : scale.domain()) : tickValues, format = tickFormat == null ? (scale.tickFormat ? scale.tickFormat.apply(scale, tickArguments) : identity$8) : tickFormat, spacing = Math.max(tickSizeInner, 0) + tickPadding, range = scale.range(), range0 = +range[0] + offset, range1 = +range[range.length - 1] + offset, position = (scale.bandwidth ? center$1 : number$2)(scale.copy(), offset), selection = context.selection ? context.selection() : context, path = selection.selectAll(".domain").data([null]), tick = selection.selectAll(".tick").data(values, scale).order(), tickExit = tick.exit(), tickEnter = tick.enter().append("g").attr("class", "tick"), line = tick.select("line"), text = tick.select("text"); path = path.merge(path.enter().insert("path", ".tick") .attr("class", "domain") .attr("stroke", "currentColor")); tick = tick.merge(tickEnter); line = line.merge(tickEnter.append("line") .attr("stroke", "currentColor") .attr(x + "2", k * tickSizeInner)); text = text.merge(tickEnter.append("text") .attr("fill", "currentColor") .attr(x, k * spacing) .attr("dy", orient === top ? "0em" : orient === bottom ? "0.71em" : "0.32em")); if (context !== selection) { path = path.transition(context); tick = tick.transition(context); line = line.transition(context); text = text.transition(context); tickExit = tickExit.transition(context) .attr("opacity", epsilon$6) .attr("transform", function(d) { return isFinite(d = position(d)) ? transform(d + offset) : this.getAttribute("transform"); }); tickEnter .attr("opacity", epsilon$6) .attr("transform", function(d) { var p = this.parentNode.__axis; return transform((p && isFinite(p = p(d)) ? p : position(d)) + offset); }); } tickExit.remove(); path .attr("d", orient === left || orient === right ? (tickSizeOuter ? "M" + k * tickSizeOuter + "," + range0 + "H" + offset + "V" + range1 + "H" + k * tickSizeOuter : "M" + offset + "," + range0 + "V" + range1) : (tickSizeOuter ? "M" + range0 + "," + k * tickSizeOuter + "V" + offset + "H" + range1 + "V" + k * tickSizeOuter : "M" + range0 + "," + offset + "H" + range1)); tick .attr("opacity", 1) .attr("transform", function(d) { return transform(position(d) + offset); }); line .attr(x + "2", k * tickSizeInner); text .attr(x, k * spacing) .text(format); selection.filter(entering) .attr("fill", "none") .attr("font-size", 10) .attr("font-family", "sans-serif") .attr("text-anchor", orient === right ? "start" : orient === left ? "end" : "middle"); selection .each(function() { this.__axis = position; }); } axis.scale = function(_) { return arguments.length ? (scale = _, axis) : scale; }; axis.ticks = function() { return tickArguments = Array.from(arguments), axis; }; axis.tickArguments = function(_) { return arguments.length ? (tickArguments = _ == null ? [] : Array.from(_), axis) : tickArguments.slice(); }; axis.tickValues = function(_) { return arguments.length ? (tickValues = _ == null ? null : Array.from(_), axis) : tickValues && tickValues.slice(); }; axis.tickFormat = function(_) { return arguments.length ? (tickFormat = _, axis) : tickFormat; }; axis.tickSize = function(_) { return arguments.length ? (tickSizeInner = tickSizeOuter = +_, axis) : tickSizeInner; }; axis.tickSizeInner = function(_) { return arguments.length ? (tickSizeInner = +_, axis) : tickSizeInner; }; axis.tickSizeOuter = function(_) { return arguments.length ? (tickSizeOuter = +_, axis) : tickSizeOuter; }; axis.tickPadding = function(_) { return arguments.length ? (tickPadding = +_, axis) : tickPadding; }; axis.offset = function(_) { return arguments.length ? (offset = +_, axis) : offset; }; return axis; } function axisTop(scale) { return axis(top, scale); } function axisRight(scale) { return axis(right, scale); } function axisBottom(scale) { return axis(bottom, scale); } function axisLeft(scale) { return axis(left, scale); } var noop$3 = {value: () => {}}; function dispatch() { for (var i = 0, n = arguments.length, _ = {}, t; i < n; ++i) { if (!(t = arguments[i] + "") || (t in _) || /[\s.]/.test(t)) throw new Error("illegal type: " + t); _[t] = []; } return new Dispatch(_); } function Dispatch(_) { this._ = _; } function parseTypenames$1(typenames, types) { return typenames.trim().split(/^|\s+/).map(function(t) { var name = "", i = t.indexOf("."); if (i >= 0) name = t.slice(i + 1), t = t.slice(0, i); if (t && !types.hasOwnProperty(t)) throw new Error("unknown type: " + t); return {type: t, name: name}; }); } Dispatch.prototype = dispatch.prototype = { constructor: Dispatch, on: function(typename, callback) { var _ = this._, T = parseTypenames$1(typename + "", _), t, i = -1, n = T.length; // If no callback was specified, return the callback of the given type and name. if (arguments.length < 2) { while (++i < n) if ((t = (typename = T[i]).type) && (t = get$1(_[t], typename.name))) return t; return; } // If a type was specified, set the callback for the given type and name. // Otherwise, if a null callback was specified, remove callbacks of the given name. if (callback != null && typeof callback !== "function") throw new Error("invalid callback: " + callback); while (++i < n) { if (t = (typename = T[i]).type) _[t] = set$1(_[t], typename.name, callback); else if (callback == null) for (t in _) _[t] = set$1(_[t], typename.name, null); } return this; }, copy: function() { var copy = {}, _ = this._; for (var t in _) copy[t] = _[t].slice(); return new Dispatch(copy); }, call: function(type, that) { if ((n = arguments.length - 2) > 0) for (var args = new Array(n), i = 0, n, t; i < n; ++i) args[i] = arguments[i + 2]; if (!this._.hasOwnProperty(type)) throw new Error("unknown type: " + type); for (t = this._[type], i = 0, n = t.length; i < n; ++i) t[i].value.apply(that, args); }, apply: function(type, that, args) { if (!this._.hasOwnProperty(type)) throw new Error("unknown type: " + type); for (var t = this._[type], i = 0, n = t.length; i < n; ++i) t[i].value.apply(that, args); } }; function get$1(type, name) { for (var i = 0, n = type.length, c; i < n; ++i) { if ((c = type[i]).name === name) { return c.value; } } } function set$1(type, name, callback) { for (var i = 0, n = type.length; i < n; ++i) { if (type[i].name === name) { type[i] = noop$3, type = type.slice(0, i).concat(type.slice(i + 1)); break; } } if (callback != null) type.push({name: name, value: callback}); return type; } var xhtml = "http://www.w3.org/1999/xhtml"; var namespaces = { svg: "http://www.w3.org/2000/svg", xhtml: xhtml, xlink: "http://www.w3.org/1999/xlink", xml: "http://www.w3.org/XML/1998/namespace", xmlns: "http://www.w3.org/2000/xmlns/" }; function namespace(name) { var prefix = name += "", i = prefix.indexOf(":"); if (i >= 0 && (prefix = name.slice(0, i)) !== "xmlns") name = name.slice(i + 1); return namespaces.hasOwnProperty(prefix) ? {space: namespaces[prefix], local: name} : name; // eslint-disable-line no-prototype-builtins } function creatorInherit(name) { return function() { var document = this.ownerDocument, uri = this.namespaceURI; return uri === xhtml && document.documentElement.namespaceURI === xhtml ? document.createElement(name) : document.createElementNS(uri, name); }; } function creatorFixed(fullname) { return function() { return this.ownerDocument.createElementNS(fullname.space, fullname.local); }; } function creator(name) { var fullname = namespace(name); return (fullname.local ? creatorFixed : creatorInherit)(fullname); } function none$2() {} function selector(selector) { return selector == null ? none$2 : function() { return this.querySelector(selector); }; } function selection_select(select) { if (typeof select !== "function") select = selector(select); for (var groups = this._groups, m = groups.length, subgroups = new Array(m), j = 0; j < m; ++j) { for (var group = groups[j], n = group.length, subgroup = subgroups[j] = new Array(n), node, subnode, i = 0; i < n; ++i) { if ((node = group[i]) && (subnode = select.call(node, node.__data__, i, group))) { if ("__data__" in node) subnode.__data__ = node.__data__; subgroup[i] = subnode; } } } return new Selection$1(subgroups, this._parents); } // Given something array like (or null), returns something that is strictly an // array. This is used to ensure that array-like objects passed to d3.selectAll // or selection.selectAll are converted into proper arrays when creating a // selection; we don’t ever want to create a selection backed by a live // HTMLCollection or NodeList. However, note that selection.selectAll will use a // static NodeList as a group, since it safely derived from querySelectorAll. function array$4(x) { return x == null ? [] : Array.isArray(x) ? x : Array.from(x); } function empty$1() { return []; } function selectorAll(selector) { return selector == null ? empty$1 : function() { return this.querySelectorAll(selector); }; } function arrayAll(select) { return function() { return array$4(select.apply(this, arguments)); }; } function selection_selectAll(select) { if (typeof select === "function") select = arrayAll(select); else select = selectorAll(select); for (var groups = this._groups, m = groups.length, subgroups = [], parents = [], j = 0; j < m; ++j) { for (var group = groups[j], n = group.length, node, i = 0; i < n; ++i) { if (node = group[i]) { subgroups.push(select.call(node, node.__data__, i, group)); parents.push(node); } } } return new Selection$1(subgroups, parents); } function matcher(selector) { return function() { return this.matches(selector); }; } function childMatcher(selector) { return function(node) { return node.matches(selector); }; } var find$1 = Array.prototype.find; function childFind(match) { return function() { return find$1.call(this.children, match); }; } function childFirst() { return this.firstElementChild; } function selection_selectChild(match) { return this.select(match == null ? childFirst : childFind(typeof match === "function" ? match : childMatcher(match))); } var filter = Array.prototype.filter; function children() { return Array.from(this.children); } function childrenFilter(match) { return function() { return filter.call(this.children, match); }; } function selection_selectChildren(match) { return this.selectAll(match == null ? children : childrenFilter(typeof match === "function" ? match : childMatcher(match))); } function selection_filter(match) { if (typeof match !== "function") match = matcher(match); for (var groups = this._groups, m = groups.length, subgroups = new Array(m), j = 0; j < m; ++j) { for (var group = groups[j], n = group.length, subgroup = subgroups[j] = [], node, i = 0; i < n; ++i) { if ((node = group[i]) && match.call(node, node.__data__, i, group)) { subgroup.push(node); } } } return new Selection$1(subgroups, this._parents); } function sparse(update) { return new Array(update.length); } function selection_enter() { return new Selection$1(this._enter || this._groups.map(sparse), this._parents); } function EnterNode(parent, datum) { this.ownerDocument = parent.ownerDocument; this.namespaceURI = parent.namespaceURI; this._next = null; this._parent = parent; this.__data__ = datum; } EnterNode.prototype = { constructor: EnterNode, appendChild: function(child) { return this._parent.insertBefore(child, this._next); }, insertBefore: function(child, next) { return this._parent.insertBefore(child, next); }, querySelector: function(selector) { return this._parent.querySelector(selector); }, querySelectorAll: function(selector) { return this._parent.querySelectorAll(selector); } }; function constant$a(x) { return function() { return x; }; } function bindIndex(parent, group, enter, update, exit, data) { var i = 0, node, groupLength = group.length, dataLength = data.length; // Put any non-null nodes that fit into update. // Put any null nodes into enter. // Put any remaining data into enter. for (; i < dataLength; ++i) { if (node = group[i]) { node.__data__ = data[i]; update[i] = node; } else { enter[i] = new EnterNode(parent, data[i]); } } // Put any non-null nodes that don’t fit into exit. for (; i < groupLength; ++i) { if (node = group[i]) { exit[i] = node; } } } function bindKey(parent, group, enter, update, exit, data, key) { var i, node, nodeByKeyValue = new Map, groupLength = group.length, dataLength = data.length, keyValues = new Array(groupLength), keyValue; // Compute the key for each node. // If multiple nodes have the same key, the duplicates are added to exit. for (i = 0; i < groupLength; ++i) { if (node = group[i]) { keyValues[i] = keyValue = key.call(node, node.__data__, i, group) + ""; if (nodeByKeyValue.has(keyValue)) { exit[i] = node; } else { nodeByKeyValue.set(keyValue, node); } } } // Compute the key for each datum. // If there a node associated with this key, join and add it to update. // If there is not (or the key is a duplicate), add it to enter. for (i = 0; i < dataLength; ++i) { keyValue = key.call(parent, data[i], i, data) + ""; if (node = nodeByKeyValue.get(keyValue)) { update[i] = node; node.__data__ = data[i]; nodeByKeyValue.delete(keyValue); } else { enter[i] = new EnterNode(parent, data[i]); } } // Add any remaining nodes that were not bound to data to exit. for (i = 0; i < groupLength; ++i) { if ((node = group[i]) && (nodeByKeyValue.get(keyValues[i]) === node)) { exit[i] = node; } } } function datum(node) { return node.__data__; } function selection_data(value, key) { if (!arguments.length) return Array.from(this, datum); var bind = key ? bindKey : bindIndex, parents = this._parents, groups = this._groups; if (typeof value !== "function") value = constant$a(value); for (var m = groups.length, update = new Array(m), enter = new Array(m), exit = new Array(m), j = 0; j < m; ++j) { var parent = parents[j], group = groups[j], groupLength = group.length, data = arraylike(value.call(parent, parent && parent.__data__, j, parents)), dataLength = data.length, enterGroup = enter[j] = new Array(dataLength), updateGroup = update[j] = new Array(dataLength), exitGroup = exit[j] = new Array(groupLength); bind(parent, group, enterGroup, updateGroup, exitGroup, data, key); // Now connect the enter nodes to their following update node, such that // appendChild can insert the materialized enter node before this node, // rather than at the end of the parent node. for (var i0 = 0, i1 = 0, previous, next; i0 < dataLength; ++i0) { if (previous = enterGroup[i0]) { if (i0 >= i1) i1 = i0 + 1; while (!(next = updateGroup[i1]) && ++i1 < dataLength); previous._next = next || null; } } } update = new Selection$1(update, parents); update._enter = enter; update._exit = exit; return update; } // Given some data, this returns an array-like view of it: an object that // exposes a length property and allows numeric indexing. Note that unlike // selectAll, this isn’t worried about “live” collections because the resulting // array will only be used briefly while data is being bound. (It is possible to // cause the data to change while iterating by using a key function, but please // don’t; we’d rather avoid a gratuitous copy.) function arraylike(data) { return typeof data === "object" && "length" in data ? data // Array, TypedArray, NodeList, array-like : Array.from(data); // Map, Set, iterable, string, or anything else } function selection_exit() { return new Selection$1(this._exit || this._groups.map(sparse), this._parents); } function selection_join(onenter, onupdate, onexit) { var enter = this.enter(), update = this, exit = this.exit(); if (typeof onenter === "function") { enter = onenter(enter); if (enter) enter = enter.selection(); } else { enter = enter.append(onenter + ""); } if (onupdate != null) { update = onupdate(update); if (update) update = update.selection(); } if (onexit == null) exit.remove(); else onexit(exit); return enter && update ? enter.merge(update).order() : update; } function selection_merge(context) { var selection = context.selection ? context.selection() : context; for (var groups0 = this._groups, groups1 = selection._groups, m0 = groups0.length, m1 = groups1.length, m = Math.min(m0, m1), merges = new Array(m0), j = 0; j < m; ++j) { for (var group0 = groups0[j], group1 = groups1[j], n = group0.length, merge = merges[j] = new Array(n), node, i = 0; i < n; ++i) { if (node = group0[i] || group1[i]) { merge[i] = node; } } } for (; j < m0; ++j) { merges[j] = groups0[j]; } return new Selection$1(merges, this._parents); } function selection_order() { for (var groups = this._groups, j = -1, m = groups.length; ++j < m;) { for (var group = groups[j], i = group.length - 1, next = group[i], node; --i >= 0;) { if (node = group[i]) { if (next && node.compareDocumentPosition(next) ^ 4) next.parentNode.insertBefore(node, next); next = node; } } } return this; } function selection_sort(compare) { if (!compare) compare = ascending$2; function compareNode(a, b) { return a && b ? compare(a.__data__, b.__data__) : !a - !b; } for (var groups = this._groups, m = groups.length, sortgroups = new Array(m), j = 0; j < m; ++j) { for (var group = groups[j], n = group.length, sortgroup = sortgroups[j] = new Array(n), node, i = 0; i < n; ++i) { if (node = group[i]) { sortgroup[i] = node; } } sortgroup.sort(compareNode); } return new Selection$1(sortgroups, this._parents).order(); } function ascending$2(a, b) { return a < b ? -1 : a > b ? 1 : a >= b ? 0 : NaN; } function selection_call() { var callback = arguments[0]; arguments[0] = this; callback.apply(null, arguments); return this; } function selection_nodes() { return Array.from(this); } function selection_node() { for (var groups = this._groups, j = 0, m = groups.length; j < m; ++j) { for (var group = groups[j], i = 0, n = group.length; i < n; ++i) { var node = group[i]; if (node) return node; } } return null; } function selection_size() { let size = 0; for (const node of this) ++size; // eslint-disable-line no-unused-vars return size; } function selection_empty() { return !this.node(); } function selection_each(callback) { for (var groups = this._groups, j = 0, m = groups.length; j < m; ++j) { for (var group = groups[j], i = 0, n = group.length, node; i < n; ++i) { if (node = group[i]) callback.call(node, node.__data__, i, group); } } return this; } function attrRemove$1(name) { return function() { this.removeAttribute(name); }; } function attrRemoveNS$1(fullname) { return function() { this.removeAttributeNS(fullname.space, fullname.local); }; } function attrConstant$1(name, value) { return function() { this.setAttribute(name, value); }; } function attrConstantNS$1(fullname, value) { return function() { this.setAttributeNS(fullname.space, fullname.local, value); }; } function attrFunction$1(name, value) { return function() { var v = value.apply(this, arguments); if (v == null) this.removeAttribute(name); else this.setAttribute(name, v); }; } function attrFunctionNS$1(fullname, value) { return function() { var v = value.apply(this, arguments); if (v == null) this.removeAttributeNS(fullname.space, fullname.local); else this.setAttributeNS(fullname.space, fullname.local, v); }; } function selection_attr(name, value) { var fullname = namespace(name); if (arguments.length < 2) { var node = this.node(); return fullname.local ? node.getAttributeNS(fullname.space, fullname.local) : node.getAttribute(fullname); } return this.each((value == null ? (fullname.local ? attrRemoveNS$1 : attrRemove$1) : (typeof value === "function" ? (fullname.local ? attrFunctionNS$1 : attrFunction$1) : (fullname.local ? attrConstantNS$1 : attrConstant$1)))(fullname, value)); } function defaultView(node) { return (node.ownerDocument && node.ownerDocument.defaultView) // node is a Node || (node.document && node) // node is a Window || node.defaultView; // node is a Document } function styleRemove$1(name) { return function() { this.style.removeProperty(name); }; } function styleConstant$1(name, value, priority) { return function() { this.style.setProperty(name, value, priority); }; } function styleFunction$1(name, value, priority) { return function() { var v = value.apply(this, arguments); if (v == null) this.style.removeProperty(name); else this.style.setProperty(name, v, priority); }; } function selection_style(name, value, priority) { return arguments.length > 1 ? this.each((value == null ? styleRemove$1 : typeof value === "function" ? styleFunction$1 : styleConstant$1)(name, value, priority == null ? "" : priority)) : styleValue(this.node(), name); } function styleValue(node, name) { return node.style.getPropertyValue(name) || defaultView(node).getComputedStyle(node, null).getPropertyValue(name); } function propertyRemove(name) { return function() { delete this[name]; }; } function propertyConstant(name, value) { return function() { this[name] = value; }; } function propertyFunction(name, value) { return function() { var v = value.apply(this, arguments); if (v == null) delete this[name]; else this[name] = v; }; } function selection_property(name, value) { return arguments.length > 1 ? this.each((value == null ? propertyRemove : typeof value === "function" ? propertyFunction : propertyConstant)(name, value)) : this.node()[name]; } function classArray(string) { return string.trim().split(/^|\s+/); } function classList(node) { return node.classList || new ClassList(node); } function ClassList(node) { this._node = node; this._names = classArray(node.getAttribute("class") || ""); } ClassList.prototype = { add: function(name) { var i = this._names.indexOf(name); if (i < 0) { this._names.push(name); this._node.setAttribute("class", this._names.join(" ")); } }, remove: function(name) { var i = this._names.indexOf(name); if (i >= 0) { this._names.splice(i, 1); this._node.setAttribute("class", this._names.join(" ")); } }, contains: function(name) { return this._names.indexOf(name) >= 0; } }; function classedAdd(node, names) { var list = classList(node), i = -1, n = names.length; while (++i < n) list.add(names[i]); } function classedRemove(node, names) { var list = classList(node), i = -1, n = names.length; while (++i < n) list.remove(names[i]); } function classedTrue(names) { return function() { classedAdd(this, names); }; } function classedFalse(names) { return function() { classedRemove(this, names); }; } function classedFunction(names, value) { return function() { (value.apply(this, arguments) ? classedAdd : classedRemove)(this, names); }; } function selection_classed(name, value) { var names = classArray(name + ""); if (arguments.length < 2) { var list = classList(this.node()), i = -1, n = names.length; while (++i < n) if (!list.contains(names[i])) return false; return true; } return this.each((typeof value === "function" ? classedFunction : value ? classedTrue : classedFalse)(names, value)); } function textRemove() { this.textContent = ""; } function textConstant$1(value) { return function() { this.textContent = value; }; } function textFunction$1(value) { return function() { var v = value.apply(this, arguments); this.textContent = v == null ? "" : v; }; } function selection_text(value) { return arguments.length ? this.each(value == null ? textRemove : (typeof value === "function" ? textFunction$1 : textConstant$1)(value)) : this.node().textContent; } function htmlRemove() { this.innerHTML = ""; } function htmlConstant(value) { return function() { this.innerHTML = value; }; } function htmlFunction(value) { return function() { var v = value.apply(this, arguments); this.innerHTML = v == null ? "" : v; }; } function selection_html(value) { return arguments.length ? this.each(value == null ? htmlRemove : (typeof value === "function" ? htmlFunction : htmlConstant)(value)) : this.node().innerHTML; } function raise() { if (this.nextSibling) this.parentNode.appendChild(this); } function selection_raise() { return this.each(raise); } function lower() { if (this.previousSibling) this.parentNode.insertBefore(this, this.parentNode.firstChild); } function selection_lower() { return this.each(lower); } function selection_append(name) { var create = typeof name === "function" ? name : creator(name); return this.select(function() { return this.appendChild(create.apply(this, arguments)); }); } function constantNull() { return null; } function selection_insert(name, before) { var create = typeof name === "function" ? name : creator(name), select = before == null ? constantNull : typeof before === "function" ? before : selector(before); return this.select(function() { return this.insertBefore(create.apply(this, arguments), select.apply(this, arguments) || null); }); } function remove() { var parent = this.parentNode; if (parent) parent.removeChild(this); } function selection_remove() { return this.each(remove); } function selection_cloneShallow() { var clone = this.cloneNode(false), parent = this.parentNode; return parent ? parent.insertBefore(clone, this.nextSibling) : clone; } function selection_cloneDeep() { var clone = this.cloneNode(true), parent = this.parentNode; return parent ? parent.insertBefore(clone, this.nextSibling) : clone; } function selection_clone(deep) { return this.select(deep ? selection_cloneDeep : selection_cloneShallow); } function selection_datum(value) { return arguments.length ? this.property("__data__", value) : this.node().__data__; } function contextListener(listener) { return function(event) { listener.call(this, event, this.__data__); }; } function parseTypenames(typenames) { return typenames.trim().split(/^|\s+/).map(function(t) { var name = "", i = t.indexOf("."); if (i >= 0) name = t.slice(i + 1), t = t.slice(0, i); return {type: t, name: name}; }); } function onRemove(typename) { return function() { var on = this.__on; if (!on) return; for (var j = 0, i = -1, m = on.length, o; j < m; ++j) { if (o = on[j], (!typename.type || o.type === typename.type) && o.name === typename.name) { this.removeEventListener(o.type, o.listener, o.options); } else { on[++i] = o; } } if (++i) on.length = i; else delete this.__on; }; } function onAdd(typename, value, options) { return function() { var on = this.__on, o, listener = contextListener(value); if (on) for (var j = 0, m = on.length; j < m; ++j) { if ((o = on[j]).type === typename.type && o.name === typename.name) { this.removeEventListener(o.type, o.listener, o.options); this.addEventListener(o.type, o.listener = listener, o.options = options); o.value = value; return; } } this.addEventListener(typename.type, listener, options); o = {type: typename.type, name: typename.name, value: value, listener: listener, options: options}; if (!on) this.__on = [o]; else on.push(o); }; } function selection_on(typename, value, options) { var typenames = parseTypenames(typename + ""), i, n = typenames.length, t; if (arguments.length < 2) { var on = this.node().__on; if (on) for (var j = 0, m = on.length, o; j < m; ++j) { for (i = 0, o = on[j]; i < n; ++i) { if ((t = typenames[i]).type === o.type && t.name === o.name) { return o.value; } } } return; } on = value ? onAdd : onRemove; for (i = 0; i < n; ++i) this.each(on(typenames[i], value, options)); return this; } function dispatchEvent(node, type, params) { var window = defaultView(node), event = window.CustomEvent; if (typeof event === "function") { event = new event(type, params); } else { event = window.document.createEvent("Event"); if (params) event.initEvent(type, params.bubbles, params.cancelable), event.detail = params.detail; else event.initEvent(type, false, false); } node.dispatchEvent(event); } function dispatchConstant(type, params) { return function() { return dispatchEvent(this, type, params); }; } function dispatchFunction(type, params) { return function() { return dispatchEvent(this, type, params.apply(this, arguments)); }; } function selection_dispatch(type, params) { return this.each((typeof params === "function" ? dispatchFunction : dispatchConstant)(type, params)); } function* selection_iterator() { for (var groups = this._groups, j = 0, m = groups.length; j < m; ++j) { for (var group = groups[j], i = 0, n = group.length, node; i < n; ++i) { if (node = group[i]) yield node; } } } var root$1 = [null]; function Selection$1(groups, parents) { this._groups = groups; this._parents = parents; } function selection() { return new Selection$1([[document.documentElement]], root$1); } function selection_selection() { return this; } Selection$1.prototype = selection.prototype = { constructor: Selection$1, select: selection_select, selectAll: selection_selectAll, selectChild: selection_selectChild, selectChildren: selection_selectChildren, filter: selection_filter, data: selection_data, enter: selection_enter, exit: selection_exit, join: selection_join, merge: selection_merge, selection: selection_selection, order: selection_order, sort: selection_sort, call: selection_call, nodes: selection_nodes, node: selection_node, size: selection_size, empty: selection_empty, each: selection_each, attr: selection_attr, style: selection_style, property: selection_property, classed: selection_classed, text: selection_text, html: selection_html, raise: selection_raise, lower: selection_lower, append: selection_append, insert: selection_insert, remove: selection_remove, clone: selection_clone, datum: selection_datum, on: selection_on, dispatch: selection_dispatch, [Symbol.iterator]: selection_iterator }; function select(selector) { return typeof selector === "string" ? new Selection$1([[document.querySelector(selector)]], [document.documentElement]) : new Selection$1([[selector]], root$1); } function create$1(name) { return select(creator(name).call(document.documentElement)); } var nextId = 0; function local$1() { return new Local; } function Local() { this._ = "@" + (++nextId).toString(36); } Local.prototype = local$1.prototype = { constructor: Local, get: function(node) { var id = this._; while (!(id in node)) if (!(node = node.parentNode)) return; return node[id]; }, set: function(node, value) { return node[this._] = value; }, remove: function(node) { return this._ in node && delete node[this._]; }, toString: function() { return this._; } }; function sourceEvent(event) { let sourceEvent; while (sourceEvent = event.sourceEvent) event = sourceEvent; return event; } function pointer(event, node) { event = sourceEvent(event); if (node === undefined) node = event.currentTarget; if (node) { var svg = node.ownerSVGElement || node; if (svg.createSVGPoint) { var point = svg.createSVGPoint(); point.x = event.clientX, point.y = event.clientY; point = point.matrixTransform(node.getScreenCTM().inverse()); return [point.x, point.y]; } if (node.getBoundingClientRect) { var rect = node.getBoundingClientRect(); return [event.clientX - rect.left - node.clientLeft, event.clientY - rect.top - node.clientTop]; } } return [event.pageX, event.pageY]; } function pointers(events, node) { if (events.target) { // i.e., instanceof Event, not TouchList or iterable events = sourceEvent(events); if (node === undefined) node = events.currentTarget; events = events.touches || [events]; } return Array.from(events, event => pointer(event, node)); } function selectAll(selector) { return typeof selector === "string" ? new Selection$1([document.querySelectorAll(selector)], [document.documentElement]) : new Selection$1([array$4(selector)], root$1); } // These are typically used in conjunction with noevent to ensure that we can // preventDefault on the event. const nonpassive = {passive: false}; const nonpassivecapture = {capture: true, passive: false}; function nopropagation$2(event) { event.stopImmediatePropagation(); } function noevent$2(event) { event.preventDefault(); event.stopImmediatePropagation(); } function dragDisable(view) { var root = view.document.documentElement, selection = select(view).on("dragstart.drag", noevent$2, nonpassivecapture); if ("onselectstart" in root) { selection.on("selectstart.drag", noevent$2, nonpassivecapture); } else { root.__noselect = root.style.MozUserSelect; root.style.MozUserSelect = "none"; } } function yesdrag(view, noclick) { var root = view.document.documentElement, selection = select(view).on("dragstart.drag", null); if (noclick) { selection.on("click.drag", noevent$2, nonpassivecapture); setTimeout(function() { selection.on("click.drag", null); }, 0); } if ("onselectstart" in root) { selection.on("selectstart.drag", null); } else { root.style.MozUserSelect = root.__noselect; delete root.__noselect; } } var constant$9 = x => () => x; function DragEvent(type, { sourceEvent, subject, target, identifier, active, x, y, dx, dy, dispatch }) { Object.defineProperties(this, { type: {value: type, enumerable: true, configurable: true}, sourceEvent: {value: sourceEvent, enumerable: true, configurable: true}, subject: {value: subject, enumerable: true, configurable: true}, target: {value: target, enumerable: true, configurable: true}, identifier: {value: identifier, enumerable: true, configurable: true}, active: {value: active, enumerable: true, configurable: true}, x: {value: x, enumerable: true, configurable: true}, y: {value: y, enumerable: true, configurable: true}, dx: {value: dx, enumerable: true, configurable: true}, dy: {value: dy, enumerable: true, configurable: true}, _: {value: dispatch} }); } DragEvent.prototype.on = function() { var value = this._.on.apply(this._, arguments); return value === this._ ? this : value; }; // Ignore right-click, since that should open the context menu. function defaultFilter$2(event) { return !event.ctrlKey && !event.button; } function defaultContainer() { return this.parentNode; } function defaultSubject(event, d) { return d == null ? {x: event.x, y: event.y} : d; } function defaultTouchable$2() { return navigator.maxTouchPoints || ("ontouchstart" in this); } function drag() { var filter = defaultFilter$2, container = defaultContainer, subject = defaultSubject, touchable = defaultTouchable$2, gestures = {}, listeners = dispatch("start", "drag", "end"), active = 0, mousedownx, mousedowny, mousemoving, touchending, clickDistance2 = 0; function drag(selection) { selection .on("mousedown.drag", mousedowned) .filter(touchable) .on("touchstart.drag", touchstarted) .on("touchmove.drag", touchmoved, nonpassive) .on("touchend.drag touchcancel.drag", touchended) .style("touch-action", "none") .style("-webkit-tap-highlight-color", "rgba(0,0,0,0)"); } function mousedowned(event, d) { if (touchending || !filter.call(this, event, d)) return; var gesture = beforestart(this, container.call(this, event, d), event, d, "mouse"); if (!gesture) return; select(event.view) .on("mousemove.drag", mousemoved, nonpassivecapture) .on("mouseup.drag", mouseupped, nonpassivecapture); dragDisable(event.view); nopropagation$2(event); mousemoving = false; mousedownx = event.clientX; mousedowny = event.clientY; gesture("start", event); } function mousemoved(event) { noevent$2(event); if (!mousemoving) { var dx = event.clientX - mousedownx, dy = event.clientY - mousedowny; mousemoving = dx * dx + dy * dy > clickDistance2; } gestures.mouse("drag", event); } function mouseupped(event) { select(event.view).on("mousemove.drag mouseup.drag", null); yesdrag(event.view, mousemoving); noevent$2(event); gestures.mouse("end", event); } function touchstarted(event, d) { if (!filter.call(this, event, d)) return; var touches = event.changedTouches, c = container.call(this, event, d), n = touches.length, i, gesture; for (i = 0; i < n; ++i) { if (gesture = beforestart(this, c, event, d, touches[i].identifier, touches[i])) { nopropagation$2(event); gesture("start", event, touches[i]); } } } function touchmoved(event) { var touches = event.changedTouches, n = touches.length, i, gesture; for (i = 0; i < n; ++i) { if (gesture = gestures[touches[i].identifier]) { noevent$2(event); gesture("drag", event, touches[i]); } } } function touchended(event) { var touches = event.changedTouches, n = touches.length, i, gesture; if (touchending) clearTimeout(touchending); touchending = setTimeout(function() { touchending = null; }, 500); // Ghost clicks are delayed! for (i = 0; i < n; ++i) { if (gesture = gestures[touches[i].identifier]) { nopropagation$2(event); gesture("end", event, touches[i]); } } } function beforestart(that, container, event, d, identifier, touch) { var dispatch = listeners.copy(), p = pointer(touch || event, container), dx, dy, s; if ((s = subject.call(that, new DragEvent("beforestart", { sourceEvent: event, target: drag, identifier, active, x: p[0], y: p[1], dx: 0, dy: 0, dispatch }), d)) == null) return; dx = s.x - p[0] || 0; dy = s.y - p[1] || 0; return function gesture(type, event, touch) { var p0 = p, n; switch (type) { case "start": gestures[identifier] = gesture, n = active++; break; case "end": delete gestures[identifier], --active; // falls through case "drag": p = pointer(touch || event, container), n = active; break; } dispatch.call( type, that, new DragEvent(type, { sourceEvent: event, subject: s, target: drag, identifier, active: n, x: p[0] + dx, y: p[1] + dy, dx: p[0] - p0[0], dy: p[1] - p0[1], dispatch }), d ); }; } drag.filter = function(_) { return arguments.length ? (filter = typeof _ === "function" ? _ : constant$9(!!_), drag) : filter; }; drag.container = function(_) { return arguments.length ? (container = typeof _ === "function" ? _ : constant$9(_), drag) : container; }; drag.subject = function(_) { return arguments.length ? (subject = typeof _ === "function" ? _ : constant$9(_), drag) : subject; }; drag.touchable = function(_) { return arguments.length ? (touchable = typeof _ === "function" ? _ : constant$9(!!_), drag) : touchable; }; drag.on = function() { var value = listeners.on.apply(listeners, arguments); return value === listeners ? drag : value; }; drag.clickDistance = function(_) { return arguments.length ? (clickDistance2 = (_ = +_) * _, drag) : Math.sqrt(clickDistance2); }; return drag; } function define(constructor, factory, prototype) { constructor.prototype = factory.prototype = prototype; prototype.constructor = constructor; } function extend(parent, definition) { var prototype = Object.create(parent.prototype); for (var key in definition) prototype[key] = definition[key]; return prototype; } function Color() {} var darker = 0.7; var brighter = 1 / darker; var reI = "\\s*([+-]?\\d+)\\s*", reN = "\\s*([+-]?(?:\\d*\\.)?\\d+(?:[eE][+-]?\\d+)?)\\s*", reP = "\\s*([+-]?(?:\\d*\\.)?\\d+(?:[eE][+-]?\\d+)?)%\\s*", reHex = /^#([0-9a-f]{3,8})$/, reRgbInteger = new RegExp(`^rgb\\(${reI},${reI},${reI}\\)$`), reRgbPercent = new RegExp(`^rgb\\(${reP},${reP},${reP}\\)$`), reRgbaInteger = new RegExp(`^rgba\\(${reI},${reI},${reI},${reN}\\)$`), reRgbaPercent = new RegExp(`^rgba\\(${reP},${reP},${reP},${reN}\\)$`), reHslPercent = new RegExp(`^hsl\\(${reN},${reP},${reP}\\)$`), reHslaPercent = new RegExp(`^hsla\\(${reN},${reP},${reP},${reN}\\)$`); var named = { aliceblue: 0xf0f8ff, antiquewhite: 0xfaebd7, aqua: 0x00ffff, aquamarine: 0x7fffd4, azure: 0xf0ffff, beige: 0xf5f5dc, bisque: 0xffe4c4, black: 0x000000, blanchedalmond: 0xffebcd, blue: 0x0000ff, blueviolet: 0x8a2be2, brown: 0xa52a2a, burlywood: 0xdeb887, cadetblue: 0x5f9ea0, chartreuse: 0x7fff00, chocolate: 0xd2691e, coral: 0xff7f50, cornflowerblue: 0x6495ed, cornsilk: 0xfff8dc, crimson: 0xdc143c, cyan: 0x00ffff, darkblue: 0x00008b, darkcyan: 0x008b8b, darkgoldenrod: 0xb8860b, darkgray: 0xa9a9a9, darkgreen: 0x006400, darkgrey: 0xa9a9a9, darkkhaki: 0xbdb76b, darkmagenta: 0x8b008b, darkolivegreen: 0x556b2f, darkorange: 0xff8c00, darkorchid: 0x9932cc, darkred: 0x8b0000, darksalmon: 0xe9967a, darkseagreen: 0x8fbc8f, darkslateblue: 0x483d8b, darkslategray: 0x2f4f4f, darkslategrey: 0x2f4f4f, darkturquoise: 0x00ced1, darkviolet: 0x9400d3, deeppink: 0xff1493, deepskyblue: 0x00bfff, dimgray: 0x696969, dimgrey: 0x696969, dodgerblue: 0x1e90ff, firebrick: 0xb22222, floralwhite: 0xfffaf0, forestgreen: 0x228b22, fuchsia: 0xff00ff, gainsboro: 0xdcdcdc, ghostwhite: 0xf8f8ff, gold: 0xffd700, goldenrod: 0xdaa520, gray: 0x808080, green: 0x008000, greenyellow: 0xadff2f, grey: 0x808080, honeydew: 0xf0fff0, hotpink: 0xff69b4, indianred: 0xcd5c5c, indigo: 0x4b0082, ivory: 0xfffff0, khaki: 0xf0e68c, lavender: 0xe6e6fa, lavenderblush: 0xfff0f5, lawngreen: 0x7cfc00, lemonchiffon: 0xfffacd, lightblue: 0xadd8e6, lightcoral: 0xf08080, lightcyan: 0xe0ffff, lightgoldenrodyellow: 0xfafad2, lightgray: 0xd3d3d3, lightgreen: 0x90ee90, lightgrey: 0xd3d3d3, lightpink: 0xffb6c1, lightsalmon: 0xffa07a, lightseagreen: 0x20b2aa, lightskyblue: 0x87cefa, lightslategray: 0x778899, lightslategrey: 0x778899, lightsteelblue: 0xb0c4de, lightyellow: 0xffffe0, lime: 0x00ff00, limegreen: 0x32cd32, linen: 0xfaf0e6, magenta: 0xff00ff, maroon: 0x800000, mediumaquamarine: 0x66cdaa, mediumblue: 0x0000cd, mediumorchid: 0xba55d3, mediumpurple: 0x9370db, mediumseagreen: 0x3cb371, mediumslateblue: 0x7b68ee, mediumspringgreen: 0x00fa9a, mediumturquoise: 0x48d1cc, mediumvioletred: 0xc71585, midnightblue: 0x191970, mintcream: 0xf5fffa, mistyrose: 0xffe4e1, moccasin: 0xffe4b5, navajowhite: 0xffdead, navy: 0x000080, oldlace: 0xfdf5e6, olive: 0x808000, olivedrab: 0x6b8e23, orange: 0xffa500, orangered: 0xff4500, orchid: 0xda70d6, palegoldenrod: 0xeee8aa, palegreen: 0x98fb98, paleturquoise: 0xafeeee, palevioletred: 0xdb7093, papayawhip: 0xffefd5, peachpuff: 0xffdab9, peru: 0xcd853f, pink: 0xffc0cb, plum: 0xdda0dd, powderblue: 0xb0e0e6, purple: 0x800080, rebeccapurple: 0x663399, red: 0xff0000, rosybrown: 0xbc8f8f, royalblue: 0x4169e1, saddlebrown: 0x8b4513, salmon: 0xfa8072, sandybrown: 0xf4a460, seagreen: 0x2e8b57, seashell: 0xfff5ee, sienna: 0xa0522d, silver: 0xc0c0c0, skyblue: 0x87ceeb, slateblue: 0x6a5acd, slategray: 0x708090, slategrey: 0x708090, snow: 0xfffafa, springgreen: 0x00ff7f, steelblue: 0x4682b4, tan: 0xd2b48c, teal: 0x008080, thistle: 0xd8bfd8, tomato: 0xff6347, turquoise: 0x40e0d0, violet: 0xee82ee, wheat: 0xf5deb3, white: 0xffffff, whitesmoke: 0xf5f5f5, yellow: 0xffff00, yellowgreen: 0x9acd32 }; define(Color, color, { copy(channels) { return Object.assign(new this.constructor, this, channels); }, displayable() { return this.rgb().displayable(); }, hex: color_formatHex, // Deprecated! Use color.formatHex. formatHex: color_formatHex, formatHex8: color_formatHex8, formatHsl: color_formatHsl, formatRgb: color_formatRgb, toString: color_formatRgb }); function color_formatHex() { return this.rgb().formatHex(); } function color_formatHex8() { return this.rgb().formatHex8(); } function color_formatHsl() { return hslConvert(this).formatHsl(); } function color_formatRgb() { return this.rgb().formatRgb(); } function color(format) { var m, l; format = (format + "").trim().toLowerCase(); return (m = reHex.exec(format)) ? (l = m[1].length, m = parseInt(m[1], 16), l === 6 ? rgbn(m) // #ff0000 : l === 3 ? new Rgb((m >> 8 & 0xf) | (m >> 4 & 0xf0), (m >> 4 & 0xf) | (m & 0xf0), ((m & 0xf) << 4) | (m & 0xf), 1) // #f00 : l === 8 ? rgba(m >> 24 & 0xff, m >> 16 & 0xff, m >> 8 & 0xff, (m & 0xff) / 0xff) // #ff000000 : l === 4 ? rgba((m >> 12 & 0xf) | (m >> 8 & 0xf0), (m >> 8 & 0xf) | (m >> 4 & 0xf0), (m >> 4 & 0xf) | (m & 0xf0), (((m & 0xf) << 4) | (m & 0xf)) / 0xff) // #f000 : null) // invalid hex : (m = reRgbInteger.exec(format)) ? new Rgb(m[1], m[2], m[3], 1) // rgb(255, 0, 0) : (m = reRgbPercent.exec(format)) ? new Rgb(m[1] * 255 / 100, m[2] * 255 / 100, m[3] * 255 / 100, 1) // rgb(100%, 0%, 0%) : (m = reRgbaInteger.exec(format)) ? rgba(m[1], m[2], m[3], m[4]) // rgba(255, 0, 0, 1) : (m = reRgbaPercent.exec(format)) ? rgba(m[1] * 255 / 100, m[2] * 255 / 100, m[3] * 255 / 100, m[4]) // rgb(100%, 0%, 0%, 1) : (m = reHslPercent.exec(format)) ? hsla(m[1], m[2] / 100, m[3] / 100, 1) // hsl(120, 50%, 50%) : (m = reHslaPercent.exec(format)) ? hsla(m[1], m[2] / 100, m[3] / 100, m[4]) // hsla(120, 50%, 50%, 1) : named.hasOwnProperty(format) ? rgbn(named[format]) // eslint-disable-line no-prototype-builtins : format === "transparent" ? new Rgb(NaN, NaN, NaN, 0) : null; } function rgbn(n) { return new Rgb(n >> 16 & 0xff, n >> 8 & 0xff, n & 0xff, 1); } function rgba(r, g, b, a) { if (a <= 0) r = g = b = NaN; return new Rgb(r, g, b, a); } function rgbConvert(o) { if (!(o instanceof Color)) o = color(o); if (!o) return new Rgb; o = o.rgb(); return new Rgb(o.r, o.g, o.b, o.opacity); } function rgb(r, g, b, opacity) { return arguments.length === 1 ? rgbConvert(r) : new Rgb(r, g, b, opacity == null ? 1 : opacity); } function Rgb(r, g, b, opacity) { this.r = +r; this.g = +g; this.b = +b; this.opacity = +opacity; } define(Rgb, rgb, extend(Color, { brighter(k) { k = k == null ? brighter : Math.pow(brighter, k); return new Rgb(this.r * k, this.g * k, this.b * k, this.opacity); }, darker(k) { k = k == null ? darker : Math.pow(darker, k); return new Rgb(this.r * k, this.g * k, this.b * k, this.opacity); }, rgb() { return this; }, clamp() { return new Rgb(clampi(this.r), clampi(this.g), clampi(this.b), clampa(this.opacity)); }, displayable() { return (-0.5 <= this.r && this.r < 255.5) && (-0.5 <= this.g && this.g < 255.5) && (-0.5 <= this.b && this.b < 255.5) && (0 <= this.opacity && this.opacity <= 1); }, hex: rgb_formatHex, // Deprecated! Use color.formatHex. formatHex: rgb_formatHex, formatHex8: rgb_formatHex8, formatRgb: rgb_formatRgb, toString: rgb_formatRgb })); function rgb_formatHex() { return `#${hex(this.r)}${hex(this.g)}${hex(this.b)}`; } function rgb_formatHex8() { return `#${hex(this.r)}${hex(this.g)}${hex(this.b)}${hex((isNaN(this.opacity) ? 1 : this.opacity) * 255)}`; } function rgb_formatRgb() { const a = clampa(this.opacity); return `${a === 1 ? "rgb(" : "rgba("}${clampi(this.r)}, ${clampi(this.g)}, ${clampi(this.b)}${a === 1 ? ")" : `, ${a})`}`; } function clampa(opacity) { return isNaN(opacity) ? 1 : Math.max(0, Math.min(1, opacity)); } function clampi(value) { return Math.max(0, Math.min(255, Math.round(value) || 0)); } function hex(value) { value = clampi(value); return (value < 16 ? "0" : "") + value.toString(16); } function hsla(h, s, l, a) { if (a <= 0) h = s = l = NaN; else if (l <= 0 || l >= 1) h = s = NaN; else if (s <= 0) h = NaN; return new Hsl(h, s, l, a); } function hslConvert(o) { if (o instanceof Hsl) return new Hsl(o.h, o.s, o.l, o.opacity); if (!(o instanceof Color)) o = color(o); if (!o) return new Hsl; if (o instanceof Hsl) return o; o = o.rgb(); var r = o.r / 255, g = o.g / 255, b = o.b / 255, min = Math.min(r, g, b), max = Math.max(r, g, b), h = NaN, s = max - min, l = (max + min) / 2; if (s) { if (r === max) h = (g - b) / s + (g < b) * 6; else if (g === max) h = (b - r) / s + 2; else h = (r - g) / s + 4; s /= l < 0.5 ? max + min : 2 - max - min; h *= 60; } else { s = l > 0 && l < 1 ? 0 : h; } return new Hsl(h, s, l, o.opacity); } function hsl$2(h, s, l, opacity) { return arguments.length === 1 ? hslConvert(h) : new Hsl(h, s, l, opacity == null ? 1 : opacity); } function Hsl(h, s, l, opacity) { this.h = +h; this.s = +s; this.l = +l; this.opacity = +opacity; } define(Hsl, hsl$2, extend(Color, { brighter(k) { k = k == null ? brighter : Math.pow(brighter, k); return new Hsl(this.h, this.s, this.l * k, this.opacity); }, darker(k) { k = k == null ? darker : Math.pow(darker, k); return new Hsl(this.h, this.s, this.l * k, this.opacity); }, rgb() { var h = this.h % 360 + (this.h < 0) * 360, s = isNaN(h) || isNaN(this.s) ? 0 : this.s, l = this.l, m2 = l + (l < 0.5 ? l : 1 - l) * s, m1 = 2 * l - m2; return new Rgb( hsl2rgb(h >= 240 ? h - 240 : h + 120, m1, m2), hsl2rgb(h, m1, m2), hsl2rgb(h < 120 ? h + 240 : h - 120, m1, m2), this.opacity ); }, clamp() { return new Hsl(clamph(this.h), clampt(this.s), clampt(this.l), clampa(this.opacity)); }, displayable() { return (0 <= this.s && this.s <= 1 || isNaN(this.s)) && (0 <= this.l && this.l <= 1) && (0 <= this.opacity && this.opacity <= 1); }, formatHsl() { const a = clampa(this.opacity); return `${a === 1 ? "hsl(" : "hsla("}${clamph(this.h)}, ${clampt(this.s) * 100}%, ${clampt(this.l) * 100}%${a === 1 ? ")" : `, ${a})`}`; } })); function clamph(value) { value = (value || 0) % 360; return value < 0 ? value + 360 : value; } function clampt(value) { return Math.max(0, Math.min(1, value || 0)); } /* From FvD 13.37, CSS Color Module Level 3 */ function hsl2rgb(h, m1, m2) { return (h < 60 ? m1 + (m2 - m1) * h / 60 : h < 180 ? m2 : h < 240 ? m1 + (m2 - m1) * (240 - h) / 60 : m1) * 255; } const radians$1 = Math.PI / 180; const degrees$2 = 180 / Math.PI; // https://observablehq.com/@mbostock/lab-and-rgb const K = 18, Xn = 0.96422, Yn = 1, Zn = 0.82521, t0$1 = 4 / 29, t1$1 = 6 / 29, t2 = 3 * t1$1 * t1$1, t3 = t1$1 * t1$1 * t1$1; function labConvert(o) { if (o instanceof Lab) return new Lab(o.l, o.a, o.b, o.opacity); if (o instanceof Hcl) return hcl2lab(o); if (!(o instanceof Rgb)) o = rgbConvert(o); var r = rgb2lrgb(o.r), g = rgb2lrgb(o.g), b = rgb2lrgb(o.b), y = xyz2lab((0.2225045 * r + 0.7168786 * g + 0.0606169 * b) / Yn), x, z; if (r === g && g === b) x = z = y; else { x = xyz2lab((0.4360747 * r + 0.3850649 * g + 0.1430804 * b) / Xn); z = xyz2lab((0.0139322 * r + 0.0971045 * g + 0.7141733 * b) / Zn); } return new Lab(116 * y - 16, 500 * (x - y), 200 * (y - z), o.opacity); } function gray(l, opacity) { return new Lab(l, 0, 0, opacity == null ? 1 : opacity); } function lab$1(l, a, b, opacity) { return arguments.length === 1 ? labConvert(l) : new Lab(l, a, b, opacity == null ? 1 : opacity); } function Lab(l, a, b, opacity) { this.l = +l; this.a = +a; this.b = +b; this.opacity = +opacity; } define(Lab, lab$1, extend(Color, { brighter(k) { return new Lab(this.l + K * (k == null ? 1 : k), this.a, this.b, this.opacity); }, darker(k) { return new Lab(this.l - K * (k == null ? 1 : k), this.a, this.b, this.opacity); }, rgb() { var y = (this.l + 16) / 116, x = isNaN(this.a) ? y : y + this.a / 500, z = isNaN(this.b) ? y : y - this.b / 200; x = Xn * lab2xyz(x); y = Yn * lab2xyz(y); z = Zn * lab2xyz(z); return new Rgb( lrgb2rgb( 3.1338561 * x - 1.6168667 * y - 0.4906146 * z), lrgb2rgb(-0.9787684 * x + 1.9161415 * y + 0.0334540 * z), lrgb2rgb( 0.0719453 * x - 0.2289914 * y + 1.4052427 * z), this.opacity ); } })); function xyz2lab(t) { return t > t3 ? Math.pow(t, 1 / 3) : t / t2 + t0$1; } function lab2xyz(t) { return t > t1$1 ? t * t * t : t2 * (t - t0$1); } function lrgb2rgb(x) { return 255 * (x <= 0.0031308 ? 12.92 * x : 1.055 * Math.pow(x, 1 / 2.4) - 0.055); } function rgb2lrgb(x) { return (x /= 255) <= 0.04045 ? x / 12.92 : Math.pow((x + 0.055) / 1.055, 2.4); } function hclConvert(o) { if (o instanceof Hcl) return new Hcl(o.h, o.c, o.l, o.opacity); if (!(o instanceof Lab)) o = labConvert(o); if (o.a === 0 && o.b === 0) return new Hcl(NaN, 0 < o.l && o.l < 100 ? 0 : NaN, o.l, o.opacity); var h = Math.atan2(o.b, o.a) * degrees$2; return new Hcl(h < 0 ? h + 360 : h, Math.sqrt(o.a * o.a + o.b * o.b), o.l, o.opacity); } function lch(l, c, h, opacity) { return arguments.length === 1 ? hclConvert(l) : new Hcl(h, c, l, opacity == null ? 1 : opacity); } function hcl$2(h, c, l, opacity) { return arguments.length === 1 ? hclConvert(h) : new Hcl(h, c, l, opacity == null ? 1 : opacity); } function Hcl(h, c, l, opacity) { this.h = +h; this.c = +c; this.l = +l; this.opacity = +opacity; } function hcl2lab(o) { if (isNaN(o.h)) return new Lab(o.l, 0, 0, o.opacity); var h = o.h * radians$1; return new Lab(o.l, Math.cos(h) * o.c, Math.sin(h) * o.c, o.opacity); } define(Hcl, hcl$2, extend(Color, { brighter(k) { return new Hcl(this.h, this.c, this.l + K * (k == null ? 1 : k), this.opacity); }, darker(k) { return new Hcl(this.h, this.c, this.l - K * (k == null ? 1 : k), this.opacity); }, rgb() { return hcl2lab(this).rgb(); } })); var A = -0.14861, B$1 = +1.78277, C = -0.29227, D$1 = -0.90649, E = +1.97294, ED = E * D$1, EB = E * B$1, BC_DA = B$1 * C - D$1 * A; function cubehelixConvert(o) { if (o instanceof Cubehelix) return new Cubehelix(o.h, o.s, o.l, o.opacity); if (!(o instanceof Rgb)) o = rgbConvert(o); var r = o.r / 255, g = o.g / 255, b = o.b / 255, l = (BC_DA * b + ED * r - EB * g) / (BC_DA + ED - EB), bl = b - l, k = (E * (g - l) - C * bl) / D$1, s = Math.sqrt(k * k + bl * bl) / (E * l * (1 - l)), // NaN if l=0 or l=1 h = s ? Math.atan2(k, bl) * degrees$2 - 120 : NaN; return new Cubehelix(h < 0 ? h + 360 : h, s, l, o.opacity); } function cubehelix$3(h, s, l, opacity) { return arguments.length === 1 ? cubehelixConvert(h) : new Cubehelix(h, s, l, opacity == null ? 1 : opacity); } function Cubehelix(h, s, l, opacity) { this.h = +h; this.s = +s; this.l = +l; this.opacity = +opacity; } define(Cubehelix, cubehelix$3, extend(Color, { brighter(k) { k = k == null ? brighter : Math.pow(brighter, k); return new Cubehelix(this.h, this.s, this.l * k, this.opacity); }, darker(k) { k = k == null ? darker : Math.pow(darker, k); return new Cubehelix(this.h, this.s, this.l * k, this.opacity); }, rgb() { var h = isNaN(this.h) ? 0 : (this.h + 120) * radians$1, l = +this.l, a = isNaN(this.s) ? 0 : this.s * l * (1 - l), cosh = Math.cos(h), sinh = Math.sin(h); return new Rgb( 255 * (l + a * (A * cosh + B$1 * sinh)), 255 * (l + a * (C * cosh + D$1 * sinh)), 255 * (l + a * (E * cosh)), this.opacity ); } })); function basis$1(t1, v0, v1, v2, v3) { var t2 = t1 * t1, t3 = t2 * t1; return ((1 - 3 * t1 + 3 * t2 - t3) * v0 + (4 - 6 * t2 + 3 * t3) * v1 + (1 + 3 * t1 + 3 * t2 - 3 * t3) * v2 + t3 * v3) / 6; } function basis$2(values) { var n = values.length - 1; return function(t) { var i = t <= 0 ? (t = 0) : t >= 1 ? (t = 1, n - 1) : Math.floor(t * n), v1 = values[i], v2 = values[i + 1], v0 = i > 0 ? values[i - 1] : 2 * v1 - v2, v3 = i < n - 1 ? values[i + 2] : 2 * v2 - v1; return basis$1((t - i / n) * n, v0, v1, v2, v3); }; } function basisClosed$1(values) { var n = values.length; return function(t) { var i = Math.floor(((t %= 1) < 0 ? ++t : t) * n), v0 = values[(i + n - 1) % n], v1 = values[i % n], v2 = values[(i + 1) % n], v3 = values[(i + 2) % n]; return basis$1((t - i / n) * n, v0, v1, v2, v3); }; } var constant$8 = x => () => x; function linear$2(a, d) { return function(t) { return a + t * d; }; } function exponential$1(a, b, y) { return a = Math.pow(a, y), b = Math.pow(b, y) - a, y = 1 / y, function(t) { return Math.pow(a + t * b, y); }; } function hue$1(a, b) { var d = b - a; return d ? linear$2(a, d > 180 || d < -180 ? d - 360 * Math.round(d / 360) : d) : constant$8(isNaN(a) ? b : a); } function gamma$1(y) { return (y = +y) === 1 ? nogamma : function(a, b) { return b - a ? exponential$1(a, b, y) : constant$8(isNaN(a) ? b : a); }; } function nogamma(a, b) { var d = b - a; return d ? linear$2(a, d) : constant$8(isNaN(a) ? b : a); } var interpolateRgb = (function rgbGamma(y) { var color = gamma$1(y); function rgb$1(start, end) { var r = color((start = rgb(start)).r, (end = rgb(end)).r), g = color(start.g, end.g), b = color(start.b, end.b), opacity = nogamma(start.opacity, end.opacity); return function(t) { start.r = r(t); start.g = g(t); start.b = b(t); start.opacity = opacity(t); return start + ""; }; } rgb$1.gamma = rgbGamma; return rgb$1; })(1); function rgbSpline(spline) { return function(colors) { var n = colors.length, r = new Array(n), g = new Array(n), b = new Array(n), i, color; for (i = 0; i < n; ++i) { color = rgb(colors[i]); r[i] = color.r || 0; g[i] = color.g || 0; b[i] = color.b || 0; } r = spline(r); g = spline(g); b = spline(b); color.opacity = 1; return function(t) { color.r = r(t); color.g = g(t); color.b = b(t); return color + ""; }; }; } var rgbBasis = rgbSpline(basis$2); var rgbBasisClosed = rgbSpline(basisClosed$1); function numberArray(a, b) { if (!b) b = []; var n = a ? Math.min(b.length, a.length) : 0, c = b.slice(), i; return function(t) { for (i = 0; i < n; ++i) c[i] = a[i] * (1 - t) + b[i] * t; return c; }; } function isNumberArray(x) { return ArrayBuffer.isView(x) && !(x instanceof DataView); } function array$3(a, b) { return (isNumberArray(b) ? numberArray : genericArray)(a, b); } function genericArray(a, b) { var nb = b ? b.length : 0, na = a ? Math.min(nb, a.length) : 0, x = new Array(na), c = new Array(nb), i; for (i = 0; i < na; ++i) x[i] = interpolate$2(a[i], b[i]); for (; i < nb; ++i) c[i] = b[i]; return function(t) { for (i = 0; i < na; ++i) c[i] = x[i](t); return c; }; } function date$1(a, b) { var d = new Date; return a = +a, b = +b, function(t) { return d.setTime(a * (1 - t) + b * t), d; }; } function interpolateNumber(a, b) { return a = +a, b = +b, function(t) { return a * (1 - t) + b * t; }; } function object$1(a, b) { var i = {}, c = {}, k; if (a === null || typeof a !== "object") a = {}; if (b === null || typeof b !== "object") b = {}; for (k in b) { if (k in a) { i[k] = interpolate$2(a[k], b[k]); } else { c[k] = b[k]; } } return function(t) { for (k in i) c[k] = i[k](t); return c; }; } var reA = /[-+]?(?:\d+\.?\d*|\.?\d+)(?:[eE][-+]?\d+)?/g, reB = new RegExp(reA.source, "g"); function zero(b) { return function() { return b; }; } function one(b) { return function(t) { return b(t) + ""; }; } function interpolateString(a, b) { var bi = reA.lastIndex = reB.lastIndex = 0, // scan index for next number in b am, // current match in a bm, // current match in b bs, // string preceding current number in b, if any i = -1, // index in s s = [], // string constants and placeholders q = []; // number interpolators // Coerce inputs to strings. a = a + "", b = b + ""; // Interpolate pairs of numbers in a & b. while ((am = reA.exec(a)) && (bm = reB.exec(b))) { if ((bs = bm.index) > bi) { // a string precedes the next number in b bs = b.slice(bi, bs); if (s[i]) s[i] += bs; // coalesce with previous string else s[++i] = bs; } if ((am = am[0]) === (bm = bm[0])) { // numbers in a & b match if (s[i]) s[i] += bm; // coalesce with previous string else s[++i] = bm; } else { // interpolate non-matching numbers s[++i] = null; q.push({i: i, x: interpolateNumber(am, bm)}); } bi = reB.lastIndex; } // Add remains of b. if (bi < b.length) { bs = b.slice(bi); if (s[i]) s[i] += bs; // coalesce with previous string else s[++i] = bs; } // Special optimization for only a single match. // Otherwise, interpolate each of the numbers and rejoin the string. return s.length < 2 ? (q[0] ? one(q[0].x) : zero(b)) : (b = q.length, function(t) { for (var i = 0, o; i < b; ++i) s[(o = q[i]).i] = o.x(t); return s.join(""); }); } function interpolate$2(a, b) { var t = typeof b, c; return b == null || t === "boolean" ? constant$8(b) : (t === "number" ? interpolateNumber : t === "string" ? ((c = color(b)) ? (b = c, interpolateRgb) : interpolateString) : b instanceof color ? interpolateRgb : b instanceof Date ? date$1 : isNumberArray(b) ? numberArray : Array.isArray(b) ? genericArray : typeof b.valueOf !== "function" && typeof b.toString !== "function" || isNaN(b) ? object$1 : interpolateNumber)(a, b); } function discrete(range) { var n = range.length; return function(t) { return range[Math.max(0, Math.min(n - 1, Math.floor(t * n)))]; }; } function hue(a, b) { var i = hue$1(+a, +b); return function(t) { var x = i(t); return x - 360 * Math.floor(x / 360); }; } function interpolateRound(a, b) { return a = +a, b = +b, function(t) { return Math.round(a * (1 - t) + b * t); }; } var degrees$1 = 180 / Math.PI; var identity$7 = { translateX: 0, translateY: 0, rotate: 0, skewX: 0, scaleX: 1, scaleY: 1 }; function decompose(a, b, c, d, e, f) { var scaleX, scaleY, skewX; if (scaleX = Math.sqrt(a * a + b * b)) a /= scaleX, b /= scaleX; if (skewX = a * c + b * d) c -= a * skewX, d -= b * skewX; if (scaleY = Math.sqrt(c * c + d * d)) c /= scaleY, d /= scaleY, skewX /= scaleY; if (a * d < b * c) a = -a, b = -b, skewX = -skewX, scaleX = -scaleX; return { translateX: e, translateY: f, rotate: Math.atan2(b, a) * degrees$1, skewX: Math.atan(skewX) * degrees$1, scaleX: scaleX, scaleY: scaleY }; } var svgNode; /* eslint-disable no-undef */ function parseCss(value) { const m = new (typeof DOMMatrix === "function" ? DOMMatrix : WebKitCSSMatrix)(value + ""); return m.isIdentity ? identity$7 : decompose(m.a, m.b, m.c, m.d, m.e, m.f); } function parseSvg(value) { if (value == null) return identity$7; if (!svgNode) svgNode = document.createElementNS("http://www.w3.org/2000/svg", "g"); svgNode.setAttribute("transform", value); if (!(value = svgNode.transform.baseVal.consolidate())) return identity$7; value = value.matrix; return decompose(value.a, value.b, value.c, value.d, value.e, value.f); } function interpolateTransform(parse, pxComma, pxParen, degParen) { function pop(s) { return s.length ? s.pop() + " " : ""; } function translate(xa, ya, xb, yb, s, q) { if (xa !== xb || ya !== yb) { var i = s.push("translate(", null, pxComma, null, pxParen); q.push({i: i - 4, x: interpolateNumber(xa, xb)}, {i: i - 2, x: interpolateNumber(ya, yb)}); } else if (xb || yb) { s.push("translate(" + xb + pxComma + yb + pxParen); } } function rotate(a, b, s, q) { if (a !== b) { if (a - b > 180) b += 360; else if (b - a > 180) a += 360; // shortest path q.push({i: s.push(pop(s) + "rotate(", null, degParen) - 2, x: interpolateNumber(a, b)}); } else if (b) { s.push(pop(s) + "rotate(" + b + degParen); } } function skewX(a, b, s, q) { if (a !== b) { q.push({i: s.push(pop(s) + "skewX(", null, degParen) - 2, x: interpolateNumber(a, b)}); } else if (b) { s.push(pop(s) + "skewX(" + b + degParen); } } function scale(xa, ya, xb, yb, s, q) { if (xa !== xb || ya !== yb) { var i = s.push(pop(s) + "scale(", null, ",", null, ")"); q.push({i: i - 4, x: interpolateNumber(xa, xb)}, {i: i - 2, x: interpolateNumber(ya, yb)}); } else if (xb !== 1 || yb !== 1) { s.push(pop(s) + "scale(" + xb + "," + yb + ")"); } } return function(a, b) { var s = [], // string constants and placeholders q = []; // number interpolators a = parse(a), b = parse(b); translate(a.translateX, a.translateY, b.translateX, b.translateY, s, q); rotate(a.rotate, b.rotate, s, q); skewX(a.skewX, b.skewX, s, q); scale(a.scaleX, a.scaleY, b.scaleX, b.scaleY, s, q); a = b = null; // gc return function(t) { var i = -1, n = q.length, o; while (++i < n) s[(o = q[i]).i] = o.x(t); return s.join(""); }; }; } var interpolateTransformCss = interpolateTransform(parseCss, "px, ", "px)", "deg)"); var interpolateTransformSvg = interpolateTransform(parseSvg, ", ", ")", ")"); var epsilon2$1 = 1e-12; function cosh(x) { return ((x = Math.exp(x)) + 1 / x) / 2; } function sinh(x) { return ((x = Math.exp(x)) - 1 / x) / 2; } function tanh(x) { return ((x = Math.exp(2 * x)) - 1) / (x + 1); } var interpolateZoom = (function zoomRho(rho, rho2, rho4) { // p0 = [ux0, uy0, w0] // p1 = [ux1, uy1, w1] function zoom(p0, p1) { var ux0 = p0[0], uy0 = p0[1], w0 = p0[2], ux1 = p1[0], uy1 = p1[1], w1 = p1[2], dx = ux1 - ux0, dy = uy1 - uy0, d2 = dx * dx + dy * dy, i, S; // Special case for u0 ≅ u1. if (d2 < epsilon2$1) { S = Math.log(w1 / w0) / rho; i = function(t) { return [ ux0 + t * dx, uy0 + t * dy, w0 * Math.exp(rho * t * S) ]; }; } // General case. else { var d1 = Math.sqrt(d2), b0 = (w1 * w1 - w0 * w0 + rho4 * d2) / (2 * w0 * rho2 * d1), b1 = (w1 * w1 - w0 * w0 - rho4 * d2) / (2 * w1 * rho2 * d1), r0 = Math.log(Math.sqrt(b0 * b0 + 1) - b0), r1 = Math.log(Math.sqrt(b1 * b1 + 1) - b1); S = (r1 - r0) / rho; i = function(t) { var s = t * S, coshr0 = cosh(r0), u = w0 / (rho2 * d1) * (coshr0 * tanh(rho * s + r0) - sinh(r0)); return [ ux0 + u * dx, uy0 + u * dy, w0 * coshr0 / cosh(rho * s + r0) ]; }; } i.duration = S * 1000 * rho / Math.SQRT2; return i; } zoom.rho = function(_) { var _1 = Math.max(1e-3, +_), _2 = _1 * _1, _4 = _2 * _2; return zoomRho(_1, _2, _4); }; return zoom; })(Math.SQRT2, 2, 4); function hsl(hue) { return function(start, end) { var h = hue((start = hsl$2(start)).h, (end = hsl$2(end)).h), s = nogamma(start.s, end.s), l = nogamma(start.l, end.l), opacity = nogamma(start.opacity, end.opacity); return function(t) { start.h = h(t); start.s = s(t); start.l = l(t); start.opacity = opacity(t); return start + ""; }; } } var hsl$1 = hsl(hue$1); var hslLong = hsl(nogamma); function lab(start, end) { var l = nogamma((start = lab$1(start)).l, (end = lab$1(end)).l), a = nogamma(start.a, end.a), b = nogamma(start.b, end.b), opacity = nogamma(start.opacity, end.opacity); return function(t) { start.l = l(t); start.a = a(t); start.b = b(t); start.opacity = opacity(t); return start + ""; }; } function hcl(hue) { return function(start, end) { var h = hue((start = hcl$2(start)).h, (end = hcl$2(end)).h), c = nogamma(start.c, end.c), l = nogamma(start.l, end.l), opacity = nogamma(start.opacity, end.opacity); return function(t) { start.h = h(t); start.c = c(t); start.l = l(t); start.opacity = opacity(t); return start + ""; }; } } var hcl$1 = hcl(hue$1); var hclLong = hcl(nogamma); function cubehelix$1(hue) { return (function cubehelixGamma(y) { y = +y; function cubehelix(start, end) { var h = hue((start = cubehelix$3(start)).h, (end = cubehelix$3(end)).h), s = nogamma(start.s, end.s), l = nogamma(start.l, end.l), opacity = nogamma(start.opacity, end.opacity); return function(t) { start.h = h(t); start.s = s(t); start.l = l(Math.pow(t, y)); start.opacity = opacity(t); return start + ""; }; } cubehelix.gamma = cubehelixGamma; return cubehelix; })(1); } var cubehelix$2 = cubehelix$1(hue$1); var cubehelixLong = cubehelix$1(nogamma); function piecewise(interpolate, values) { if (values === undefined) values = interpolate, interpolate = interpolate$2; var i = 0, n = values.length - 1, v = values[0], I = new Array(n < 0 ? 0 : n); while (i < n) I[i] = interpolate(v, v = values[++i]); return function(t) { var i = Math.max(0, Math.min(n - 1, Math.floor(t *= n))); return I[i](t - i); }; } function quantize$1(interpolator, n) { var samples = new Array(n); for (var i = 0; i < n; ++i) samples[i] = interpolator(i / (n - 1)); return samples; } var frame = 0, // is an animation frame pending? timeout$1 = 0, // is a timeout pending? interval$1 = 0, // are any timers active? pokeDelay = 1000, // how frequently we check for clock skew taskHead, taskTail, clockLast = 0, clockNow = 0, clockSkew = 0, clock = typeof performance === "object" && performance.now ? performance : Date, setFrame = typeof window === "object" && window.requestAnimationFrame ? window.requestAnimationFrame.bind(window) : function(f) { setTimeout(f, 17); }; function now() { return clockNow || (setFrame(clearNow), clockNow = clock.now() + clockSkew); } function clearNow() { clockNow = 0; } function Timer() { this._call = this._time = this._next = null; } Timer.prototype = timer.prototype = { constructor: Timer, restart: function(callback, delay, time) { if (typeof callback !== "function") throw new TypeError("callback is not a function"); time = (time == null ? now() : +time) + (delay == null ? 0 : +delay); if (!this._next && taskTail !== this) { if (taskTail) taskTail._next = this; else taskHead = this; taskTail = this; } this._call = callback; this._time = time; sleep(); }, stop: function() { if (this._call) { this._call = null; this._time = Infinity; sleep(); } } }; function timer(callback, delay, time) { var t = new Timer; t.restart(callback, delay, time); return t; } function timerFlush() { now(); // Get the current time, if not already set. ++frame; // Pretend we’ve set an alarm, if we haven’t already. var t = taskHead, e; while (t) { if ((e = clockNow - t._time) >= 0) t._call.call(undefined, e); t = t._next; } --frame; } function wake() { clockNow = (clockLast = clock.now()) + clockSkew; frame = timeout$1 = 0; try { timerFlush(); } finally { frame = 0; nap(); clockNow = 0; } } function poke() { var now = clock.now(), delay = now - clockLast; if (delay > pokeDelay) clockSkew -= delay, clockLast = now; } function nap() { var t0, t1 = taskHead, t2, time = Infinity; while (t1) { if (t1._call) { if (time > t1._time) time = t1._time; t0 = t1, t1 = t1._next; } else { t2 = t1._next, t1._next = null; t1 = t0 ? t0._next = t2 : taskHead = t2; } } taskTail = t0; sleep(time); } function sleep(time) { if (frame) return; // Soonest alarm already set, or will be. if (timeout$1) timeout$1 = clearTimeout(timeout$1); var delay = time - clockNow; // Strictly less than if we recomputed clockNow. if (delay > 24) { if (time < Infinity) timeout$1 = setTimeout(wake, time - clock.now() - clockSkew); if (interval$1) interval$1 = clearInterval(interval$1); } else { if (!interval$1) clockLast = clock.now(), interval$1 = setInterval(poke, pokeDelay); frame = 1, setFrame(wake); } } function timeout(callback, delay, time) { var t = new Timer; delay = delay == null ? 0 : +delay; t.restart(elapsed => { t.stop(); callback(elapsed + delay); }, delay, time); return t; } function interval(callback, delay, time) { var t = new Timer, total = delay; if (delay == null) return t.restart(callback, delay, time), t; t._restart = t.restart; t.restart = function(callback, delay, time) { delay = +delay, time = time == null ? now() : +time; t._restart(function tick(elapsed) { elapsed += total; t._restart(tick, total += delay, time); callback(elapsed); }, delay, time); }; t.restart(callback, delay, time); return t; } var emptyOn = dispatch("start", "end", "cancel", "interrupt"); var emptyTween = []; var CREATED = 0; var SCHEDULED = 1; var STARTING = 2; var STARTED = 3; var RUNNING = 4; var ENDING = 5; var ENDED = 6; function schedule(node, name, id, index, group, timing) { var schedules = node.__transition; if (!schedules) node.__transition = {}; else if (id in schedules) return; create(node, id, { name: name, index: index, // For context during callback. group: group, // For context during callback. on: emptyOn, tween: emptyTween, time: timing.time, delay: timing.delay, duration: timing.duration, ease: timing.ease, timer: null, state: CREATED }); } function init(node, id) { var schedule = get(node, id); if (schedule.state > CREATED) throw new Error("too late; already scheduled"); return schedule; } function set(node, id) { var schedule = get(node, id); if (schedule.state > STARTED) throw new Error("too late; already running"); return schedule; } function get(node, id) { var schedule = node.__transition; if (!schedule || !(schedule = schedule[id])) throw new Error("transition not found"); return schedule; } function create(node, id, self) { var schedules = node.__transition, tween; // Initialize the self timer when the transition is created. // Note the actual delay is not known until the first callback! schedules[id] = self; self.timer = timer(schedule, 0, self.time); function schedule(elapsed) { self.state = SCHEDULED; self.timer.restart(start, self.delay, self.time); // If the elapsed delay is less than our first sleep, start immediately. if (self.delay <= elapsed) start(elapsed - self.delay); } function start(elapsed) { var i, j, n, o; // If the state is not SCHEDULED, then we previously errored on start. if (self.state !== SCHEDULED) return stop(); for (i in schedules) { o = schedules[i]; if (o.name !== self.name) continue; // While this element already has a starting transition during this frame, // defer starting an interrupting transition until that transition has a // chance to tick (and possibly end); see d3/d3-transition#54! if (o.state === STARTED) return timeout(start); // Interrupt the active transition, if any. if (o.state === RUNNING) { o.state = ENDED; o.timer.stop(); o.on.call("interrupt", node, node.__data__, o.index, o.group); delete schedules[i]; } // Cancel any pre-empted transitions. else if (+i < id) { o.state = ENDED; o.timer.stop(); o.on.call("cancel", node, node.__data__, o.index, o.group); delete schedules[i]; } } // Defer the first tick to end of the current frame; see d3/d3#1576. // Note the transition may be canceled after start and before the first tick! // Note this must be scheduled before the start event; see d3/d3-transition#16! // Assuming this is successful, subsequent callbacks go straight to tick. timeout(function() { if (self.state === STARTED) { self.state = RUNNING; self.timer.restart(tick, self.delay, self.time); tick(elapsed); } }); // Dispatch the start event. // Note this must be done before the tween are initialized. self.state = STARTING; self.on.call("start", node, node.__data__, self.index, self.group); if (self.state !== STARTING) return; // interrupted self.state = STARTED; // Initialize the tween, deleting null tween. tween = new Array(n = self.tween.length); for (i = 0, j = -1; i < n; ++i) { if (o = self.tween[i].value.call(node, node.__data__, self.index, self.group)) { tween[++j] = o; } } tween.length = j + 1; } function tick(elapsed) { var t = elapsed < self.duration ? self.ease.call(null, elapsed / self.duration) : (self.timer.restart(stop), self.state = ENDING, 1), i = -1, n = tween.length; while (++i < n) { tween[i].call(node, t); } // Dispatch the end event. if (self.state === ENDING) { self.on.call("end", node, node.__data__, self.index, self.group); stop(); } } function stop() { self.state = ENDED; self.timer.stop(); delete schedules[id]; for (var i in schedules) return; // eslint-disable-line no-unused-vars delete node.__transition; } } function interrupt(node, name) { var schedules = node.__transition, schedule, active, empty = true, i; if (!schedules) return; name = name == null ? null : name + ""; for (i in schedules) { if ((schedule = schedules[i]).name !== name) { empty = false; continue; } active = schedule.state > STARTING && schedule.state < ENDING; schedule.state = ENDED; schedule.timer.stop(); schedule.on.call(active ? "interrupt" : "cancel", node, node.__data__, schedule.index, schedule.group); delete schedules[i]; } if (empty) delete node.__transition; } function selection_interrupt(name) { return this.each(function() { interrupt(this, name); }); } function tweenRemove(id, name) { var tween0, tween1; return function() { var schedule = set(this, id), tween = schedule.tween; // If this node shared tween with the previous node, // just assign the updated shared tween and we’re done! // Otherwise, copy-on-write. if (tween !== tween0) { tween1 = tween0 = tween; for (var i = 0, n = tween1.length; i < n; ++i) { if (tween1[i].name === name) { tween1 = tween1.slice(); tween1.splice(i, 1); break; } } } schedule.tween = tween1; }; } function tweenFunction(id, name, value) { var tween0, tween1; if (typeof value !== "function") throw new Error; return function() { var schedule = set(this, id), tween = schedule.tween; // If this node shared tween with the previous node, // just assign the updated shared tween and we’re done! // Otherwise, copy-on-write. if (tween !== tween0) { tween1 = (tween0 = tween).slice(); for (var t = {name: name, value: value}, i = 0, n = tween1.length; i < n; ++i) { if (tween1[i].name === name) { tween1[i] = t; break; } } if (i === n) tween1.push(t); } schedule.tween = tween1; }; } function transition_tween(name, value) { var id = this._id; name += ""; if (arguments.length < 2) { var tween = get(this.node(), id).tween; for (var i = 0, n = tween.length, t; i < n; ++i) { if ((t = tween[i]).name === name) { return t.value; } } return null; } return this.each((value == null ? tweenRemove : tweenFunction)(id, name, value)); } function tweenValue(transition, name, value) { var id = transition._id; transition.each(function() { var schedule = set(this, id); (schedule.value || (schedule.value = {}))[name] = value.apply(this, arguments); }); return function(node) { return get(node, id).value[name]; }; } function interpolate$1(a, b) { var c; return (typeof b === "number" ? interpolateNumber : b instanceof color ? interpolateRgb : (c = color(b)) ? (b = c, interpolateRgb) : interpolateString)(a, b); } function attrRemove(name) { return function() { this.removeAttribute(name); }; } function attrRemoveNS(fullname) { return function() { this.removeAttributeNS(fullname.space, fullname.local); }; } function attrConstant(name, interpolate, value1) { var string00, string1 = value1 + "", interpolate0; return function() { var string0 = this.getAttribute(name); return string0 === string1 ? null : string0 === string00 ? interpolate0 : interpolate0 = interpolate(string00 = string0, value1); }; } function attrConstantNS(fullname, interpolate, value1) { var string00, string1 = value1 + "", interpolate0; return function() { var string0 = this.getAttributeNS(fullname.space, fullname.local); return string0 === string1 ? null : string0 === string00 ? interpolate0 : interpolate0 = interpolate(string00 = string0, value1); }; } function attrFunction(name, interpolate, value) { var string00, string10, interpolate0; return function() { var string0, value1 = value(this), string1; if (value1 == null) return void this.removeAttribute(name); string0 = this.getAttribute(name); string1 = value1 + ""; return string0 === string1 ? null : string0 === string00 && string1 === string10 ? interpolate0 : (string10 = string1, interpolate0 = interpolate(string00 = string0, value1)); }; } function attrFunctionNS(fullname, interpolate, value) { var string00, string10, interpolate0; return function() { var string0, value1 = value(this), string1; if (value1 == null) return void this.removeAttributeNS(fullname.space, fullname.local); string0 = this.getAttributeNS(fullname.space, fullname.local); string1 = value1 + ""; return string0 === string1 ? null : string0 === string00 && string1 === string10 ? interpolate0 : (string10 = string1, interpolate0 = interpolate(string00 = string0, value1)); }; } function transition_attr(name, value) { var fullname = namespace(name), i = fullname === "transform" ? interpolateTransformSvg : interpolate$1; return this.attrTween(name, typeof value === "function" ? (fullname.local ? attrFunctionNS : attrFunction)(fullname, i, tweenValue(this, "attr." + name, value)) : value == null ? (fullname.local ? attrRemoveNS : attrRemove)(fullname) : (fullname.local ? attrConstantNS : attrConstant)(fullname, i, value)); } function attrInterpolate(name, i) { return function(t) { this.setAttribute(name, i.call(this, t)); }; } function attrInterpolateNS(fullname, i) { return function(t) { this.setAttributeNS(fullname.space, fullname.local, i.call(this, t)); }; } function attrTweenNS(fullname, value) { var t0, i0; function tween() { var i = value.apply(this, arguments); if (i !== i0) t0 = (i0 = i) && attrInterpolateNS(fullname, i); return t0; } tween._value = value; return tween; } function attrTween(name, value) { var t0, i0; function tween() { var i = value.apply(this, arguments); if (i !== i0) t0 = (i0 = i) && attrInterpolate(name, i); return t0; } tween._value = value; return tween; } function transition_attrTween(name, value) { var key = "attr." + name; if (arguments.length < 2) return (key = this.tween(key)) && key._value; if (value == null) return this.tween(key, null); if (typeof value !== "function") throw new Error; var fullname = namespace(name); return this.tween(key, (fullname.local ? attrTweenNS : attrTween)(fullname, value)); } function delayFunction(id, value) { return function() { init(this, id).delay = +value.apply(this, arguments); }; } function delayConstant(id, value) { return value = +value, function() { init(this, id).delay = value; }; } function transition_delay(value) { var id = this._id; return arguments.length ? this.each((typeof value === "function" ? delayFunction : delayConstant)(id, value)) : get(this.node(), id).delay; } function durationFunction(id, value) { return function() { set(this, id).duration = +value.apply(this, arguments); }; } function durationConstant(id, value) { return value = +value, function() { set(this, id).duration = value; }; } function transition_duration(value) { var id = this._id; return arguments.length ? this.each((typeof value === "function" ? durationFunction : durationConstant)(id, value)) : get(this.node(), id).duration; } function easeConstant(id, value) { if (typeof value !== "function") throw new Error; return function() { set(this, id).ease = value; }; } function transition_ease(value) { var id = this._id; return arguments.length ? this.each(easeConstant(id, value)) : get(this.node(), id).ease; } function easeVarying(id, value) { return function() { var v = value.apply(this, arguments); if (typeof v !== "function") throw new Error; set(this, id).ease = v; }; } function transition_easeVarying(value) { if (typeof value !== "function") throw new Error; return this.each(easeVarying(this._id, value)); } function transition_filter(match) { if (typeof match !== "function") match = matcher(match); for (var groups = this._groups, m = groups.length, subgroups = new Array(m), j = 0; j < m; ++j) { for (var group = groups[j], n = group.length, subgroup = subgroups[j] = [], node, i = 0; i < n; ++i) { if ((node = group[i]) && match.call(node, node.__data__, i, group)) { subgroup.push(node); } } } return new Transition(subgroups, this._parents, this._name, this._id); } function transition_merge(transition) { if (transition._id !== this._id) throw new Error; for (var groups0 = this._groups, groups1 = transition._groups, m0 = groups0.length, m1 = groups1.length, m = Math.min(m0, m1), merges = new Array(m0), j = 0; j < m; ++j) { for (var group0 = groups0[j], group1 = groups1[j], n = group0.length, merge = merges[j] = new Array(n), node, i = 0; i < n; ++i) { if (node = group0[i] || group1[i]) { merge[i] = node; } } } for (; j < m0; ++j) { merges[j] = groups0[j]; } return new Transition(merges, this._parents, this._name, this._id); } function start(name) { return (name + "").trim().split(/^|\s+/).every(function(t) { var i = t.indexOf("."); if (i >= 0) t = t.slice(0, i); return !t || t === "start"; }); } function onFunction(id, name, listener) { var on0, on1, sit = start(name) ? init : set; return function() { var schedule = sit(this, id), on = schedule.on; // If this node shared a dispatch with the previous node, // just assign the updated shared dispatch and we’re done! // Otherwise, copy-on-write. if (on !== on0) (on1 = (on0 = on).copy()).on(name, listener); schedule.on = on1; }; } function transition_on(name, listener) { var id = this._id; return arguments.length < 2 ? get(this.node(), id).on.on(name) : this.each(onFunction(id, name, listener)); } function removeFunction(id) { return function() { var parent = this.parentNode; for (var i in this.__transition) if (+i !== id) return; if (parent) parent.removeChild(this); }; } function transition_remove() { return this.on("end.remove", removeFunction(this._id)); } function transition_select(select) { var name = this._name, id = this._id; if (typeof select !== "function") select = selector(select); for (var groups = this._groups, m = groups.length, subgroups = new Array(m), j = 0; j < m; ++j) { for (var group = groups[j], n = group.length, subgroup = subgroups[j] = new Array(n), node, subnode, i = 0; i < n; ++i) { if ((node = group[i]) && (subnode = select.call(node, node.__data__, i, group))) { if ("__data__" in node) subnode.__data__ = node.__data__; subgroup[i] = subnode; schedule(subgroup[i], name, id, i, subgroup, get(node, id)); } } } return new Transition(subgroups, this._parents, name, id); } function transition_selectAll(select) { var name = this._name, id = this._id; if (typeof select !== "function") select = selectorAll(select); for (var groups = this._groups, m = groups.length, subgroups = [], parents = [], j = 0; j < m; ++j) { for (var group = groups[j], n = group.length, node, i = 0; i < n; ++i) { if (node = group[i]) { for (var children = select.call(node, node.__data__, i, group), child, inherit = get(node, id), k = 0, l = children.length; k < l; ++k) { if (child = children[k]) { schedule(child, name, id, k, children, inherit); } } subgroups.push(children); parents.push(node); } } } return new Transition(subgroups, parents, name, id); } var Selection = selection.prototype.constructor; function transition_selection() { return new Selection(this._groups, this._parents); } function styleNull(name, interpolate) { var string00, string10, interpolate0; return function() { var string0 = styleValue(this, name), string1 = (this.style.removeProperty(name), styleValue(this, name)); return string0 === string1 ? null : string0 === string00 && string1 === string10 ? interpolate0 : interpolate0 = interpolate(string00 = string0, string10 = string1); }; } function styleRemove(name) { return function() { this.style.removeProperty(name); }; } function styleConstant(name, interpolate, value1) { var string00, string1 = value1 + "", interpolate0; return function() { var string0 = styleValue(this, name); return string0 === string1 ? null : string0 === string00 ? interpolate0 : interpolate0 = interpolate(string00 = string0, value1); }; } function styleFunction(name, interpolate, value) { var string00, string10, interpolate0; return function() { var string0 = styleValue(this, name), value1 = value(this), string1 = value1 + ""; if (value1 == null) string1 = value1 = (this.style.removeProperty(name), styleValue(this, name)); return string0 === string1 ? null : string0 === string00 && string1 === string10 ? interpolate0 : (string10 = string1, interpolate0 = interpolate(string00 = string0, value1)); }; } function styleMaybeRemove(id, name) { var on0, on1, listener0, key = "style." + name, event = "end." + key, remove; return function() { var schedule = set(this, id), on = schedule.on, listener = schedule.value[key] == null ? remove || (remove = styleRemove(name)) : undefined; // If this node shared a dispatch with the previous node, // just assign the updated shared dispatch and we’re done! // Otherwise, copy-on-write. if (on !== on0 || listener0 !== listener) (on1 = (on0 = on).copy()).on(event, listener0 = listener); schedule.on = on1; }; } function transition_style(name, value, priority) { var i = (name += "") === "transform" ? interpolateTransformCss : interpolate$1; return value == null ? this .styleTween(name, styleNull(name, i)) .on("end.style." + name, styleRemove(name)) : typeof value === "function" ? this .styleTween(name, styleFunction(name, i, tweenValue(this, "style." + name, value))) .each(styleMaybeRemove(this._id, name)) : this .styleTween(name, styleConstant(name, i, value), priority) .on("end.style." + name, null); } function styleInterpolate(name, i, priority) { return function(t) { this.style.setProperty(name, i.call(this, t), priority); }; } function styleTween(name, value, priority) { var t, i0; function tween() { var i = value.apply(this, arguments); if (i !== i0) t = (i0 = i) && styleInterpolate(name, i, priority); return t; } tween._value = value; return tween; } function transition_styleTween(name, value, priority) { var key = "style." + (name += ""); if (arguments.length < 2) return (key = this.tween(key)) && key._value; if (value == null) return this.tween(key, null); if (typeof value !== "function") throw new Error; return this.tween(key, styleTween(name, value, priority == null ? "" : priority)); } function textConstant(value) { return function() { this.textContent = value; }; } function textFunction(value) { return function() { var value1 = value(this); this.textContent = value1 == null ? "" : value1; }; } function transition_text(value) { return this.tween("text", typeof value === "function" ? textFunction(tweenValue(this, "text", value)) : textConstant(value == null ? "" : value + "")); } function textInterpolate(i) { return function(t) { this.textContent = i.call(this, t); }; } function textTween(value) { var t0, i0; function tween() { var i = value.apply(this, arguments); if (i !== i0) t0 = (i0 = i) && textInterpolate(i); return t0; } tween._value = value; return tween; } function transition_textTween(value) { var key = "text"; if (arguments.length < 1) return (key = this.tween(key)) && key._value; if (value == null) return this.tween(key, null); if (typeof value !== "function") throw new Error; return this.tween(key, textTween(value)); } function transition_transition() { var name = this._name, id0 = this._id, id1 = newId(); for (var groups = this._groups, m = groups.length, j = 0; j < m; ++j) { for (var group = groups[j], n = group.length, node, i = 0; i < n; ++i) { if (node = group[i]) { var inherit = get(node, id0); schedule(node, name, id1, i, group, { time: inherit.time + inherit.delay + inherit.duration, delay: 0, duration: inherit.duration, ease: inherit.ease }); } } } return new Transition(groups, this._parents, name, id1); } function transition_end() { var on0, on1, that = this, id = that._id, size = that.size(); return new Promise(function(resolve, reject) { var cancel = {value: reject}, end = {value: function() { if (--size === 0) resolve(); }}; that.each(function() { var schedule = set(this, id), on = schedule.on; // If this node shared a dispatch with the previous node, // just assign the updated shared dispatch and we’re done! // Otherwise, copy-on-write. if (on !== on0) { on1 = (on0 = on).copy(); on1._.cancel.push(cancel); on1._.interrupt.push(cancel); on1._.end.push(end); } schedule.on = on1; }); // The selection was empty, resolve end immediately if (size === 0) resolve(); }); } var id = 0; function Transition(groups, parents, name, id) { this._groups = groups; this._parents = parents; this._name = name; this._id = id; } function transition(name) { return selection().transition(name); } function newId() { return ++id; } var selection_prototype = selection.prototype; Transition.prototype = transition.prototype = { constructor: Transition, select: transition_select, selectAll: transition_selectAll, selectChild: selection_prototype.selectChild, selectChildren: selection_prototype.selectChildren, filter: transition_filter, merge: transition_merge, selection: transition_selection, transition: transition_transition, call: selection_prototype.call, nodes: selection_prototype.nodes, node: selection_prototype.node, size: selection_prototype.size, empty: selection_prototype.empty, each: selection_prototype.each, on: transition_on, attr: transition_attr, attrTween: transition_attrTween, style: transition_style, styleTween: transition_styleTween, text: transition_text, textTween: transition_textTween, remove: transition_remove, tween: transition_tween, delay: transition_delay, duration: transition_duration, ease: transition_ease, easeVarying: transition_easeVarying, end: transition_end, [Symbol.iterator]: selection_prototype[Symbol.iterator] }; const linear$1 = t => +t; function quadIn(t) { return t * t; } function quadOut(t) { return t * (2 - t); } function quadInOut(t) { return ((t *= 2) <= 1 ? t * t : --t * (2 - t) + 1) / 2; } function cubicIn(t) { return t * t * t; } function cubicOut(t) { return --t * t * t + 1; } function cubicInOut(t) { return ((t *= 2) <= 1 ? t * t * t : (t -= 2) * t * t + 2) / 2; } var exponent$1 = 3; var polyIn = (function custom(e) { e = +e; function polyIn(t) { return Math.pow(t, e); } polyIn.exponent = custom; return polyIn; })(exponent$1); var polyOut = (function custom(e) { e = +e; function polyOut(t) { return 1 - Math.pow(1 - t, e); } polyOut.exponent = custom; return polyOut; })(exponent$1); var polyInOut = (function custom(e) { e = +e; function polyInOut(t) { return ((t *= 2) <= 1 ? Math.pow(t, e) : 2 - Math.pow(2 - t, e)) / 2; } polyInOut.exponent = custom; return polyInOut; })(exponent$1); var pi$4 = Math.PI, halfPi$3 = pi$4 / 2; function sinIn(t) { return (+t === 1) ? 1 : 1 - Math.cos(t * halfPi$3); } function sinOut(t) { return Math.sin(t * halfPi$3); } function sinInOut(t) { return (1 - Math.cos(pi$4 * t)) / 2; } // tpmt is two power minus ten times t scaled to [0,1] function tpmt(x) { return (Math.pow(2, -10 * x) - 0.0009765625) * 1.0009775171065494; } function expIn(t) { return tpmt(1 - +t); } function expOut(t) { return 1 - tpmt(t); } function expInOut(t) { return ((t *= 2) <= 1 ? tpmt(1 - t) : 2 - tpmt(t - 1)) / 2; } function circleIn(t) { return 1 - Math.sqrt(1 - t * t); } function circleOut(t) { return Math.sqrt(1 - --t * t); } function circleInOut(t) { return ((t *= 2) <= 1 ? 1 - Math.sqrt(1 - t * t) : Math.sqrt(1 - (t -= 2) * t) + 1) / 2; } var b1 = 4 / 11, b2 = 6 / 11, b3 = 8 / 11, b4 = 3 / 4, b5 = 9 / 11, b6 = 10 / 11, b7 = 15 / 16, b8 = 21 / 22, b9 = 63 / 64, b0 = 1 / b1 / b1; function bounceIn(t) { return 1 - bounceOut(1 - t); } function bounceOut(t) { return (t = +t) < b1 ? b0 * t * t : t < b3 ? b0 * (t -= b2) * t + b4 : t < b6 ? b0 * (t -= b5) * t + b7 : b0 * (t -= b8) * t + b9; } function bounceInOut(t) { return ((t *= 2) <= 1 ? 1 - bounceOut(1 - t) : bounceOut(t - 1) + 1) / 2; } var overshoot = 1.70158; var backIn = (function custom(s) { s = +s; function backIn(t) { return (t = +t) * t * (s * (t - 1) + t); } backIn.overshoot = custom; return backIn; })(overshoot); var backOut = (function custom(s) { s = +s; function backOut(t) { return --t * t * ((t + 1) * s + t) + 1; } backOut.overshoot = custom; return backOut; })(overshoot); var backInOut = (function custom(s) { s = +s; function backInOut(t) { return ((t *= 2) < 1 ? t * t * ((s + 1) * t - s) : (t -= 2) * t * ((s + 1) * t + s) + 2) / 2; } backInOut.overshoot = custom; return backInOut; })(overshoot); var tau$5 = 2 * Math.PI, amplitude = 1, period = 0.3; var elasticIn = (function custom(a, p) { var s = Math.asin(1 / (a = Math.max(1, a))) * (p /= tau$5); function elasticIn(t) { return a * tpmt(-(--t)) * Math.sin((s - t) / p); } elasticIn.amplitude = function(a) { return custom(a, p * tau$5); }; elasticIn.period = function(p) { return custom(a, p); }; return elasticIn; })(amplitude, period); var elasticOut = (function custom(a, p) { var s = Math.asin(1 / (a = Math.max(1, a))) * (p /= tau$5); function elasticOut(t) { return 1 - a * tpmt(t = +t) * Math.sin((t + s) / p); } elasticOut.amplitude = function(a) { return custom(a, p * tau$5); }; elasticOut.period = function(p) { return custom(a, p); }; return elasticOut; })(amplitude, period); var elasticInOut = (function custom(a, p) { var s = Math.asin(1 / (a = Math.max(1, a))) * (p /= tau$5); function elasticInOut(t) { return ((t = t * 2 - 1) < 0 ? a * tpmt(-t) * Math.sin((s - t) / p) : 2 - a * tpmt(t) * Math.sin((s + t) / p)) / 2; } elasticInOut.amplitude = function(a) { return custom(a, p * tau$5); }; elasticInOut.period = function(p) { return custom(a, p); }; return elasticInOut; })(amplitude, period); var defaultTiming = { time: null, // Set on use. delay: 0, duration: 250, ease: cubicInOut }; function inherit(node, id) { var timing; while (!(timing = node.__transition) || !(timing = timing[id])) { if (!(node = node.parentNode)) { throw new Error(`transition ${id} not found`); } } return timing; } function selection_transition(name) { var id, timing; if (name instanceof Transition) { id = name._id, name = name._name; } else { id = newId(), (timing = defaultTiming).time = now(), name = name == null ? null : name + ""; } for (var groups = this._groups, m = groups.length, j = 0; j < m; ++j) { for (var group = groups[j], n = group.length, node, i = 0; i < n; ++i) { if (node = group[i]) { schedule(node, name, id, i, group, timing || inherit(node, id)); } } } return new Transition(groups, this._parents, name, id); } selection.prototype.interrupt = selection_interrupt; selection.prototype.transition = selection_transition; var root = [null]; function active(node, name) { var schedules = node.__transition, schedule, i; if (schedules) { name = name == null ? null : name + ""; for (i in schedules) { if ((schedule = schedules[i]).state > SCHEDULED && schedule.name === name) { return new Transition([[node]], root, name, +i); } } } return null; } var constant$7 = x => () => x; function BrushEvent(type, { sourceEvent, target, selection, mode, dispatch }) { Object.defineProperties(this, { type: {value: type, enumerable: true, configurable: true}, sourceEvent: {value: sourceEvent, enumerable: true, configurable: true}, target: {value: target, enumerable: true, configurable: true}, selection: {value: selection, enumerable: true, configurable: true}, mode: {value: mode, enumerable: true, configurable: true}, _: {value: dispatch} }); } function nopropagation$1(event) { event.stopImmediatePropagation(); } function noevent$1(event) { event.preventDefault(); event.stopImmediatePropagation(); } var MODE_DRAG = {name: "drag"}, MODE_SPACE = {name: "space"}, MODE_HANDLE = {name: "handle"}, MODE_CENTER = {name: "center"}; const {abs: abs$3, max: max$2, min: min$1} = Math; function number1(e) { return [+e[0], +e[1]]; } function number2(e) { return [number1(e[0]), number1(e[1])]; } var X = { name: "x", handles: ["w", "e"].map(type), input: function(x, e) { return x == null ? null : [[+x[0], e[0][1]], [+x[1], e[1][1]]]; }, output: function(xy) { return xy && [xy[0][0], xy[1][0]]; } }; var Y = { name: "y", handles: ["n", "s"].map(type), input: function(y, e) { return y == null ? null : [[e[0][0], +y[0]], [e[1][0], +y[1]]]; }, output: function(xy) { return xy && [xy[0][1], xy[1][1]]; } }; var XY = { name: "xy", handles: ["n", "w", "e", "s", "nw", "ne", "sw", "se"].map(type), input: function(xy) { return xy == null ? null : number2(xy); }, output: function(xy) { return xy; } }; var cursors = { overlay: "crosshair", selection: "move", n: "ns-resize", e: "ew-resize", s: "ns-resize", w: "ew-resize", nw: "nwse-resize", ne: "nesw-resize", se: "nwse-resize", sw: "nesw-resize" }; var flipX = { e: "w", w: "e", nw: "ne", ne: "nw", se: "sw", sw: "se" }; var flipY = { n: "s", s: "n", nw: "sw", ne: "se", se: "ne", sw: "nw" }; var signsX = { overlay: +1, selection: +1, n: null, e: +1, s: null, w: -1, nw: -1, ne: +1, se: +1, sw: -1 }; var signsY = { overlay: +1, selection: +1, n: -1, e: null, s: +1, w: null, nw: -1, ne: -1, se: +1, sw: +1 }; function type(t) { return {type: t}; } // Ignore right-click, since that should open the context menu. function defaultFilter$1(event) { return !event.ctrlKey && !event.button; } function defaultExtent$1() { var svg = this.ownerSVGElement || this; if (svg.hasAttribute("viewBox")) { svg = svg.viewBox.baseVal; return [[svg.x, svg.y], [svg.x + svg.width, svg.y + svg.height]]; } return [[0, 0], [svg.width.baseVal.value, svg.height.baseVal.value]]; } function defaultTouchable$1() { return navigator.maxTouchPoints || ("ontouchstart" in this); } // Like d3.local, but with the name “__brush” rather than auto-generated. function local(node) { while (!node.__brush) if (!(node = node.parentNode)) return; return node.__brush; } function empty(extent) { return extent[0][0] === extent[1][0] || extent[0][1] === extent[1][1]; } function brushSelection(node) { var state = node.__brush; return state ? state.dim.output(state.selection) : null; } function brushX() { return brush$1(X); } function brushY() { return brush$1(Y); } function brush() { return brush$1(XY); } function brush$1(dim) { var extent = defaultExtent$1, filter = defaultFilter$1, touchable = defaultTouchable$1, keys = true, listeners = dispatch("start", "brush", "end"), handleSize = 6, touchending; function brush(group) { var overlay = group .property("__brush", initialize) .selectAll(".overlay") .data([type("overlay")]); overlay.enter().append("rect") .attr("class", "overlay") .attr("pointer-events", "all") .attr("cursor", cursors.overlay) .merge(overlay) .each(function() { var extent = local(this).extent; select(this) .attr("x", extent[0][0]) .attr("y", extent[0][1]) .attr("width", extent[1][0] - extent[0][0]) .attr("height", extent[1][1] - extent[0][1]); }); group.selectAll(".selection") .data([type("selection")]) .enter().append("rect") .attr("class", "selection") .attr("cursor", cursors.selection) .attr("fill", "#777") .attr("fill-opacity", 0.3) .attr("stroke", "#fff") .attr("shape-rendering", "crispEdges"); var handle = group.selectAll(".handle") .data(dim.handles, function(d) { return d.type; }); handle.exit().remove(); handle.enter().append("rect") .attr("class", function(d) { return "handle handle--" + d.type; }) .attr("cursor", function(d) { return cursors[d.type]; }); group .each(redraw) .attr("fill", "none") .attr("pointer-events", "all") .on("mousedown.brush", started) .filter(touchable) .on("touchstart.brush", started) .on("touchmove.brush", touchmoved) .on("touchend.brush touchcancel.brush", touchended) .style("touch-action", "none") .style("-webkit-tap-highlight-color", "rgba(0,0,0,0)"); } brush.move = function(group, selection, event) { if (group.tween) { group .on("start.brush", function(event) { emitter(this, arguments).beforestart().start(event); }) .on("interrupt.brush end.brush", function(event) { emitter(this, arguments).end(event); }) .tween("brush", function() { var that = this, state = that.__brush, emit = emitter(that, arguments), selection0 = state.selection, selection1 = dim.input(typeof selection === "function" ? selection.apply(this, arguments) : selection, state.extent), i = interpolate$2(selection0, selection1); function tween(t) { state.selection = t === 1 && selection1 === null ? null : i(t); redraw.call(that); emit.brush(); } return selection0 !== null && selection1 !== null ? tween : tween(1); }); } else { group .each(function() { var that = this, args = arguments, state = that.__brush, selection1 = dim.input(typeof selection === "function" ? selection.apply(that, args) : selection, state.extent), emit = emitter(that, args).beforestart(); interrupt(that); state.selection = selection1 === null ? null : selection1; redraw.call(that); emit.start(event).brush(event).end(event); }); } }; brush.clear = function(group, event) { brush.move(group, null, event); }; function redraw() { var group = select(this), selection = local(this).selection; if (selection) { group.selectAll(".selection") .style("display", null) .attr("x", selection[0][0]) .attr("y", selection[0][1]) .attr("width", selection[1][0] - selection[0][0]) .attr("height", selection[1][1] - selection[0][1]); group.selectAll(".handle") .style("display", null) .attr("x", function(d) { return d.type[d.type.length - 1] === "e" ? selection[1][0] - handleSize / 2 : selection[0][0] - handleSize / 2; }) .attr("y", function(d) { return d.type[0] === "s" ? selection[1][1] - handleSize / 2 : selection[0][1] - handleSize / 2; }) .attr("width", function(d) { return d.type === "n" || d.type === "s" ? selection[1][0] - selection[0][0] + handleSize : handleSize; }) .attr("height", function(d) { return d.type === "e" || d.type === "w" ? selection[1][1] - selection[0][1] + handleSize : handleSize; }); } else { group.selectAll(".selection,.handle") .style("display", "none") .attr("x", null) .attr("y", null) .attr("width", null) .attr("height", null); } } function emitter(that, args, clean) { var emit = that.__brush.emitter; return emit && (!clean || !emit.clean) ? emit : new Emitter(that, args, clean); } function Emitter(that, args, clean) { this.that = that; this.args = args; this.state = that.__brush; this.active = 0; this.clean = clean; } Emitter.prototype = { beforestart: function() { if (++this.active === 1) this.state.emitter = this, this.starting = true; return this; }, start: function(event, mode) { if (this.starting) this.starting = false, this.emit("start", event, mode); else this.emit("brush", event); return this; }, brush: function(event, mode) { this.emit("brush", event, mode); return this; }, end: function(event, mode) { if (--this.active === 0) delete this.state.emitter, this.emit("end", event, mode); return this; }, emit: function(type, event, mode) { var d = select(this.that).datum(); listeners.call( type, this.that, new BrushEvent(type, { sourceEvent: event, target: brush, selection: dim.output(this.state.selection), mode, dispatch: listeners }), d ); } }; function started(event) { if (touchending && !event.touches) return; if (!filter.apply(this, arguments)) return; var that = this, type = event.target.__data__.type, mode = (keys && event.metaKey ? type = "overlay" : type) === "selection" ? MODE_DRAG : (keys && event.altKey ? MODE_CENTER : MODE_HANDLE), signX = dim === Y ? null : signsX[type], signY = dim === X ? null : signsY[type], state = local(that), extent = state.extent, selection = state.selection, W = extent[0][0], w0, w1, N = extent[0][1], n0, n1, E = extent[1][0], e0, e1, S = extent[1][1], s0, s1, dx = 0, dy = 0, moving, shifting = signX && signY && keys && event.shiftKey, lockX, lockY, points = Array.from(event.touches || [event], t => { const i = t.identifier; t = pointer(t, that); t.point0 = t.slice(); t.identifier = i; return t; }); interrupt(that); var emit = emitter(that, arguments, true).beforestart(); if (type === "overlay") { if (selection) moving = true; const pts = [points[0], points[1] || points[0]]; state.selection = selection = [[ w0 = dim === Y ? W : min$1(pts[0][0], pts[1][0]), n0 = dim === X ? N : min$1(pts[0][1], pts[1][1]) ], [ e0 = dim === Y ? E : max$2(pts[0][0], pts[1][0]), s0 = dim === X ? S : max$2(pts[0][1], pts[1][1]) ]]; if (points.length > 1) move(event); } else { w0 = selection[0][0]; n0 = selection[0][1]; e0 = selection[1][0]; s0 = selection[1][1]; } w1 = w0; n1 = n0; e1 = e0; s1 = s0; var group = select(that) .attr("pointer-events", "none"); var overlay = group.selectAll(".overlay") .attr("cursor", cursors[type]); if (event.touches) { emit.moved = moved; emit.ended = ended; } else { var view = select(event.view) .on("mousemove.brush", moved, true) .on("mouseup.brush", ended, true); if (keys) view .on("keydown.brush", keydowned, true) .on("keyup.brush", keyupped, true); dragDisable(event.view); } redraw.call(that); emit.start(event, mode.name); function moved(event) { for (const p of event.changedTouches || [event]) { for (const d of points) if (d.identifier === p.identifier) d.cur = pointer(p, that); } if (shifting && !lockX && !lockY && points.length === 1) { const point = points[0]; if (abs$3(point.cur[0] - point[0]) > abs$3(point.cur[1] - point[1])) lockY = true; else lockX = true; } for (const point of points) if (point.cur) point[0] = point.cur[0], point[1] = point.cur[1]; moving = true; noevent$1(event); move(event); } function move(event) { const point = points[0], point0 = point.point0; var t; dx = point[0] - point0[0]; dy = point[1] - point0[1]; switch (mode) { case MODE_SPACE: case MODE_DRAG: { if (signX) dx = max$2(W - w0, min$1(E - e0, dx)), w1 = w0 + dx, e1 = e0 + dx; if (signY) dy = max$2(N - n0, min$1(S - s0, dy)), n1 = n0 + dy, s1 = s0 + dy; break; } case MODE_HANDLE: { if (points[1]) { if (signX) w1 = max$2(W, min$1(E, points[0][0])), e1 = max$2(W, min$1(E, points[1][0])), signX = 1; if (signY) n1 = max$2(N, min$1(S, points[0][1])), s1 = max$2(N, min$1(S, points[1][1])), signY = 1; } else { if (signX < 0) dx = max$2(W - w0, min$1(E - w0, dx)), w1 = w0 + dx, e1 = e0; else if (signX > 0) dx = max$2(W - e0, min$1(E - e0, dx)), w1 = w0, e1 = e0 + dx; if (signY < 0) dy = max$2(N - n0, min$1(S - n0, dy)), n1 = n0 + dy, s1 = s0; else if (signY > 0) dy = max$2(N - s0, min$1(S - s0, dy)), n1 = n0, s1 = s0 + dy; } break; } case MODE_CENTER: { if (signX) w1 = max$2(W, min$1(E, w0 - dx * signX)), e1 = max$2(W, min$1(E, e0 + dx * signX)); if (signY) n1 = max$2(N, min$1(S, n0 - dy * signY)), s1 = max$2(N, min$1(S, s0 + dy * signY)); break; } } if (e1 < w1) { signX *= -1; t = w0, w0 = e0, e0 = t; t = w1, w1 = e1, e1 = t; if (type in flipX) overlay.attr("cursor", cursors[type = flipX[type]]); } if (s1 < n1) { signY *= -1; t = n0, n0 = s0, s0 = t; t = n1, n1 = s1, s1 = t; if (type in flipY) overlay.attr("cursor", cursors[type = flipY[type]]); } if (state.selection) selection = state.selection; // May be set by brush.move! if (lockX) w1 = selection[0][0], e1 = selection[1][0]; if (lockY) n1 = selection[0][1], s1 = selection[1][1]; if (selection[0][0] !== w1 || selection[0][1] !== n1 || selection[1][0] !== e1 || selection[1][1] !== s1) { state.selection = [[w1, n1], [e1, s1]]; redraw.call(that); emit.brush(event, mode.name); } } function ended(event) { nopropagation$1(event); if (event.touches) { if (event.touches.length) return; if (touchending) clearTimeout(touchending); touchending = setTimeout(function() { touchending = null; }, 500); // Ghost clicks are delayed! } else { yesdrag(event.view, moving); view.on("keydown.brush keyup.brush mousemove.brush mouseup.brush", null); } group.attr("pointer-events", "all"); overlay.attr("cursor", cursors.overlay); if (state.selection) selection = state.selection; // May be set by brush.move (on start)! if (empty(selection)) state.selection = null, redraw.call(that); emit.end(event, mode.name); } function keydowned(event) { switch (event.keyCode) { case 16: { // SHIFT shifting = signX && signY; break; } case 18: { // ALT if (mode === MODE_HANDLE) { if (signX) e0 = e1 - dx * signX, w0 = w1 + dx * signX; if (signY) s0 = s1 - dy * signY, n0 = n1 + dy * signY; mode = MODE_CENTER; move(event); } break; } case 32: { // SPACE; takes priority over ALT if (mode === MODE_HANDLE || mode === MODE_CENTER) { if (signX < 0) e0 = e1 - dx; else if (signX > 0) w0 = w1 - dx; if (signY < 0) s0 = s1 - dy; else if (signY > 0) n0 = n1 - dy; mode = MODE_SPACE; overlay.attr("cursor", cursors.selection); move(event); } break; } default: return; } noevent$1(event); } function keyupped(event) { switch (event.keyCode) { case 16: { // SHIFT if (shifting) { lockX = lockY = shifting = false; move(event); } break; } case 18: { // ALT if (mode === MODE_CENTER) { if (signX < 0) e0 = e1; else if (signX > 0) w0 = w1; if (signY < 0) s0 = s1; else if (signY > 0) n0 = n1; mode = MODE_HANDLE; move(event); } break; } case 32: { // SPACE if (mode === MODE_SPACE) { if (event.altKey) { if (signX) e0 = e1 - dx * signX, w0 = w1 + dx * signX; if (signY) s0 = s1 - dy * signY, n0 = n1 + dy * signY; mode = MODE_CENTER; } else { if (signX < 0) e0 = e1; else if (signX > 0) w0 = w1; if (signY < 0) s0 = s1; else if (signY > 0) n0 = n1; mode = MODE_HANDLE; } overlay.attr("cursor", cursors[type]); move(event); } break; } default: return; } noevent$1(event); } } function touchmoved(event) { emitter(this, arguments).moved(event); } function touchended(event) { emitter(this, arguments).ended(event); } function initialize() { var state = this.__brush || {selection: null}; state.extent = number2(extent.apply(this, arguments)); state.dim = dim; return state; } brush.extent = function(_) { return arguments.length ? (extent = typeof _ === "function" ? _ : constant$7(number2(_)), brush) : extent; }; brush.filter = function(_) { return arguments.length ? (filter = typeof _ === "function" ? _ : constant$7(!!_), brush) : filter; }; brush.touchable = function(_) { return arguments.length ? (touchable = typeof _ === "function" ? _ : constant$7(!!_), brush) : touchable; }; brush.handleSize = function(_) { return arguments.length ? (handleSize = +_, brush) : handleSize; }; brush.keyModifiers = function(_) { return arguments.length ? (keys = !!_, brush) : keys; }; brush.on = function() { var value = listeners.on.apply(listeners, arguments); return value === listeners ? brush : value; }; return brush; } var abs$2 = Math.abs; var cos$2 = Math.cos; var sin$2 = Math.sin; var pi$3 = Math.PI; var halfPi$2 = pi$3 / 2; var tau$4 = pi$3 * 2; var max$1 = Math.max; var epsilon$5 = 1e-12; function range$1(i, j) { return Array.from({length: j - i}, (_, k) => i + k); } function compareValue(compare) { return function(a, b) { return compare( a.source.value + a.target.value, b.source.value + b.target.value ); }; } function chord() { return chord$1(false, false); } function chordTranspose() { return chord$1(false, true); } function chordDirected() { return chord$1(true, false); } function chord$1(directed, transpose) { var padAngle = 0, sortGroups = null, sortSubgroups = null, sortChords = null; function chord(matrix) { var n = matrix.length, groupSums = new Array(n), groupIndex = range$1(0, n), chords = new Array(n * n), groups = new Array(n), k = 0, dx; matrix = Float64Array.from({length: n * n}, transpose ? (_, i) => matrix[i % n][i / n | 0] : (_, i) => matrix[i / n | 0][i % n]); // Compute the scaling factor from value to angle in [0, 2pi]. for (let i = 0; i < n; ++i) { let x = 0; for (let j = 0; j < n; ++j) x += matrix[i * n + j] + directed * matrix[j * n + i]; k += groupSums[i] = x; } k = max$1(0, tau$4 - padAngle * n) / k; dx = k ? padAngle : tau$4 / n; // Compute the angles for each group and constituent chord. { let x = 0; if (sortGroups) groupIndex.sort((a, b) => sortGroups(groupSums[a], groupSums[b])); for (const i of groupIndex) { const x0 = x; if (directed) { const subgroupIndex = range$1(~n + 1, n).filter(j => j < 0 ? matrix[~j * n + i] : matrix[i * n + j]); if (sortSubgroups) subgroupIndex.sort((a, b) => sortSubgroups(a < 0 ? -matrix[~a * n + i] : matrix[i * n + a], b < 0 ? -matrix[~b * n + i] : matrix[i * n + b])); for (const j of subgroupIndex) { if (j < 0) { const chord = chords[~j * n + i] || (chords[~j * n + i] = {source: null, target: null}); chord.target = {index: i, startAngle: x, endAngle: x += matrix[~j * n + i] * k, value: matrix[~j * n + i]}; } else { const chord = chords[i * n + j] || (chords[i * n + j] = {source: null, target: null}); chord.source = {index: i, startAngle: x, endAngle: x += matrix[i * n + j] * k, value: matrix[i * n + j]}; } } groups[i] = {index: i, startAngle: x0, endAngle: x, value: groupSums[i]}; } else { const subgroupIndex = range$1(0, n).filter(j => matrix[i * n + j] || matrix[j * n + i]); if (sortSubgroups) subgroupIndex.sort((a, b) => sortSubgroups(matrix[i * n + a], matrix[i * n + b])); for (const j of subgroupIndex) { let chord; if (i < j) { chord = chords[i * n + j] || (chords[i * n + j] = {source: null, target: null}); chord.source = {index: i, startAngle: x, endAngle: x += matrix[i * n + j] * k, value: matrix[i * n + j]}; } else { chord = chords[j * n + i] || (chords[j * n + i] = {source: null, target: null}); chord.target = {index: i, startAngle: x, endAngle: x += matrix[i * n + j] * k, value: matrix[i * n + j]}; if (i === j) chord.source = chord.target; } if (chord.source && chord.target && chord.source.value < chord.target.value) { const source = chord.source; chord.source = chord.target; chord.target = source; } } groups[i] = {index: i, startAngle: x0, endAngle: x, value: groupSums[i]}; } x += dx; } } // Remove empty chords. chords = Object.values(chords); chords.groups = groups; return sortChords ? chords.sort(sortChords) : chords; } chord.padAngle = function(_) { return arguments.length ? (padAngle = max$1(0, _), chord) : padAngle; }; chord.sortGroups = function(_) { return arguments.length ? (sortGroups = _, chord) : sortGroups; }; chord.sortSubgroups = function(_) { return arguments.length ? (sortSubgroups = _, chord) : sortSubgroups; }; chord.sortChords = function(_) { return arguments.length ? (_ == null ? sortChords = null : (sortChords = compareValue(_))._ = _, chord) : sortChords && sortChords._; }; return chord; } const pi$2 = Math.PI, tau$3 = 2 * pi$2, epsilon$4 = 1e-6, tauEpsilon = tau$3 - epsilon$4; function append$1(strings) { this._ += strings[0]; for (let i = 1, n = strings.length; i < n; ++i) { this._ += arguments[i] + strings[i]; } } function appendRound$1(digits) { let d = Math.floor(digits); if (!(d >= 0)) throw new Error(`invalid digits: ${digits}`); if (d > 15) return append$1; const k = 10 ** d; return function(strings) { this._ += strings[0]; for (let i = 1, n = strings.length; i < n; ++i) { this._ += Math.round(arguments[i] * k) / k + strings[i]; } }; } let Path$1 = class Path { constructor(digits) { this._x0 = this._y0 = // start of current subpath this._x1 = this._y1 = null; // end of current subpath this._ = ""; this._append = digits == null ? append$1 : appendRound$1(digits); } moveTo(x, y) { this._append`M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}`; } closePath() { if (this._x1 !== null) { this._x1 = this._x0, this._y1 = this._y0; this._append`Z`; } } lineTo(x, y) { this._append`L${this._x1 = +x},${this._y1 = +y}`; } quadraticCurveTo(x1, y1, x, y) { this._append`Q${+x1},${+y1},${this._x1 = +x},${this._y1 = +y}`; } bezierCurveTo(x1, y1, x2, y2, x, y) { this._append`C${+x1},${+y1},${+x2},${+y2},${this._x1 = +x},${this._y1 = +y}`; } arcTo(x1, y1, x2, y2, r) { x1 = +x1, y1 = +y1, x2 = +x2, y2 = +y2, r = +r; // Is the radius negative? Error. if (r < 0) throw new Error(`negative radius: ${r}`); let x0 = this._x1, y0 = this._y1, x21 = x2 - x1, y21 = y2 - y1, x01 = x0 - x1, y01 = y0 - y1, l01_2 = x01 * x01 + y01 * y01; // Is this path empty? Move to (x1,y1). if (this._x1 === null) { this._append`M${this._x1 = x1},${this._y1 = y1}`; } // Or, is (x1,y1) coincident with (x0,y0)? Do nothing. else if (!(l01_2 > epsilon$4)); // Or, are (x0,y0), (x1,y1) and (x2,y2) collinear? // Equivalently, is (x1,y1) coincident with (x2,y2)? // Or, is the radius zero? Line to (x1,y1). else if (!(Math.abs(y01 * x21 - y21 * x01) > epsilon$4) || !r) { this._append`L${this._x1 = x1},${this._y1 = y1}`; } // Otherwise, draw an arc! else { let x20 = x2 - x0, y20 = y2 - y0, l21_2 = x21 * x21 + y21 * y21, l20_2 = x20 * x20 + y20 * y20, l21 = Math.sqrt(l21_2), l01 = Math.sqrt(l01_2), l = r * Math.tan((pi$2 - Math.acos((l21_2 + l01_2 - l20_2) / (2 * l21 * l01))) / 2), t01 = l / l01, t21 = l / l21; // If the start tangent is not coincident with (x0,y0), line to. if (Math.abs(t01 - 1) > epsilon$4) { this._append`L${x1 + t01 * x01},${y1 + t01 * y01}`; } this._append`A${r},${r},0,0,${+(y01 * x20 > x01 * y20)},${this._x1 = x1 + t21 * x21},${this._y1 = y1 + t21 * y21}`; } } arc(x, y, r, a0, a1, ccw) { x = +x, y = +y, r = +r, ccw = !!ccw; // Is the radius negative? Error. if (r < 0) throw new Error(`negative radius: ${r}`); let dx = r * Math.cos(a0), dy = r * Math.sin(a0), x0 = x + dx, y0 = y + dy, cw = 1 ^ ccw, da = ccw ? a0 - a1 : a1 - a0; // Is this path empty? Move to (x0,y0). if (this._x1 === null) { this._append`M${x0},${y0}`; } // Or, is (x0,y0) not coincident with the previous point? Line to (x0,y0). else if (Math.abs(this._x1 - x0) > epsilon$4 || Math.abs(this._y1 - y0) > epsilon$4) { this._append`L${x0},${y0}`; } // Is this arc empty? We’re done. if (!r) return; // Does the angle go the wrong way? Flip the direction. if (da < 0) da = da % tau$3 + tau$3; // Is this a complete circle? Draw two arcs to complete the circle. if (da > tauEpsilon) { this._append`A${r},${r},0,1,${cw},${x - dx},${y - dy}A${r},${r},0,1,${cw},${this._x1 = x0},${this._y1 = y0}`; } // Is this arc non-empty? Draw an arc! else if (da > epsilon$4) { this._append`A${r},${r},0,${+(da >= pi$2)},${cw},${this._x1 = x + r * Math.cos(a1)},${this._y1 = y + r * Math.sin(a1)}`; } } rect(x, y, w, h) { this._append`M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}h${w = +w}v${+h}h${-w}Z`; } toString() { return this._; } }; function path() { return new Path$1; } // Allow instanceof d3.path path.prototype = Path$1.prototype; function pathRound(digits = 3) { return new Path$1(+digits); } var slice$2 = Array.prototype.slice; function constant$6(x) { return function() { return x; }; } function defaultSource$1(d) { return d.source; } function defaultTarget(d) { return d.target; } function defaultRadius$1(d) { return d.radius; } function defaultStartAngle(d) { return d.startAngle; } function defaultEndAngle(d) { return d.endAngle; } function defaultPadAngle() { return 0; } function defaultArrowheadRadius() { return 10; } function ribbon(headRadius) { var source = defaultSource$1, target = defaultTarget, sourceRadius = defaultRadius$1, targetRadius = defaultRadius$1, startAngle = defaultStartAngle, endAngle = defaultEndAngle, padAngle = defaultPadAngle, context = null; function ribbon() { var buffer, s = source.apply(this, arguments), t = target.apply(this, arguments), ap = padAngle.apply(this, arguments) / 2, argv = slice$2.call(arguments), sr = +sourceRadius.apply(this, (argv[0] = s, argv)), sa0 = startAngle.apply(this, argv) - halfPi$2, sa1 = endAngle.apply(this, argv) - halfPi$2, tr = +targetRadius.apply(this, (argv[0] = t, argv)), ta0 = startAngle.apply(this, argv) - halfPi$2, ta1 = endAngle.apply(this, argv) - halfPi$2; if (!context) context = buffer = path(); if (ap > epsilon$5) { if (abs$2(sa1 - sa0) > ap * 2 + epsilon$5) sa1 > sa0 ? (sa0 += ap, sa1 -= ap) : (sa0 -= ap, sa1 += ap); else sa0 = sa1 = (sa0 + sa1) / 2; if (abs$2(ta1 - ta0) > ap * 2 + epsilon$5) ta1 > ta0 ? (ta0 += ap, ta1 -= ap) : (ta0 -= ap, ta1 += ap); else ta0 = ta1 = (ta0 + ta1) / 2; } context.moveTo(sr * cos$2(sa0), sr * sin$2(sa0)); context.arc(0, 0, sr, sa0, sa1); if (sa0 !== ta0 || sa1 !== ta1) { if (headRadius) { var hr = +headRadius.apply(this, arguments), tr2 = tr - hr, ta2 = (ta0 + ta1) / 2; context.quadraticCurveTo(0, 0, tr2 * cos$2(ta0), tr2 * sin$2(ta0)); context.lineTo(tr * cos$2(ta2), tr * sin$2(ta2)); context.lineTo(tr2 * cos$2(ta1), tr2 * sin$2(ta1)); } else { context.quadraticCurveTo(0, 0, tr * cos$2(ta0), tr * sin$2(ta0)); context.arc(0, 0, tr, ta0, ta1); } } context.quadraticCurveTo(0, 0, sr * cos$2(sa0), sr * sin$2(sa0)); context.closePath(); if (buffer) return context = null, buffer + "" || null; } if (headRadius) ribbon.headRadius = function(_) { return arguments.length ? (headRadius = typeof _ === "function" ? _ : constant$6(+_), ribbon) : headRadius; }; ribbon.radius = function(_) { return arguments.length ? (sourceRadius = targetRadius = typeof _ === "function" ? _ : constant$6(+_), ribbon) : sourceRadius; }; ribbon.sourceRadius = function(_) { return arguments.length ? (sourceRadius = typeof _ === "function" ? _ : constant$6(+_), ribbon) : sourceRadius; }; ribbon.targetRadius = function(_) { return arguments.length ? (targetRadius = typeof _ === "function" ? _ : constant$6(+_), ribbon) : targetRadius; }; ribbon.startAngle = function(_) { return arguments.length ? (startAngle = typeof _ === "function" ? _ : constant$6(+_), ribbon) : startAngle; }; ribbon.endAngle = function(_) { return arguments.length ? (endAngle = typeof _ === "function" ? _ : constant$6(+_), ribbon) : endAngle; }; ribbon.padAngle = function(_) { return arguments.length ? (padAngle = typeof _ === "function" ? _ : constant$6(+_), ribbon) : padAngle; }; ribbon.source = function(_) { return arguments.length ? (source = _, ribbon) : source; }; ribbon.target = function(_) { return arguments.length ? (target = _, ribbon) : target; }; ribbon.context = function(_) { return arguments.length ? ((context = _ == null ? null : _), ribbon) : context; }; return ribbon; } function ribbon$1() { return ribbon(); } function ribbonArrow() { return ribbon(defaultArrowheadRadius); } var array$2 = Array.prototype; var slice$1 = array$2.slice; function ascending$1(a, b) { return a - b; } function area$3(ring) { var i = 0, n = ring.length, area = ring[n - 1][1] * ring[0][0] - ring[n - 1][0] * ring[0][1]; while (++i < n) area += ring[i - 1][1] * ring[i][0] - ring[i - 1][0] * ring[i][1]; return area; } var constant$5 = x => () => x; function contains$2(ring, hole) { var i = -1, n = hole.length, c; while (++i < n) if (c = ringContains(ring, hole[i])) return c; return 0; } function ringContains(ring, point) { var x = point[0], y = point[1], contains = -1; for (var i = 0, n = ring.length, j = n - 1; i < n; j = i++) { var pi = ring[i], xi = pi[0], yi = pi[1], pj = ring[j], xj = pj[0], yj = pj[1]; if (segmentContains(pi, pj, point)) return 0; if (((yi > y) !== (yj > y)) && ((x < (xj - xi) * (y - yi) / (yj - yi) + xi))) contains = -contains; } return contains; } function segmentContains(a, b, c) { var i; return collinear$1(a, b, c) && within(a[i = +(a[0] === b[0])], c[i], b[i]); } function collinear$1(a, b, c) { return (b[0] - a[0]) * (c[1] - a[1]) === (c[0] - a[0]) * (b[1] - a[1]); } function within(p, q, r) { return p <= q && q <= r || r <= q && q <= p; } function noop$2() {} var cases = [ [], [[[1.0, 1.5], [0.5, 1.0]]], [[[1.5, 1.0], [1.0, 1.5]]], [[[1.5, 1.0], [0.5, 1.0]]], [[[1.0, 0.5], [1.5, 1.0]]], [[[1.0, 1.5], [0.5, 1.0]], [[1.0, 0.5], [1.5, 1.0]]], [[[1.0, 0.5], [1.0, 1.5]]], [[[1.0, 0.5], [0.5, 1.0]]], [[[0.5, 1.0], [1.0, 0.5]]], [[[1.0, 1.5], [1.0, 0.5]]], [[[0.5, 1.0], [1.0, 0.5]], [[1.5, 1.0], [1.0, 1.5]]], [[[1.5, 1.0], [1.0, 0.5]]], [[[0.5, 1.0], [1.5, 1.0]]], [[[1.0, 1.5], [1.5, 1.0]]], [[[0.5, 1.0], [1.0, 1.5]]], [] ]; function Contours() { var dx = 1, dy = 1, threshold = thresholdSturges, smooth = smoothLinear; function contours(values) { var tz = threshold(values); // Convert number of thresholds into uniform thresholds. if (!Array.isArray(tz)) { const e = extent$1(values, finite); tz = ticks(...nice$1(e[0], e[1], tz), tz); while (tz[tz.length - 1] >= e[1]) tz.pop(); while (tz[1] < e[0]) tz.shift(); } else { tz = tz.slice().sort(ascending$1); } return tz.map(value => contour(values, value)); } // Accumulate, smooth contour rings, assign holes to exterior rings. // Based on https://github.com/mbostock/shapefile/blob/v0.6.2/shp/polygon.js function contour(values, value) { const v = value == null ? NaN : +value; if (isNaN(v)) throw new Error(`invalid value: ${value}`); var polygons = [], holes = []; isorings(values, v, function(ring) { smooth(ring, values, v); if (area$3(ring) > 0) polygons.push([ring]); else holes.push(ring); }); holes.forEach(function(hole) { for (var i = 0, n = polygons.length, polygon; i < n; ++i) { if (contains$2((polygon = polygons[i])[0], hole) !== -1) { polygon.push(hole); return; } } }); return { type: "MultiPolygon", value: value, coordinates: polygons }; } // Marching squares with isolines stitched into rings. // Based on https://github.com/topojson/topojson-client/blob/v3.0.0/src/stitch.js function isorings(values, value, callback) { var fragmentByStart = new Array, fragmentByEnd = new Array, x, y, t0, t1, t2, t3; // Special case for the first row (y = -1, t2 = t3 = 0). x = y = -1; t1 = above(values[0], value); cases[t1 << 1].forEach(stitch); while (++x < dx - 1) { t0 = t1, t1 = above(values[x + 1], value); cases[t0 | t1 << 1].forEach(stitch); } cases[t1 << 0].forEach(stitch); // General case for the intermediate rows. while (++y < dy - 1) { x = -1; t1 = above(values[y * dx + dx], value); t2 = above(values[y * dx], value); cases[t1 << 1 | t2 << 2].forEach(stitch); while (++x < dx - 1) { t0 = t1, t1 = above(values[y * dx + dx + x + 1], value); t3 = t2, t2 = above(values[y * dx + x + 1], value); cases[t0 | t1 << 1 | t2 << 2 | t3 << 3].forEach(stitch); } cases[t1 | t2 << 3].forEach(stitch); } // Special case for the last row (y = dy - 1, t0 = t1 = 0). x = -1; t2 = values[y * dx] >= value; cases[t2 << 2].forEach(stitch); while (++x < dx - 1) { t3 = t2, t2 = above(values[y * dx + x + 1], value); cases[t2 << 2 | t3 << 3].forEach(stitch); } cases[t2 << 3].forEach(stitch); function stitch(line) { var start = [line[0][0] + x, line[0][1] + y], end = [line[1][0] + x, line[1][1] + y], startIndex = index(start), endIndex = index(end), f, g; if (f = fragmentByEnd[startIndex]) { if (g = fragmentByStart[endIndex]) { delete fragmentByEnd[f.end]; delete fragmentByStart[g.start]; if (f === g) { f.ring.push(end); callback(f.ring); } else { fragmentByStart[f.start] = fragmentByEnd[g.end] = {start: f.start, end: g.end, ring: f.ring.concat(g.ring)}; } } else { delete fragmentByEnd[f.end]; f.ring.push(end); fragmentByEnd[f.end = endIndex] = f; } } else if (f = fragmentByStart[endIndex]) { if (g = fragmentByEnd[startIndex]) { delete fragmentByStart[f.start]; delete fragmentByEnd[g.end]; if (f === g) { f.ring.push(end); callback(f.ring); } else { fragmentByStart[g.start] = fragmentByEnd[f.end] = {start: g.start, end: f.end, ring: g.ring.concat(f.ring)}; } } else { delete fragmentByStart[f.start]; f.ring.unshift(start); fragmentByStart[f.start = startIndex] = f; } } else { fragmentByStart[startIndex] = fragmentByEnd[endIndex] = {start: startIndex, end: endIndex, ring: [start, end]}; } } } function index(point) { return point[0] * 2 + point[1] * (dx + 1) * 4; } function smoothLinear(ring, values, value) { ring.forEach(function(point) { var x = point[0], y = point[1], xt = x | 0, yt = y | 0, v1 = valid(values[yt * dx + xt]); if (x > 0 && x < dx && xt === x) { point[0] = smooth1(x, valid(values[yt * dx + xt - 1]), v1, value); } if (y > 0 && y < dy && yt === y) { point[1] = smooth1(y, valid(values[(yt - 1) * dx + xt]), v1, value); } }); } contours.contour = contour; contours.size = function(_) { if (!arguments.length) return [dx, dy]; var _0 = Math.floor(_[0]), _1 = Math.floor(_[1]); if (!(_0 >= 0 && _1 >= 0)) throw new Error("invalid size"); return dx = _0, dy = _1, contours; }; contours.thresholds = function(_) { return arguments.length ? (threshold = typeof _ === "function" ? _ : Array.isArray(_) ? constant$5(slice$1.call(_)) : constant$5(_), contours) : threshold; }; contours.smooth = function(_) { return arguments.length ? (smooth = _ ? smoothLinear : noop$2, contours) : smooth === smoothLinear; }; return contours; } // When computing the extent, ignore infinite values (as well as invalid ones). function finite(x) { return isFinite(x) ? x : NaN; } // Is the (possibly invalid) x greater than or equal to the (known valid) value? // Treat any invalid value as below negative infinity. function above(x, value) { return x == null ? false : +x >= value; } // During smoothing, treat any invalid value as negative infinity. function valid(v) { return v == null || isNaN(v = +v) ? -Infinity : v; } function smooth1(x, v0, v1, value) { const a = value - v0; const b = v1 - v0; const d = isFinite(a) || isFinite(b) ? a / b : Math.sign(a) / Math.sign(b); return isNaN(d) ? x : x + d - 0.5; } function defaultX$1(d) { return d[0]; } function defaultY$1(d) { return d[1]; } function defaultWeight() { return 1; } function density() { var x = defaultX$1, y = defaultY$1, weight = defaultWeight, dx = 960, dy = 500, r = 20, // blur radius k = 2, // log2(grid cell size) o = r * 3, // grid offset, to pad for blur n = (dx + o * 2) >> k, // grid width m = (dy + o * 2) >> k, // grid height threshold = constant$5(20); function grid(data) { var values = new Float32Array(n * m), pow2k = Math.pow(2, -k), i = -1; for (const d of data) { var xi = (x(d, ++i, data) + o) * pow2k, yi = (y(d, i, data) + o) * pow2k, wi = +weight(d, i, data); if (wi && xi >= 0 && xi < n && yi >= 0 && yi < m) { var x0 = Math.floor(xi), y0 = Math.floor(yi), xt = xi - x0 - 0.5, yt = yi - y0 - 0.5; values[x0 + y0 * n] += (1 - xt) * (1 - yt) * wi; values[x0 + 1 + y0 * n] += xt * (1 - yt) * wi; values[x0 + 1 + (y0 + 1) * n] += xt * yt * wi; values[x0 + (y0 + 1) * n] += (1 - xt) * yt * wi; } } blur2({data: values, width: n, height: m}, r * pow2k); return values; } function density(data) { var values = grid(data), tz = threshold(values), pow4k = Math.pow(2, 2 * k); // Convert number of thresholds into uniform thresholds. if (!Array.isArray(tz)) { tz = ticks(Number.MIN_VALUE, max$3(values) / pow4k, tz); } return Contours() .size([n, m]) .thresholds(tz.map(d => d * pow4k)) (values) .map((c, i) => (c.value = +tz[i], transform(c))); } density.contours = function(data) { var values = grid(data), contours = Contours().size([n, m]), pow4k = Math.pow(2, 2 * k), contour = value => { value = +value; var c = transform(contours.contour(values, value * pow4k)); c.value = value; // preserve exact threshold value return c; }; Object.defineProperty(contour, "max", {get: () => max$3(values) / pow4k}); return contour; }; function transform(geometry) { geometry.coordinates.forEach(transformPolygon); return geometry; } function transformPolygon(coordinates) { coordinates.forEach(transformRing); } function transformRing(coordinates) { coordinates.forEach(transformPoint); } // TODO Optimize. function transformPoint(coordinates) { coordinates[0] = coordinates[0] * Math.pow(2, k) - o; coordinates[1] = coordinates[1] * Math.pow(2, k) - o; } function resize() { o = r * 3; n = (dx + o * 2) >> k; m = (dy + o * 2) >> k; return density; } density.x = function(_) { return arguments.length ? (x = typeof _ === "function" ? _ : constant$5(+_), density) : x; }; density.y = function(_) { return arguments.length ? (y = typeof _ === "function" ? _ : constant$5(+_), density) : y; }; density.weight = function(_) { return arguments.length ? (weight = typeof _ === "function" ? _ : constant$5(+_), density) : weight; }; density.size = function(_) { if (!arguments.length) return [dx, dy]; var _0 = +_[0], _1 = +_[1]; if (!(_0 >= 0 && _1 >= 0)) throw new Error("invalid size"); return dx = _0, dy = _1, resize(); }; density.cellSize = function(_) { if (!arguments.length) return 1 << k; if (!((_ = +_) >= 1)) throw new Error("invalid cell size"); return k = Math.floor(Math.log(_) / Math.LN2), resize(); }; density.thresholds = function(_) { return arguments.length ? (threshold = typeof _ === "function" ? _ : Array.isArray(_) ? constant$5(slice$1.call(_)) : constant$5(_), density) : threshold; }; density.bandwidth = function(_) { if (!arguments.length) return Math.sqrt(r * (r + 1)); if (!((_ = +_) >= 0)) throw new Error("invalid bandwidth"); return r = (Math.sqrt(4 * _ * _ + 1) - 1) / 2, resize(); }; return density; } const epsilon$3 = 1.1102230246251565e-16; const splitter = 134217729; const resulterrbound = (3 + 8 * epsilon$3) * epsilon$3; // fast_expansion_sum_zeroelim routine from oritinal code function sum$1(elen, e, flen, f, h) { let Q, Qnew, hh, bvirt; let enow = e[0]; let fnow = f[0]; let eindex = 0; let findex = 0; if ((fnow > enow) === (fnow > -enow)) { Q = enow; enow = e[++eindex]; } else { Q = fnow; fnow = f[++findex]; } let hindex = 0; if (eindex < elen && findex < flen) { if ((fnow > enow) === (fnow > -enow)) { Qnew = enow + Q; hh = Q - (Qnew - enow); enow = e[++eindex]; } else { Qnew = fnow + Q; hh = Q - (Qnew - fnow); fnow = f[++findex]; } Q = Qnew; if (hh !== 0) { h[hindex++] = hh; } while (eindex < elen && findex < flen) { if ((fnow > enow) === (fnow > -enow)) { Qnew = Q + enow; bvirt = Qnew - Q; hh = Q - (Qnew - bvirt) + (enow - bvirt); enow = e[++eindex]; } else { Qnew = Q + fnow; bvirt = Qnew - Q; hh = Q - (Qnew - bvirt) + (fnow - bvirt); fnow = f[++findex]; } Q = Qnew; if (hh !== 0) { h[hindex++] = hh; } } } while (eindex < elen) { Qnew = Q + enow; bvirt = Qnew - Q; hh = Q - (Qnew - bvirt) + (enow - bvirt); enow = e[++eindex]; Q = Qnew; if (hh !== 0) { h[hindex++] = hh; } } while (findex < flen) { Qnew = Q + fnow; bvirt = Qnew - Q; hh = Q - (Qnew - bvirt) + (fnow - bvirt); fnow = f[++findex]; Q = Qnew; if (hh !== 0) { h[hindex++] = hh; } } if (Q !== 0 || hindex === 0) { h[hindex++] = Q; } return hindex; } function estimate(elen, e) { let Q = e[0]; for (let i = 1; i < elen; i++) Q += e[i]; return Q; } function vec(n) { return new Float64Array(n); } const ccwerrboundA = (3 + 16 * epsilon$3) * epsilon$3; const ccwerrboundB = (2 + 12 * epsilon$3) * epsilon$3; const ccwerrboundC = (9 + 64 * epsilon$3) * epsilon$3 * epsilon$3; const B = vec(4); const C1 = vec(8); const C2 = vec(12); const D = vec(16); const u = vec(4); function orient2dadapt(ax, ay, bx, by, cx, cy, detsum) { let acxtail, acytail, bcxtail, bcytail; let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3; const acx = ax - cx; const bcx = bx - cx; const acy = ay - cy; const bcy = by - cy; s1 = acx * bcy; c = splitter * acx; ahi = c - (c - acx); alo = acx - ahi; c = splitter * bcy; bhi = c - (c - bcy); blo = bcy - bhi; s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); t1 = acy * bcx; c = splitter * acy; ahi = c - (c - acy); alo = acy - ahi; c = splitter * bcx; bhi = c - (c - bcx); blo = bcx - bhi; t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); _i = s0 - t0; bvirt = s0 - _i; B[0] = s0 - (_i + bvirt) + (bvirt - t0); _j = s1 + _i; bvirt = _j - s1; _0 = s1 - (_j - bvirt) + (_i - bvirt); _i = _0 - t1; bvirt = _0 - _i; B[1] = _0 - (_i + bvirt) + (bvirt - t1); u3 = _j + _i; bvirt = u3 - _j; B[2] = _j - (u3 - bvirt) + (_i - bvirt); B[3] = u3; let det = estimate(4, B); let errbound = ccwerrboundB * detsum; if (det >= errbound || -det >= errbound) { return det; } bvirt = ax - acx; acxtail = ax - (acx + bvirt) + (bvirt - cx); bvirt = bx - bcx; bcxtail = bx - (bcx + bvirt) + (bvirt - cx); bvirt = ay - acy; acytail = ay - (acy + bvirt) + (bvirt - cy); bvirt = by - bcy; bcytail = by - (bcy + bvirt) + (bvirt - cy); if (acxtail === 0 && acytail === 0 && bcxtail === 0 && bcytail === 0) { return det; } errbound = ccwerrboundC * detsum + resulterrbound * Math.abs(det); det += (acx * bcytail + bcy * acxtail) - (acy * bcxtail + bcx * acytail); if (det >= errbound || -det >= errbound) return det; s1 = acxtail * bcy; c = splitter * acxtail; ahi = c - (c - acxtail); alo = acxtail - ahi; c = splitter * bcy; bhi = c - (c - bcy); blo = bcy - bhi; s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); t1 = acytail * bcx; c = splitter * acytail; ahi = c - (c - acytail); alo = acytail - ahi; c = splitter * bcx; bhi = c - (c - bcx); blo = bcx - bhi; t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); _i = s0 - t0; bvirt = s0 - _i; u[0] = s0 - (_i + bvirt) + (bvirt - t0); _j = s1 + _i; bvirt = _j - s1; _0 = s1 - (_j - bvirt) + (_i - bvirt); _i = _0 - t1; bvirt = _0 - _i; u[1] = _0 - (_i + bvirt) + (bvirt - t1); u3 = _j + _i; bvirt = u3 - _j; u[2] = _j - (u3 - bvirt) + (_i - bvirt); u[3] = u3; const C1len = sum$1(4, B, 4, u, C1); s1 = acx * bcytail; c = splitter * acx; ahi = c - (c - acx); alo = acx - ahi; c = splitter * bcytail; bhi = c - (c - bcytail); blo = bcytail - bhi; s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); t1 = acy * bcxtail; c = splitter * acy; ahi = c - (c - acy); alo = acy - ahi; c = splitter * bcxtail; bhi = c - (c - bcxtail); blo = bcxtail - bhi; t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); _i = s0 - t0; bvirt = s0 - _i; u[0] = s0 - (_i + bvirt) + (bvirt - t0); _j = s1 + _i; bvirt = _j - s1; _0 = s1 - (_j - bvirt) + (_i - bvirt); _i = _0 - t1; bvirt = _0 - _i; u[1] = _0 - (_i + bvirt) + (bvirt - t1); u3 = _j + _i; bvirt = u3 - _j; u[2] = _j - (u3 - bvirt) + (_i - bvirt); u[3] = u3; const C2len = sum$1(C1len, C1, 4, u, C2); s1 = acxtail * bcytail; c = splitter * acxtail; ahi = c - (c - acxtail); alo = acxtail - ahi; c = splitter * bcytail; bhi = c - (c - bcytail); blo = bcytail - bhi; s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); t1 = acytail * bcxtail; c = splitter * acytail; ahi = c - (c - acytail); alo = acytail - ahi; c = splitter * bcxtail; bhi = c - (c - bcxtail); blo = bcxtail - bhi; t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); _i = s0 - t0; bvirt = s0 - _i; u[0] = s0 - (_i + bvirt) + (bvirt - t0); _j = s1 + _i; bvirt = _j - s1; _0 = s1 - (_j - bvirt) + (_i - bvirt); _i = _0 - t1; bvirt = _0 - _i; u[1] = _0 - (_i + bvirt) + (bvirt - t1); u3 = _j + _i; bvirt = u3 - _j; u[2] = _j - (u3 - bvirt) + (_i - bvirt); u[3] = u3; const Dlen = sum$1(C2len, C2, 4, u, D); return D[Dlen - 1]; } function orient2d(ax, ay, bx, by, cx, cy) { const detleft = (ay - cy) * (bx - cx); const detright = (ax - cx) * (by - cy); const det = detleft - detright; const detsum = Math.abs(detleft + detright); if (Math.abs(det) >= ccwerrboundA * detsum) return det; return -orient2dadapt(ax, ay, bx, by, cx, cy, detsum); } const EPSILON = Math.pow(2, -52); const EDGE_STACK = new Uint32Array(512); class Delaunator { static from(points, getX = defaultGetX, getY = defaultGetY) { const n = points.length; const coords = new Float64Array(n * 2); for (let i = 0; i < n; i++) { const p = points[i]; coords[2 * i] = getX(p); coords[2 * i + 1] = getY(p); } return new Delaunator(coords); } constructor(coords) { const n = coords.length >> 1; if (n > 0 && typeof coords[0] !== 'number') throw new Error('Expected coords to contain numbers.'); this.coords = coords; // arrays that will store the triangulation graph const maxTriangles = Math.max(2 * n - 5, 0); this._triangles = new Uint32Array(maxTriangles * 3); this._halfedges = new Int32Array(maxTriangles * 3); // temporary arrays for tracking the edges of the advancing convex hull this._hashSize = Math.ceil(Math.sqrt(n)); this._hullPrev = new Uint32Array(n); // edge to prev edge this._hullNext = new Uint32Array(n); // edge to next edge this._hullTri = new Uint32Array(n); // edge to adjacent triangle this._hullHash = new Int32Array(this._hashSize).fill(-1); // angular edge hash // temporary arrays for sorting points this._ids = new Uint32Array(n); this._dists = new Float64Array(n); this.update(); } update() { const {coords, _hullPrev: hullPrev, _hullNext: hullNext, _hullTri: hullTri, _hullHash: hullHash} = this; const n = coords.length >> 1; // populate an array of point indices; calculate input data bbox let minX = Infinity; let minY = Infinity; let maxX = -Infinity; let maxY = -Infinity; for (let i = 0; i < n; i++) { const x = coords[2 * i]; const y = coords[2 * i + 1]; if (x < minX) minX = x; if (y < minY) minY = y; if (x > maxX) maxX = x; if (y > maxY) maxY = y; this._ids[i] = i; } const cx = (minX + maxX) / 2; const cy = (minY + maxY) / 2; let minDist = Infinity; let i0, i1, i2; // pick a seed point close to the center for (let i = 0; i < n; i++) { const d = dist(cx, cy, coords[2 * i], coords[2 * i + 1]); if (d < minDist) { i0 = i; minDist = d; } } const i0x = coords[2 * i0]; const i0y = coords[2 * i0 + 1]; minDist = Infinity; // find the point closest to the seed for (let i = 0; i < n; i++) { if (i === i0) continue; const d = dist(i0x, i0y, coords[2 * i], coords[2 * i + 1]); if (d < minDist && d > 0) { i1 = i; minDist = d; } } let i1x = coords[2 * i1]; let i1y = coords[2 * i1 + 1]; let minRadius = Infinity; // find the third point which forms the smallest circumcircle with the first two for (let i = 0; i < n; i++) { if (i === i0 || i === i1) continue; const r = circumradius(i0x, i0y, i1x, i1y, coords[2 * i], coords[2 * i + 1]); if (r < minRadius) { i2 = i; minRadius = r; } } let i2x = coords[2 * i2]; let i2y = coords[2 * i2 + 1]; if (minRadius === Infinity) { // order collinear points by dx (or dy if all x are identical) // and return the list as a hull for (let i = 0; i < n; i++) { this._dists[i] = (coords[2 * i] - coords[0]) || (coords[2 * i + 1] - coords[1]); } quicksort(this._ids, this._dists, 0, n - 1); const hull = new Uint32Array(n); let j = 0; for (let i = 0, d0 = -Infinity; i < n; i++) { const id = this._ids[i]; if (this._dists[id] > d0) { hull[j++] = id; d0 = this._dists[id]; } } this.hull = hull.subarray(0, j); this.triangles = new Uint32Array(0); this.halfedges = new Uint32Array(0); return; } // swap the order of the seed points for counter-clockwise orientation if (orient2d(i0x, i0y, i1x, i1y, i2x, i2y) < 0) { const i = i1; const x = i1x; const y = i1y; i1 = i2; i1x = i2x; i1y = i2y; i2 = i; i2x = x; i2y = y; } const center = circumcenter(i0x, i0y, i1x, i1y, i2x, i2y); this._cx = center.x; this._cy = center.y; for (let i = 0; i < n; i++) { this._dists[i] = dist(coords[2 * i], coords[2 * i + 1], center.x, center.y); } // sort the points by distance from the seed triangle circumcenter quicksort(this._ids, this._dists, 0, n - 1); // set up the seed triangle as the starting hull this._hullStart = i0; let hullSize = 3; hullNext[i0] = hullPrev[i2] = i1; hullNext[i1] = hullPrev[i0] = i2; hullNext[i2] = hullPrev[i1] = i0; hullTri[i0] = 0; hullTri[i1] = 1; hullTri[i2] = 2; hullHash.fill(-1); hullHash[this._hashKey(i0x, i0y)] = i0; hullHash[this._hashKey(i1x, i1y)] = i1; hullHash[this._hashKey(i2x, i2y)] = i2; this.trianglesLen = 0; this._addTriangle(i0, i1, i2, -1, -1, -1); for (let k = 0, xp, yp; k < this._ids.length; k++) { const i = this._ids[k]; const x = coords[2 * i]; const y = coords[2 * i + 1]; // skip near-duplicate points if (k > 0 && Math.abs(x - xp) <= EPSILON && Math.abs(y - yp) <= EPSILON) continue; xp = x; yp = y; // skip seed triangle points if (i === i0 || i === i1 || i === i2) continue; // find a visible edge on the convex hull using edge hash let start = 0; for (let j = 0, key = this._hashKey(x, y); j < this._hashSize; j++) { start = hullHash[(key + j) % this._hashSize]; if (start !== -1 && start !== hullNext[start]) break; } start = hullPrev[start]; let e = start, q; while (q = hullNext[e], orient2d(x, y, coords[2 * e], coords[2 * e + 1], coords[2 * q], coords[2 * q + 1]) >= 0) { e = q; if (e === start) { e = -1; break; } } if (e === -1) continue; // likely a near-duplicate point; skip it // add the first triangle from the point let t = this._addTriangle(e, i, hullNext[e], -1, -1, hullTri[e]); // recursively flip triangles from the point until they satisfy the Delaunay condition hullTri[i] = this._legalize(t + 2); hullTri[e] = t; // keep track of boundary triangles on the hull hullSize++; // walk forward through the hull, adding more triangles and flipping recursively let n = hullNext[e]; while (q = hullNext[n], orient2d(x, y, coords[2 * n], coords[2 * n + 1], coords[2 * q], coords[2 * q + 1]) < 0) { t = this._addTriangle(n, i, q, hullTri[i], -1, hullTri[n]); hullTri[i] = this._legalize(t + 2); hullNext[n] = n; // mark as removed hullSize--; n = q; } // walk backward from the other side, adding more triangles and flipping if (e === start) { while (q = hullPrev[e], orient2d(x, y, coords[2 * q], coords[2 * q + 1], coords[2 * e], coords[2 * e + 1]) < 0) { t = this._addTriangle(q, i, e, -1, hullTri[e], hullTri[q]); this._legalize(t + 2); hullTri[q] = t; hullNext[e] = e; // mark as removed hullSize--; e = q; } } // update the hull indices this._hullStart = hullPrev[i] = e; hullNext[e] = hullPrev[n] = i; hullNext[i] = n; // save the two new edges in the hash table hullHash[this._hashKey(x, y)] = i; hullHash[this._hashKey(coords[2 * e], coords[2 * e + 1])] = e; } this.hull = new Uint32Array(hullSize); for (let i = 0, e = this._hullStart; i < hullSize; i++) { this.hull[i] = e; e = hullNext[e]; } // trim typed triangle mesh arrays this.triangles = this._triangles.subarray(0, this.trianglesLen); this.halfedges = this._halfedges.subarray(0, this.trianglesLen); } _hashKey(x, y) { return Math.floor(pseudoAngle(x - this._cx, y - this._cy) * this._hashSize) % this._hashSize; } _legalize(a) { const {_triangles: triangles, _halfedges: halfedges, coords} = this; let i = 0; let ar = 0; // recursion eliminated with a fixed-size stack while (true) { const b = halfedges[a]; /* if the pair of triangles doesn't satisfy the Delaunay condition * (p1 is inside the circumcircle of [p0, pl, pr]), flip them, * then do the same check/flip recursively for the new pair of triangles * * pl pl * /||\ / \ * al/ || \bl al/ \a * / || \ / \ * / a||b \ flip /___ar___\ * p0\ || /p1 => p0\---bl---/p1 * \ || / \ / * ar\ || /br b\ /br * \||/ \ / * pr pr */ const a0 = a - a % 3; ar = a0 + (a + 2) % 3; if (b === -1) { // convex hull edge if (i === 0) break; a = EDGE_STACK[--i]; continue; } const b0 = b - b % 3; const al = a0 + (a + 1) % 3; const bl = b0 + (b + 2) % 3; const p0 = triangles[ar]; const pr = triangles[a]; const pl = triangles[al]; const p1 = triangles[bl]; const illegal = inCircle( coords[2 * p0], coords[2 * p0 + 1], coords[2 * pr], coords[2 * pr + 1], coords[2 * pl], coords[2 * pl + 1], coords[2 * p1], coords[2 * p1 + 1]); if (illegal) { triangles[a] = p1; triangles[b] = p0; const hbl = halfedges[bl]; // edge swapped on the other side of the hull (rare); fix the halfedge reference if (hbl === -1) { let e = this._hullStart; do { if (this._hullTri[e] === bl) { this._hullTri[e] = a; break; } e = this._hullPrev[e]; } while (e !== this._hullStart); } this._link(a, hbl); this._link(b, halfedges[ar]); this._link(ar, bl); const br = b0 + (b + 1) % 3; // don't worry about hitting the cap: it can only happen on extremely degenerate input if (i < EDGE_STACK.length) { EDGE_STACK[i++] = br; } } else { if (i === 0) break; a = EDGE_STACK[--i]; } } return ar; } _link(a, b) { this._halfedges[a] = b; if (b !== -1) this._halfedges[b] = a; } // add a new triangle given vertex indices and adjacent half-edge ids _addTriangle(i0, i1, i2, a, b, c) { const t = this.trianglesLen; this._triangles[t] = i0; this._triangles[t + 1] = i1; this._triangles[t + 2] = i2; this._link(t, a); this._link(t + 1, b); this._link(t + 2, c); this.trianglesLen += 3; return t; } } // monotonically increases with real angle, but doesn't need expensive trigonometry function pseudoAngle(dx, dy) { const p = dx / (Math.abs(dx) + Math.abs(dy)); return (dy > 0 ? 3 - p : 1 + p) / 4; // [0..1] } function dist(ax, ay, bx, by) { const dx = ax - bx; const dy = ay - by; return dx * dx + dy * dy; } function inCircle(ax, ay, bx, by, cx, cy, px, py) { const dx = ax - px; const dy = ay - py; const ex = bx - px; const ey = by - py; const fx = cx - px; const fy = cy - py; const ap = dx * dx + dy * dy; const bp = ex * ex + ey * ey; const cp = fx * fx + fy * fy; return dx * (ey * cp - bp * fy) - dy * (ex * cp - bp * fx) + ap * (ex * fy - ey * fx) < 0; } function circumradius(ax, ay, bx, by, cx, cy) { const dx = bx - ax; const dy = by - ay; const ex = cx - ax; const ey = cy - ay; const bl = dx * dx + dy * dy; const cl = ex * ex + ey * ey; const d = 0.5 / (dx * ey - dy * ex); const x = (ey * bl - dy * cl) * d; const y = (dx * cl - ex * bl) * d; return x * x + y * y; } function circumcenter(ax, ay, bx, by, cx, cy) { const dx = bx - ax; const dy = by - ay; const ex = cx - ax; const ey = cy - ay; const bl = dx * dx + dy * dy; const cl = ex * ex + ey * ey; const d = 0.5 / (dx * ey - dy * ex); const x = ax + (ey * bl - dy * cl) * d; const y = ay + (dx * cl - ex * bl) * d; return {x, y}; } function quicksort(ids, dists, left, right) { if (right - left <= 20) { for (let i = left + 1; i <= right; i++) { const temp = ids[i]; const tempDist = dists[temp]; let j = i - 1; while (j >= left && dists[ids[j]] > tempDist) ids[j + 1] = ids[j--]; ids[j + 1] = temp; } } else { const median = (left + right) >> 1; let i = left + 1; let j = right; swap(ids, median, i); if (dists[ids[left]] > dists[ids[right]]) swap(ids, left, right); if (dists[ids[i]] > dists[ids[right]]) swap(ids, i, right); if (dists[ids[left]] > dists[ids[i]]) swap(ids, left, i); const temp = ids[i]; const tempDist = dists[temp]; while (true) { do i++; while (dists[ids[i]] < tempDist); do j--; while (dists[ids[j]] > tempDist); if (j < i) break; swap(ids, i, j); } ids[left + 1] = ids[j]; ids[j] = temp; if (right - i + 1 >= j - left) { quicksort(ids, dists, i, right); quicksort(ids, dists, left, j - 1); } else { quicksort(ids, dists, left, j - 1); quicksort(ids, dists, i, right); } } } function swap(arr, i, j) { const tmp = arr[i]; arr[i] = arr[j]; arr[j] = tmp; } function defaultGetX(p) { return p[0]; } function defaultGetY(p) { return p[1]; } const epsilon$2 = 1e-6; class Path { constructor() { this._x0 = this._y0 = // start of current subpath this._x1 = this._y1 = null; // end of current subpath this._ = ""; } moveTo(x, y) { this._ += `M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}`; } closePath() { if (this._x1 !== null) { this._x1 = this._x0, this._y1 = this._y0; this._ += "Z"; } } lineTo(x, y) { this._ += `L${this._x1 = +x},${this._y1 = +y}`; } arc(x, y, r) { x = +x, y = +y, r = +r; const x0 = x + r; const y0 = y; if (r < 0) throw new Error("negative radius"); if (this._x1 === null) this._ += `M${x0},${y0}`; else if (Math.abs(this._x1 - x0) > epsilon$2 || Math.abs(this._y1 - y0) > epsilon$2) this._ += "L" + x0 + "," + y0; if (!r) return; this._ += `A${r},${r},0,1,1,${x - r},${y}A${r},${r},0,1,1,${this._x1 = x0},${this._y1 = y0}`; } rect(x, y, w, h) { this._ += `M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}h${+w}v${+h}h${-w}Z`; } value() { return this._ || null; } } class Polygon { constructor() { this._ = []; } moveTo(x, y) { this._.push([x, y]); } closePath() { this._.push(this._[0].slice()); } lineTo(x, y) { this._.push([x, y]); } value() { return this._.length ? this._ : null; } } class Voronoi { constructor(delaunay, [xmin, ymin, xmax, ymax] = [0, 0, 960, 500]) { if (!((xmax = +xmax) >= (xmin = +xmin)) || !((ymax = +ymax) >= (ymin = +ymin))) throw new Error("invalid bounds"); this.delaunay = delaunay; this._circumcenters = new Float64Array(delaunay.points.length * 2); this.vectors = new Float64Array(delaunay.points.length * 2); this.xmax = xmax, this.xmin = xmin; this.ymax = ymax, this.ymin = ymin; this._init(); } update() { this.delaunay.update(); this._init(); return this; } _init() { const {delaunay: {points, hull, triangles}, vectors} = this; let bx, by; // lazily computed barycenter of the hull // Compute circumcenters. const circumcenters = this.circumcenters = this._circumcenters.subarray(0, triangles.length / 3 * 2); for (let i = 0, j = 0, n = triangles.length, x, y; i < n; i += 3, j += 2) { const t1 = triangles[i] * 2; const t2 = triangles[i + 1] * 2; const t3 = triangles[i + 2] * 2; const x1 = points[t1]; const y1 = points[t1 + 1]; const x2 = points[t2]; const y2 = points[t2 + 1]; const x3 = points[t3]; const y3 = points[t3 + 1]; const dx = x2 - x1; const dy = y2 - y1; const ex = x3 - x1; const ey = y3 - y1; const ab = (dx * ey - dy * ex) * 2; if (Math.abs(ab) < 1e-9) { // For a degenerate triangle, the circumcenter is at the infinity, in a // direction orthogonal to the halfedge and away from the “center” of // the diagram , defined as the hull’s barycenter. if (bx === undefined) { bx = by = 0; for (const i of hull) bx += points[i * 2], by += points[i * 2 + 1]; bx /= hull.length, by /= hull.length; } const a = 1e9 * Math.sign((bx - x1) * ey - (by - y1) * ex); x = (x1 + x3) / 2 - a * ey; y = (y1 + y3) / 2 + a * ex; } else { const d = 1 / ab; const bl = dx * dx + dy * dy; const cl = ex * ex + ey * ey; x = x1 + (ey * bl - dy * cl) * d; y = y1 + (dx * cl - ex * bl) * d; } circumcenters[j] = x; circumcenters[j + 1] = y; } // Compute exterior cell rays. let h = hull[hull.length - 1]; let p0, p1 = h * 4; let x0, x1 = points[2 * h]; let y0, y1 = points[2 * h + 1]; vectors.fill(0); for (let i = 0; i < hull.length; ++i) { h = hull[i]; p0 = p1, x0 = x1, y0 = y1; p1 = h * 4, x1 = points[2 * h], y1 = points[2 * h + 1]; vectors[p0 + 2] = vectors[p1] = y0 - y1; vectors[p0 + 3] = vectors[p1 + 1] = x1 - x0; } } render(context) { const buffer = context == null ? context = new Path : undefined; const {delaunay: {halfedges, inedges, hull}, circumcenters, vectors} = this; if (hull.length <= 1) return null; for (let i = 0, n = halfedges.length; i < n; ++i) { const j = halfedges[i]; if (j < i) continue; const ti = Math.floor(i / 3) * 2; const tj = Math.floor(j / 3) * 2; const xi = circumcenters[ti]; const yi = circumcenters[ti + 1]; const xj = circumcenters[tj]; const yj = circumcenters[tj + 1]; this._renderSegment(xi, yi, xj, yj, context); } let h0, h1 = hull[hull.length - 1]; for (let i = 0; i < hull.length; ++i) { h0 = h1, h1 = hull[i]; const t = Math.floor(inedges[h1] / 3) * 2; const x = circumcenters[t]; const y = circumcenters[t + 1]; const v = h0 * 4; const p = this._project(x, y, vectors[v + 2], vectors[v + 3]); if (p) this._renderSegment(x, y, p[0], p[1], context); } return buffer && buffer.value(); } renderBounds(context) { const buffer = context == null ? context = new Path : undefined; context.rect(this.xmin, this.ymin, this.xmax - this.xmin, this.ymax - this.ymin); return buffer && buffer.value(); } renderCell(i, context) { const buffer = context == null ? context = new Path : undefined; const points = this._clip(i); if (points === null || !points.length) return; context.moveTo(points[0], points[1]); let n = points.length; while (points[0] === points[n-2] && points[1] === points[n-1] && n > 1) n -= 2; for (let i = 2; i < n; i += 2) { if (points[i] !== points[i-2] || points[i+1] !== points[i-1]) context.lineTo(points[i], points[i + 1]); } context.closePath(); return buffer && buffer.value(); } *cellPolygons() { const {delaunay: {points}} = this; for (let i = 0, n = points.length / 2; i < n; ++i) { const cell = this.cellPolygon(i); if (cell) cell.index = i, yield cell; } } cellPolygon(i) { const polygon = new Polygon; this.renderCell(i, polygon); return polygon.value(); } _renderSegment(x0, y0, x1, y1, context) { let S; const c0 = this._regioncode(x0, y0); const c1 = this._regioncode(x1, y1); if (c0 === 0 && c1 === 0) { context.moveTo(x0, y0); context.lineTo(x1, y1); } else if (S = this._clipSegment(x0, y0, x1, y1, c0, c1)) { context.moveTo(S[0], S[1]); context.lineTo(S[2], S[3]); } } contains(i, x, y) { if ((x = +x, x !== x) || (y = +y, y !== y)) return false; return this.delaunay._step(i, x, y) === i; } *neighbors(i) { const ci = this._clip(i); if (ci) for (const j of this.delaunay.neighbors(i)) { const cj = this._clip(j); // find the common edge if (cj) loop: for (let ai = 0, li = ci.length; ai < li; ai += 2) { for (let aj = 0, lj = cj.length; aj < lj; aj += 2) { if (ci[ai] === cj[aj] && ci[ai + 1] === cj[aj + 1] && ci[(ai + 2) % li] === cj[(aj + lj - 2) % lj] && ci[(ai + 3) % li] === cj[(aj + lj - 1) % lj]) { yield j; break loop; } } } } } _cell(i) { const {circumcenters, delaunay: {inedges, halfedges, triangles}} = this; const e0 = inedges[i]; if (e0 === -1) return null; // coincident point const points = []; let e = e0; do { const t = Math.floor(e / 3); points.push(circumcenters[t * 2], circumcenters[t * 2 + 1]); e = e % 3 === 2 ? e - 2 : e + 1; if (triangles[e] !== i) break; // bad triangulation e = halfedges[e]; } while (e !== e0 && e !== -1); return points; } _clip(i) { // degenerate case (1 valid point: return the box) if (i === 0 && this.delaunay.hull.length === 1) { return [this.xmax, this.ymin, this.xmax, this.ymax, this.xmin, this.ymax, this.xmin, this.ymin]; } const points = this._cell(i); if (points === null) return null; const {vectors: V} = this; const v = i * 4; return this._simplify(V[v] || V[v + 1] ? this._clipInfinite(i, points, V[v], V[v + 1], V[v + 2], V[v + 3]) : this._clipFinite(i, points)); } _clipFinite(i, points) { const n = points.length; let P = null; let x0, y0, x1 = points[n - 2], y1 = points[n - 1]; let c0, c1 = this._regioncode(x1, y1); let e0, e1 = 0; for (let j = 0; j < n; j += 2) { x0 = x1, y0 = y1, x1 = points[j], y1 = points[j + 1]; c0 = c1, c1 = this._regioncode(x1, y1); if (c0 === 0 && c1 === 0) { e0 = e1, e1 = 0; if (P) P.push(x1, y1); else P = [x1, y1]; } else { let S, sx0, sy0, sx1, sy1; if (c0 === 0) { if ((S = this._clipSegment(x0, y0, x1, y1, c0, c1)) === null) continue; [sx0, sy0, sx1, sy1] = S; } else { if ((S = this._clipSegment(x1, y1, x0, y0, c1, c0)) === null) continue; [sx1, sy1, sx0, sy0] = S; e0 = e1, e1 = this._edgecode(sx0, sy0); if (e0 && e1) this._edge(i, e0, e1, P, P.length); if (P) P.push(sx0, sy0); else P = [sx0, sy0]; } e0 = e1, e1 = this._edgecode(sx1, sy1); if (e0 && e1) this._edge(i, e0, e1, P, P.length); if (P) P.push(sx1, sy1); else P = [sx1, sy1]; } } if (P) { e0 = e1, e1 = this._edgecode(P[0], P[1]); if (e0 && e1) this._edge(i, e0, e1, P, P.length); } else if (this.contains(i, (this.xmin + this.xmax) / 2, (this.ymin + this.ymax) / 2)) { return [this.xmax, this.ymin, this.xmax, this.ymax, this.xmin, this.ymax, this.xmin, this.ymin]; } return P; } _clipSegment(x0, y0, x1, y1, c0, c1) { // for more robustness, always consider the segment in the same order const flip = c0 < c1; if (flip) [x0, y0, x1, y1, c0, c1] = [x1, y1, x0, y0, c1, c0]; while (true) { if (c0 === 0 && c1 === 0) return flip ? [x1, y1, x0, y0] : [x0, y0, x1, y1]; if (c0 & c1) return null; let x, y, c = c0 || c1; if (c & 0b1000) x = x0 + (x1 - x0) * (this.ymax - y0) / (y1 - y0), y = this.ymax; else if (c & 0b0100) x = x0 + (x1 - x0) * (this.ymin - y0) / (y1 - y0), y = this.ymin; else if (c & 0b0010) y = y0 + (y1 - y0) * (this.xmax - x0) / (x1 - x0), x = this.xmax; else y = y0 + (y1 - y0) * (this.xmin - x0) / (x1 - x0), x = this.xmin; if (c0) x0 = x, y0 = y, c0 = this._regioncode(x0, y0); else x1 = x, y1 = y, c1 = this._regioncode(x1, y1); } } _clipInfinite(i, points, vx0, vy0, vxn, vyn) { let P = Array.from(points), p; if (p = this._project(P[0], P[1], vx0, vy0)) P.unshift(p[0], p[1]); if (p = this._project(P[P.length - 2], P[P.length - 1], vxn, vyn)) P.push(p[0], p[1]); if (P = this._clipFinite(i, P)) { for (let j = 0, n = P.length, c0, c1 = this._edgecode(P[n - 2], P[n - 1]); j < n; j += 2) { c0 = c1, c1 = this._edgecode(P[j], P[j + 1]); if (c0 && c1) j = this._edge(i, c0, c1, P, j), n = P.length; } } else if (this.contains(i, (this.xmin + this.xmax) / 2, (this.ymin + this.ymax) / 2)) { P = [this.xmin, this.ymin, this.xmax, this.ymin, this.xmax, this.ymax, this.xmin, this.ymax]; } return P; } _edge(i, e0, e1, P, j) { while (e0 !== e1) { let x, y; switch (e0) { case 0b0101: e0 = 0b0100; continue; // top-left case 0b0100: e0 = 0b0110, x = this.xmax, y = this.ymin; break; // top case 0b0110: e0 = 0b0010; continue; // top-right case 0b0010: e0 = 0b1010, x = this.xmax, y = this.ymax; break; // right case 0b1010: e0 = 0b1000; continue; // bottom-right case 0b1000: e0 = 0b1001, x = this.xmin, y = this.ymax; break; // bottom case 0b1001: e0 = 0b0001; continue; // bottom-left case 0b0001: e0 = 0b0101, x = this.xmin, y = this.ymin; break; // left } // Note: this implicitly checks for out of bounds: if P[j] or P[j+1] are // undefined, the conditional statement will be executed. if ((P[j] !== x || P[j + 1] !== y) && this.contains(i, x, y)) { P.splice(j, 0, x, y), j += 2; } } return j; } _project(x0, y0, vx, vy) { let t = Infinity, c, x, y; if (vy < 0) { // top if (y0 <= this.ymin) return null; if ((c = (this.ymin - y0) / vy) < t) y = this.ymin, x = x0 + (t = c) * vx; } else if (vy > 0) { // bottom if (y0 >= this.ymax) return null; if ((c = (this.ymax - y0) / vy) < t) y = this.ymax, x = x0 + (t = c) * vx; } if (vx > 0) { // right if (x0 >= this.xmax) return null; if ((c = (this.xmax - x0) / vx) < t) x = this.xmax, y = y0 + (t = c) * vy; } else if (vx < 0) { // left if (x0 <= this.xmin) return null; if ((c = (this.xmin - x0) / vx) < t) x = this.xmin, y = y0 + (t = c) * vy; } return [x, y]; } _edgecode(x, y) { return (x === this.xmin ? 0b0001 : x === this.xmax ? 0b0010 : 0b0000) | (y === this.ymin ? 0b0100 : y === this.ymax ? 0b1000 : 0b0000); } _regioncode(x, y) { return (x < this.xmin ? 0b0001 : x > this.xmax ? 0b0010 : 0b0000) | (y < this.ymin ? 0b0100 : y > this.ymax ? 0b1000 : 0b0000); } _simplify(P) { if (P && P.length > 4) { for (let i = 0; i < P.length; i+= 2) { const j = (i + 2) % P.length, k = (i + 4) % P.length; if (P[i] === P[j] && P[j] === P[k] || P[i + 1] === P[j + 1] && P[j + 1] === P[k + 1]) { P.splice(j, 2), i -= 2; } } if (!P.length) P = null; } return P; } } const tau$2 = 2 * Math.PI, pow$2 = Math.pow; function pointX(p) { return p[0]; } function pointY(p) { return p[1]; } // A triangulation is collinear if all its triangles have a non-null area function collinear(d) { const {triangles, coords} = d; for (let i = 0; i < triangles.length; i += 3) { const a = 2 * triangles[i], b = 2 * triangles[i + 1], c = 2 * triangles[i + 2], cross = (coords[c] - coords[a]) * (coords[b + 1] - coords[a + 1]) - (coords[b] - coords[a]) * (coords[c + 1] - coords[a + 1]); if (cross > 1e-10) return false; } return true; } function jitter(x, y, r) { return [x + Math.sin(x + y) * r, y + Math.cos(x - y) * r]; } class Delaunay { static from(points, fx = pointX, fy = pointY, that) { return new Delaunay("length" in points ? flatArray(points, fx, fy, that) : Float64Array.from(flatIterable(points, fx, fy, that))); } constructor(points) { this._delaunator = new Delaunator(points); this.inedges = new Int32Array(points.length / 2); this._hullIndex = new Int32Array(points.length / 2); this.points = this._delaunator.coords; this._init(); } update() { this._delaunator.update(); this._init(); return this; } _init() { const d = this._delaunator, points = this.points; // check for collinear if (d.hull && d.hull.length > 2 && collinear(d)) { this.collinear = Int32Array.from({length: points.length/2}, (_,i) => i) .sort((i, j) => points[2 * i] - points[2 * j] || points[2 * i + 1] - points[2 * j + 1]); // for exact neighbors const e = this.collinear[0], f = this.collinear[this.collinear.length - 1], bounds = [ points[2 * e], points[2 * e + 1], points[2 * f], points[2 * f + 1] ], r = 1e-8 * Math.hypot(bounds[3] - bounds[1], bounds[2] - bounds[0]); for (let i = 0, n = points.length / 2; i < n; ++i) { const p = jitter(points[2 * i], points[2 * i + 1], r); points[2 * i] = p[0]; points[2 * i + 1] = p[1]; } this._delaunator = new Delaunator(points); } else { delete this.collinear; } const halfedges = this.halfedges = this._delaunator.halfedges; const hull = this.hull = this._delaunator.hull; const triangles = this.triangles = this._delaunator.triangles; const inedges = this.inedges.fill(-1); const hullIndex = this._hullIndex.fill(-1); // Compute an index from each point to an (arbitrary) incoming halfedge // Used to give the first neighbor of each point; for this reason, // on the hull we give priority to exterior halfedges for (let e = 0, n = halfedges.length; e < n; ++e) { const p = triangles[e % 3 === 2 ? e - 2 : e + 1]; if (halfedges[e] === -1 || inedges[p] === -1) inedges[p] = e; } for (let i = 0, n = hull.length; i < n; ++i) { hullIndex[hull[i]] = i; } // degenerate case: 1 or 2 (distinct) points if (hull.length <= 2 && hull.length > 0) { this.triangles = new Int32Array(3).fill(-1); this.halfedges = new Int32Array(3).fill(-1); this.triangles[0] = hull[0]; inedges[hull[0]] = 1; if (hull.length === 2) { inedges[hull[1]] = 0; this.triangles[1] = hull[1]; this.triangles[2] = hull[1]; } } } voronoi(bounds) { return new Voronoi(this, bounds); } *neighbors(i) { const {inedges, hull, _hullIndex, halfedges, triangles, collinear} = this; // degenerate case with several collinear points if (collinear) { const l = collinear.indexOf(i); if (l > 0) yield collinear[l - 1]; if (l < collinear.length - 1) yield collinear[l + 1]; return; } const e0 = inedges[i]; if (e0 === -1) return; // coincident point let e = e0, p0 = -1; do { yield p0 = triangles[e]; e = e % 3 === 2 ? e - 2 : e + 1; if (triangles[e] !== i) return; // bad triangulation e = halfedges[e]; if (e === -1) { const p = hull[(_hullIndex[i] + 1) % hull.length]; if (p !== p0) yield p; return; } } while (e !== e0); } find(x, y, i = 0) { if ((x = +x, x !== x) || (y = +y, y !== y)) return -1; const i0 = i; let c; while ((c = this._step(i, x, y)) >= 0 && c !== i && c !== i0) i = c; return c; } _step(i, x, y) { const {inedges, hull, _hullIndex, halfedges, triangles, points} = this; if (inedges[i] === -1 || !points.length) return (i + 1) % (points.length >> 1); let c = i; let dc = pow$2(x - points[i * 2], 2) + pow$2(y - points[i * 2 + 1], 2); const e0 = inedges[i]; let e = e0; do { let t = triangles[e]; const dt = pow$2(x - points[t * 2], 2) + pow$2(y - points[t * 2 + 1], 2); if (dt < dc) dc = dt, c = t; e = e % 3 === 2 ? e - 2 : e + 1; if (triangles[e] !== i) break; // bad triangulation e = halfedges[e]; if (e === -1) { e = hull[(_hullIndex[i] + 1) % hull.length]; if (e !== t) { if (pow$2(x - points[e * 2], 2) + pow$2(y - points[e * 2 + 1], 2) < dc) return e; } break; } } while (e !== e0); return c; } render(context) { const buffer = context == null ? context = new Path : undefined; const {points, halfedges, triangles} = this; for (let i = 0, n = halfedges.length; i < n; ++i) { const j = halfedges[i]; if (j < i) continue; const ti = triangles[i] * 2; const tj = triangles[j] * 2; context.moveTo(points[ti], points[ti + 1]); context.lineTo(points[tj], points[tj + 1]); } this.renderHull(context); return buffer && buffer.value(); } renderPoints(context, r) { if (r === undefined && (!context || typeof context.moveTo !== "function")) r = context, context = null; r = r == undefined ? 2 : +r; const buffer = context == null ? context = new Path : undefined; const {points} = this; for (let i = 0, n = points.length; i < n; i += 2) { const x = points[i], y = points[i + 1]; context.moveTo(x + r, y); context.arc(x, y, r, 0, tau$2); } return buffer && buffer.value(); } renderHull(context) { const buffer = context == null ? context = new Path : undefined; const {hull, points} = this; const h = hull[0] * 2, n = hull.length; context.moveTo(points[h], points[h + 1]); for (let i = 1; i < n; ++i) { const h = 2 * hull[i]; context.lineTo(points[h], points[h + 1]); } context.closePath(); return buffer && buffer.value(); } hullPolygon() { const polygon = new Polygon; this.renderHull(polygon); return polygon.value(); } renderTriangle(i, context) { const buffer = context == null ? context = new Path : undefined; const {points, triangles} = this; const t0 = triangles[i *= 3] * 2; const t1 = triangles[i + 1] * 2; const t2 = triangles[i + 2] * 2; context.moveTo(points[t0], points[t0 + 1]); context.lineTo(points[t1], points[t1 + 1]); context.lineTo(points[t2], points[t2 + 1]); context.closePath(); return buffer && buffer.value(); } *trianglePolygons() { const {triangles} = this; for (let i = 0, n = triangles.length / 3; i < n; ++i) { yield this.trianglePolygon(i); } } trianglePolygon(i) { const polygon = new Polygon; this.renderTriangle(i, polygon); return polygon.value(); } } function flatArray(points, fx, fy, that) { const n = points.length; const array = new Float64Array(n * 2); for (let i = 0; i < n; ++i) { const p = points[i]; array[i * 2] = fx.call(that, p, i, points); array[i * 2 + 1] = fy.call(that, p, i, points); } return array; } function* flatIterable(points, fx, fy, that) { let i = 0; for (const p of points) { yield fx.call(that, p, i, points); yield fy.call(that, p, i, points); ++i; } } var EOL = {}, EOF = {}, QUOTE = 34, NEWLINE = 10, RETURN = 13; function objectConverter(columns) { return new Function("d", "return {" + columns.map(function(name, i) { return JSON.stringify(name) + ": d[" + i + "] || \"\""; }).join(",") + "}"); } function customConverter(columns, f) { var object = objectConverter(columns); return function(row, i) { return f(object(row), i, columns); }; } // Compute unique columns in order of discovery. function inferColumns(rows) { var columnSet = Object.create(null), columns = []; rows.forEach(function(row) { for (var column in row) { if (!(column in columnSet)) { columns.push(columnSet[column] = column); } } }); return columns; } function pad$1(value, width) { var s = value + "", length = s.length; return length < width ? new Array(width - length + 1).join(0) + s : s; } function formatYear$1(year) { return year < 0 ? "-" + pad$1(-year, 6) : year > 9999 ? "+" + pad$1(year, 6) : pad$1(year, 4); } function formatDate(date) { var hours = date.getUTCHours(), minutes = date.getUTCMinutes(), seconds = date.getUTCSeconds(), milliseconds = date.getUTCMilliseconds(); return isNaN(date) ? "Invalid Date" : formatYear$1(date.getUTCFullYear()) + "-" + pad$1(date.getUTCMonth() + 1, 2) + "-" + pad$1(date.getUTCDate(), 2) + (milliseconds ? "T" + pad$1(hours, 2) + ":" + pad$1(minutes, 2) + ":" + pad$1(seconds, 2) + "." + pad$1(milliseconds, 3) + "Z" : seconds ? "T" + pad$1(hours, 2) + ":" + pad$1(minutes, 2) + ":" + pad$1(seconds, 2) + "Z" : minutes || hours ? "T" + pad$1(hours, 2) + ":" + pad$1(minutes, 2) + "Z" : ""); } function dsvFormat(delimiter) { var reFormat = new RegExp("[\"" + delimiter + "\n\r]"), DELIMITER = delimiter.charCodeAt(0); function parse(text, f) { var convert, columns, rows = parseRows(text, function(row, i) { if (convert) return convert(row, i - 1); columns = row, convert = f ? customConverter(row, f) : objectConverter(row); }); rows.columns = columns || []; return rows; } function parseRows(text, f) { var rows = [], // output rows N = text.length, I = 0, // current character index n = 0, // current line number t, // current token eof = N <= 0, // current token followed by EOF? eol = false; // current token followed by EOL? // Strip the trailing newline. if (text.charCodeAt(N - 1) === NEWLINE) --N; if (text.charCodeAt(N - 1) === RETURN) --N; function token() { if (eof) return EOF; if (eol) return eol = false, EOL; // Unescape quotes. var i, j = I, c; if (text.charCodeAt(j) === QUOTE) { while (I++ < N && text.charCodeAt(I) !== QUOTE || text.charCodeAt(++I) === QUOTE); if ((i = I) >= N) eof = true; else if ((c = text.charCodeAt(I++)) === NEWLINE) eol = true; else if (c === RETURN) { eol = true; if (text.charCodeAt(I) === NEWLINE) ++I; } return text.slice(j + 1, i - 1).replace(/""/g, "\""); } // Find next delimiter or newline. while (I < N) { if ((c = text.charCodeAt(i = I++)) === NEWLINE) eol = true; else if (c === RETURN) { eol = true; if (text.charCodeAt(I) === NEWLINE) ++I; } else if (c !== DELIMITER) continue; return text.slice(j, i); } // Return last token before EOF. return eof = true, text.slice(j, N); } while ((t = token()) !== EOF) { var row = []; while (t !== EOL && t !== EOF) row.push(t), t = token(); if (f && (row = f(row, n++)) == null) continue; rows.push(row); } return rows; } function preformatBody(rows, columns) { return rows.map(function(row) { return columns.map(function(column) { return formatValue(row[column]); }).join(delimiter); }); } function format(rows, columns) { if (columns == null) columns = inferColumns(rows); return [columns.map(formatValue).join(delimiter)].concat(preformatBody(rows, columns)).join("\n"); } function formatBody(rows, columns) { if (columns == null) columns = inferColumns(rows); return preformatBody(rows, columns).join("\n"); } function formatRows(rows) { return rows.map(formatRow).join("\n"); } function formatRow(row) { return row.map(formatValue).join(delimiter); } function formatValue(value) { return value == null ? "" : value instanceof Date ? formatDate(value) : reFormat.test(value += "") ? "\"" + value.replace(/"/g, "\"\"") + "\"" : value; } return { parse: parse, parseRows: parseRows, format: format, formatBody: formatBody, formatRows: formatRows, formatRow: formatRow, formatValue: formatValue }; } var csv$1 = dsvFormat(","); var csvParse = csv$1.parse; var csvParseRows = csv$1.parseRows; var csvFormat = csv$1.format; var csvFormatBody = csv$1.formatBody; var csvFormatRows = csv$1.formatRows; var csvFormatRow = csv$1.formatRow; var csvFormatValue = csv$1.formatValue; var tsv$1 = dsvFormat("\t"); var tsvParse = tsv$1.parse; var tsvParseRows = tsv$1.parseRows; var tsvFormat = tsv$1.format; var tsvFormatBody = tsv$1.formatBody; var tsvFormatRows = tsv$1.formatRows; var tsvFormatRow = tsv$1.formatRow; var tsvFormatValue = tsv$1.formatValue; function autoType(object) { for (var key in object) { var value = object[key].trim(), number, m; if (!value) value = null; else if (value === "true") value = true; else if (value === "false") value = false; else if (value === "NaN") value = NaN; else if (!isNaN(number = +value)) value = number; else if (m = value.match(/^([-+]\d{2})?\d{4}(-\d{2}(-\d{2})?)?(T\d{2}:\d{2}(:\d{2}(\.\d{3})?)?(Z|[-+]\d{2}:\d{2})?)?$/)) { if (fixtz && !!m[4] && !m[7]) value = value.replace(/-/g, "/").replace(/T/, " "); value = new Date(value); } else continue; object[key] = value; } return object; } // https://github.com/d3/d3-dsv/issues/45 const fixtz = new Date("2019-01-01T00:00").getHours() || new Date("2019-07-01T00:00").getHours(); function responseBlob(response) { if (!response.ok) throw new Error(response.status + " " + response.statusText); return response.blob(); } function blob(input, init) { return fetch(input, init).then(responseBlob); } function responseArrayBuffer(response) { if (!response.ok) throw new Error(response.status + " " + response.statusText); return response.arrayBuffer(); } function buffer(input, init) { return fetch(input, init).then(responseArrayBuffer); } function responseText(response) { if (!response.ok) throw new Error(response.status + " " + response.statusText); return response.text(); } function text(input, init) { return fetch(input, init).then(responseText); } function dsvParse(parse) { return function(input, init, row) { if (arguments.length === 2 && typeof init === "function") row = init, init = undefined; return text(input, init).then(function(response) { return parse(response, row); }); }; } function dsv(delimiter, input, init, row) { if (arguments.length === 3 && typeof init === "function") row = init, init = undefined; var format = dsvFormat(delimiter); return text(input, init).then(function(response) { return format.parse(response, row); }); } var csv = dsvParse(csvParse); var tsv = dsvParse(tsvParse); function image(input, init) { return new Promise(function(resolve, reject) { var image = new Image; for (var key in init) image[key] = init[key]; image.onerror = reject; image.onload = function() { resolve(image); }; image.src = input; }); } function responseJson(response) { if (!response.ok) throw new Error(response.status + " " + response.statusText); if (response.status === 204 || response.status === 205) return; return response.json(); } function json(input, init) { return fetch(input, init).then(responseJson); } function parser(type) { return (input, init) => text(input, init) .then(text => (new DOMParser).parseFromString(text, type)); } var xml = parser("application/xml"); var html = parser("text/html"); var svg = parser("image/svg+xml"); function center(x, y) { var nodes, strength = 1; if (x == null) x = 0; if (y == null) y = 0; function force() { var i, n = nodes.length, node, sx = 0, sy = 0; for (i = 0; i < n; ++i) { node = nodes[i], sx += node.x, sy += node.y; } for (sx = (sx / n - x) * strength, sy = (sy / n - y) * strength, i = 0; i < n; ++i) { node = nodes[i], node.x -= sx, node.y -= sy; } } force.initialize = function(_) { nodes = _; }; force.x = function(_) { return arguments.length ? (x = +_, force) : x; }; force.y = function(_) { return arguments.length ? (y = +_, force) : y; }; force.strength = function(_) { return arguments.length ? (strength = +_, force) : strength; }; return force; } function tree_add(d) { const x = +this._x.call(null, d), y = +this._y.call(null, d); return add(this.cover(x, y), x, y, d); } function add(tree, x, y, d) { if (isNaN(x) || isNaN(y)) return tree; // ignore invalid points var parent, node = tree._root, leaf = {data: d}, x0 = tree._x0, y0 = tree._y0, x1 = tree._x1, y1 = tree._y1, xm, ym, xp, yp, right, bottom, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return tree._root = leaf, tree; // Find the existing leaf for the new point, or add it. while (node.length) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; if (parent = node, !(node = node[i = bottom << 1 | right])) return parent[i] = leaf, tree; } // Is the new point is exactly coincident with the existing point? xp = +tree._x.call(null, node.data); yp = +tree._y.call(null, node.data); if (x === xp && y === yp) return leaf.next = node, parent ? parent[i] = leaf : tree._root = leaf, tree; // Otherwise, split the leaf node until the old and new point are separated. do { parent = parent ? parent[i] = new Array(4) : tree._root = new Array(4); if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; } while ((i = bottom << 1 | right) === (j = (yp >= ym) << 1 | (xp >= xm))); return parent[j] = node, parent[i] = leaf, tree; } function addAll(data) { var d, i, n = data.length, x, y, xz = new Array(n), yz = new Array(n), x0 = Infinity, y0 = Infinity, x1 = -Infinity, y1 = -Infinity; // Compute the points and their extent. for (i = 0; i < n; ++i) { if (isNaN(x = +this._x.call(null, d = data[i])) || isNaN(y = +this._y.call(null, d))) continue; xz[i] = x; yz[i] = y; if (x < x0) x0 = x; if (x > x1) x1 = x; if (y < y0) y0 = y; if (y > y1) y1 = y; } // If there were no (valid) points, abort. if (x0 > x1 || y0 > y1) return this; // Expand the tree to cover the new points. this.cover(x0, y0).cover(x1, y1); // Add the new points. for (i = 0; i < n; ++i) { add(this, xz[i], yz[i], data[i]); } return this; } function tree_cover(x, y) { if (isNaN(x = +x) || isNaN(y = +y)) return this; // ignore invalid points var x0 = this._x0, y0 = this._y0, x1 = this._x1, y1 = this._y1; // If the quadtree has no extent, initialize them. // Integer extent are necessary so that if we later double the extent, // the existing quadrant boundaries don’t change due to floating point error! if (isNaN(x0)) { x1 = (x0 = Math.floor(x)) + 1; y1 = (y0 = Math.floor(y)) + 1; } // Otherwise, double repeatedly to cover. else { var z = x1 - x0 || 1, node = this._root, parent, i; while (x0 > x || x >= x1 || y0 > y || y >= y1) { i = (y < y0) << 1 | (x < x0); parent = new Array(4), parent[i] = node, node = parent, z *= 2; switch (i) { case 0: x1 = x0 + z, y1 = y0 + z; break; case 1: x0 = x1 - z, y1 = y0 + z; break; case 2: x1 = x0 + z, y0 = y1 - z; break; case 3: x0 = x1 - z, y0 = y1 - z; break; } } if (this._root && this._root.length) this._root = node; } this._x0 = x0; this._y0 = y0; this._x1 = x1; this._y1 = y1; return this; } function tree_data() { var data = []; this.visit(function(node) { if (!node.length) do data.push(node.data); while (node = node.next) }); return data; } function tree_extent(_) { return arguments.length ? this.cover(+_[0][0], +_[0][1]).cover(+_[1][0], +_[1][1]) : isNaN(this._x0) ? undefined : [[this._x0, this._y0], [this._x1, this._y1]]; } function Quad(node, x0, y0, x1, y1) { this.node = node; this.x0 = x0; this.y0 = y0; this.x1 = x1; this.y1 = y1; } function tree_find(x, y, radius) { var data, x0 = this._x0, y0 = this._y0, x1, y1, x2, y2, x3 = this._x1, y3 = this._y1, quads = [], node = this._root, q, i; if (node) quads.push(new Quad(node, x0, y0, x3, y3)); if (radius == null) radius = Infinity; else { x0 = x - radius, y0 = y - radius; x3 = x + radius, y3 = y + radius; radius *= radius; } while (q = quads.pop()) { // Stop searching if this quadrant can’t contain a closer node. if (!(node = q.node) || (x1 = q.x0) > x3 || (y1 = q.y0) > y3 || (x2 = q.x1) < x0 || (y2 = q.y1) < y0) continue; // Bisect the current quadrant. if (node.length) { var xm = (x1 + x2) / 2, ym = (y1 + y2) / 2; quads.push( new Quad(node[3], xm, ym, x2, y2), new Quad(node[2], x1, ym, xm, y2), new Quad(node[1], xm, y1, x2, ym), new Quad(node[0], x1, y1, xm, ym) ); // Visit the closest quadrant first. if (i = (y >= ym) << 1 | (x >= xm)) { q = quads[quads.length - 1]; quads[quads.length - 1] = quads[quads.length - 1 - i]; quads[quads.length - 1 - i] = q; } } // Visit this point. (Visiting coincident points isn’t necessary!) else { var dx = x - +this._x.call(null, node.data), dy = y - +this._y.call(null, node.data), d2 = dx * dx + dy * dy; if (d2 < radius) { var d = Math.sqrt(radius = d2); x0 = x - d, y0 = y - d; x3 = x + d, y3 = y + d; data = node.data; } } } return data; } function tree_remove(d) { if (isNaN(x = +this._x.call(null, d)) || isNaN(y = +this._y.call(null, d))) return this; // ignore invalid points var parent, node = this._root, retainer, previous, next, x0 = this._x0, y0 = this._y0, x1 = this._x1, y1 = this._y1, x, y, xm, ym, right, bottom, i, j; // If the tree is empty, initialize the root as a leaf. if (!node) return this; // Find the leaf node for the point. // While descending, also retain the deepest parent with a non-removed sibling. if (node.length) while (true) { if (right = x >= (xm = (x0 + x1) / 2)) x0 = xm; else x1 = xm; if (bottom = y >= (ym = (y0 + y1) / 2)) y0 = ym; else y1 = ym; if (!(parent = node, node = node[i = bottom << 1 | right])) return this; if (!node.length) break; if (parent[(i + 1) & 3] || parent[(i + 2) & 3] || parent[(i + 3) & 3]) retainer = parent, j = i; } // Find the point to remove. while (node.data !== d) if (!(previous = node, node = node.next)) return this; if (next = node.next) delete node.next; // If there are multiple coincident points, remove just the point. if (previous) return (next ? previous.next = next : delete previous.next), this; // If this is the root point, remove it. if (!parent) return this._root = next, this; // Remove this leaf. next ? parent[i] = next : delete parent[i]; // If the parent now contains exactly one leaf, collapse superfluous parents. if ((node = parent[0] || parent[1] || parent[2] || parent[3]) && node === (parent[3] || parent[2] || parent[1] || parent[0]) && !node.length) { if (retainer) retainer[j] = node; else this._root = node; } return this; } function removeAll(data) { for (var i = 0, n = data.length; i < n; ++i) this.remove(data[i]); return this; } function tree_root() { return this._root; } function tree_size() { var size = 0; this.visit(function(node) { if (!node.length) do ++size; while (node = node.next) }); return size; } function tree_visit(callback) { var quads = [], q, node = this._root, child, x0, y0, x1, y1; if (node) quads.push(new Quad(node, this._x0, this._y0, this._x1, this._y1)); while (q = quads.pop()) { if (!callback(node = q.node, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1) && node.length) { var xm = (x0 + x1) / 2, ym = (y0 + y1) / 2; if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1)); if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1)); if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym)); if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym)); } } return this; } function tree_visitAfter(callback) { var quads = [], next = [], q; if (this._root) quads.push(new Quad(this._root, this._x0, this._y0, this._x1, this._y1)); while (q = quads.pop()) { var node = q.node; if (node.length) { var child, x0 = q.x0, y0 = q.y0, x1 = q.x1, y1 = q.y1, xm = (x0 + x1) / 2, ym = (y0 + y1) / 2; if (child = node[0]) quads.push(new Quad(child, x0, y0, xm, ym)); if (child = node[1]) quads.push(new Quad(child, xm, y0, x1, ym)); if (child = node[2]) quads.push(new Quad(child, x0, ym, xm, y1)); if (child = node[3]) quads.push(new Quad(child, xm, ym, x1, y1)); } next.push(q); } while (q = next.pop()) { callback(q.node, q.x0, q.y0, q.x1, q.y1); } return this; } function defaultX(d) { return d[0]; } function tree_x(_) { return arguments.length ? (this._x = _, this) : this._x; } function defaultY(d) { return d[1]; } function tree_y(_) { return arguments.length ? (this._y = _, this) : this._y; } function quadtree(nodes, x, y) { var tree = new Quadtree(x == null ? defaultX : x, y == null ? defaultY : y, NaN, NaN, NaN, NaN); return nodes == null ? tree : tree.addAll(nodes); } function Quadtree(x, y, x0, y0, x1, y1) { this._x = x; this._y = y; this._x0 = x0; this._y0 = y0; this._x1 = x1; this._y1 = y1; this._root = undefined; } function leaf_copy(leaf) { var copy = {data: leaf.data}, next = copy; while (leaf = leaf.next) next = next.next = {data: leaf.data}; return copy; } var treeProto = quadtree.prototype = Quadtree.prototype; treeProto.copy = function() { var copy = new Quadtree(this._x, this._y, this._x0, this._y0, this._x1, this._y1), node = this._root, nodes, child; if (!node) return copy; if (!node.length) return copy._root = leaf_copy(node), copy; nodes = [{source: node, target: copy._root = new Array(4)}]; while (node = nodes.pop()) { for (var i = 0; i < 4; ++i) { if (child = node.source[i]) { if (child.length) nodes.push({source: child, target: node.target[i] = new Array(4)}); else node.target[i] = leaf_copy(child); } } } return copy; }; treeProto.add = tree_add; treeProto.addAll = addAll; treeProto.cover = tree_cover; treeProto.data = tree_data; treeProto.extent = tree_extent; treeProto.find = tree_find; treeProto.remove = tree_remove; treeProto.removeAll = removeAll; treeProto.root = tree_root; treeProto.size = tree_size; treeProto.visit = tree_visit; treeProto.visitAfter = tree_visitAfter; treeProto.x = tree_x; treeProto.y = tree_y; function constant$4(x) { return function() { return x; }; } function jiggle(random) { return (random() - 0.5) * 1e-6; } function x$3(d) { return d.x + d.vx; } function y$3(d) { return d.y + d.vy; } function collide(radius) { var nodes, radii, random, strength = 1, iterations = 1; if (typeof radius !== "function") radius = constant$4(radius == null ? 1 : +radius); function force() { var i, n = nodes.length, tree, node, xi, yi, ri, ri2; for (var k = 0; k < iterations; ++k) { tree = quadtree(nodes, x$3, y$3).visitAfter(prepare); for (i = 0; i < n; ++i) { node = nodes[i]; ri = radii[node.index], ri2 = ri * ri; xi = node.x + node.vx; yi = node.y + node.vy; tree.visit(apply); } } function apply(quad, x0, y0, x1, y1) { var data = quad.data, rj = quad.r, r = ri + rj; if (data) { if (data.index > node.index) { var x = xi - data.x - data.vx, y = yi - data.y - data.vy, l = x * x + y * y; if (l < r * r) { if (x === 0) x = jiggle(random), l += x * x; if (y === 0) y = jiggle(random), l += y * y; l = (r - (l = Math.sqrt(l))) / l * strength; node.vx += (x *= l) * (r = (rj *= rj) / (ri2 + rj)); node.vy += (y *= l) * r; data.vx -= x * (r = 1 - r); data.vy -= y * r; } } return; } return x0 > xi + r || x1 < xi - r || y0 > yi + r || y1 < yi - r; } } function prepare(quad) { if (quad.data) return quad.r = radii[quad.data.index]; for (var i = quad.r = 0; i < 4; ++i) { if (quad[i] && quad[i].r > quad.r) { quad.r = quad[i].r; } } } function initialize() { if (!nodes) return; var i, n = nodes.length, node; radii = new Array(n); for (i = 0; i < n; ++i) node = nodes[i], radii[node.index] = +radius(node, i, nodes); } force.initialize = function(_nodes, _random) { nodes = _nodes; random = _random; initialize(); }; force.iterations = function(_) { return arguments.length ? (iterations = +_, force) : iterations; }; force.strength = function(_) { return arguments.length ? (strength = +_, force) : strength; }; force.radius = function(_) { return arguments.length ? (radius = typeof _ === "function" ? _ : constant$4(+_), initialize(), force) : radius; }; return force; } function index$3(d) { return d.index; } function find(nodeById, nodeId) { var node = nodeById.get(nodeId); if (!node) throw new Error("node not found: " + nodeId); return node; } function link$2(links) { var id = index$3, strength = defaultStrength, strengths, distance = constant$4(30), distances, nodes, count, bias, random, iterations = 1; if (links == null) links = []; function defaultStrength(link) { return 1 / Math.min(count[link.source.index], count[link.target.index]); } function force(alpha) { for (var k = 0, n = links.length; k < iterations; ++k) { for (var i = 0, link, source, target, x, y, l, b; i < n; ++i) { link = links[i], source = link.source, target = link.target; x = target.x + target.vx - source.x - source.vx || jiggle(random); y = target.y + target.vy - source.y - source.vy || jiggle(random); l = Math.sqrt(x * x + y * y); l = (l - distances[i]) / l * alpha * strengths[i]; x *= l, y *= l; target.vx -= x * (b = bias[i]); target.vy -= y * b; source.vx += x * (b = 1 - b); source.vy += y * b; } } } function initialize() { if (!nodes) return; var i, n = nodes.length, m = links.length, nodeById = new Map(nodes.map((d, i) => [id(d, i, nodes), d])), link; for (i = 0, count = new Array(n); i < m; ++i) { link = links[i], link.index = i; if (typeof link.source !== "object") link.source = find(nodeById, link.source); if (typeof link.target !== "object") link.target = find(nodeById, link.target); count[link.source.index] = (count[link.source.index] || 0) + 1; count[link.target.index] = (count[link.target.index] || 0) + 1; } for (i = 0, bias = new Array(m); i < m; ++i) { link = links[i], bias[i] = count[link.source.index] / (count[link.source.index] + count[link.target.index]); } strengths = new Array(m), initializeStrength(); distances = new Array(m), initializeDistance(); } function initializeStrength() { if (!nodes) return; for (var i = 0, n = links.length; i < n; ++i) { strengths[i] = +strength(links[i], i, links); } } function initializeDistance() { if (!nodes) return; for (var i = 0, n = links.length; i < n; ++i) { distances[i] = +distance(links[i], i, links); } } force.initialize = function(_nodes, _random) { nodes = _nodes; random = _random; initialize(); }; force.links = function(_) { return arguments.length ? (links = _, initialize(), force) : links; }; force.id = function(_) { return arguments.length ? (id = _, force) : id; }; force.iterations = function(_) { return arguments.length ? (iterations = +_, force) : iterations; }; force.strength = function(_) { return arguments.length ? (strength = typeof _ === "function" ? _ : constant$4(+_), initializeStrength(), force) : strength; }; force.distance = function(_) { return arguments.length ? (distance = typeof _ === "function" ? _ : constant$4(+_), initializeDistance(), force) : distance; }; return force; } // https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use const a$2 = 1664525; const c$4 = 1013904223; const m$1 = 4294967296; // 2^32 function lcg$2() { let s = 1; return () => (s = (a$2 * s + c$4) % m$1) / m$1; } function x$2(d) { return d.x; } function y$2(d) { return d.y; } var initialRadius = 10, initialAngle = Math.PI * (3 - Math.sqrt(5)); function simulation(nodes) { var simulation, alpha = 1, alphaMin = 0.001, alphaDecay = 1 - Math.pow(alphaMin, 1 / 300), alphaTarget = 0, velocityDecay = 0.6, forces = new Map(), stepper = timer(step), event = dispatch("tick", "end"), random = lcg$2(); if (nodes == null) nodes = []; function step() { tick(); event.call("tick", simulation); if (alpha < alphaMin) { stepper.stop(); event.call("end", simulation); } } function tick(iterations) { var i, n = nodes.length, node; if (iterations === undefined) iterations = 1; for (var k = 0; k < iterations; ++k) { alpha += (alphaTarget - alpha) * alphaDecay; forces.forEach(function(force) { force(alpha); }); for (i = 0; i < n; ++i) { node = nodes[i]; if (node.fx == null) node.x += node.vx *= velocityDecay; else node.x = node.fx, node.vx = 0; if (node.fy == null) node.y += node.vy *= velocityDecay; else node.y = node.fy, node.vy = 0; } } return simulation; } function initializeNodes() { for (var i = 0, n = nodes.length, node; i < n; ++i) { node = nodes[i], node.index = i; if (node.fx != null) node.x = node.fx; if (node.fy != null) node.y = node.fy; if (isNaN(node.x) || isNaN(node.y)) { var radius = initialRadius * Math.sqrt(0.5 + i), angle = i * initialAngle; node.x = radius * Math.cos(angle); node.y = radius * Math.sin(angle); } if (isNaN(node.vx) || isNaN(node.vy)) { node.vx = node.vy = 0; } } } function initializeForce(force) { if (force.initialize) force.initialize(nodes, random); return force; } initializeNodes(); return simulation = { tick: tick, restart: function() { return stepper.restart(step), simulation; }, stop: function() { return stepper.stop(), simulation; }, nodes: function(_) { return arguments.length ? (nodes = _, initializeNodes(), forces.forEach(initializeForce), simulation) : nodes; }, alpha: function(_) { return arguments.length ? (alpha = +_, simulation) : alpha; }, alphaMin: function(_) { return arguments.length ? (alphaMin = +_, simulation) : alphaMin; }, alphaDecay: function(_) { return arguments.length ? (alphaDecay = +_, simulation) : +alphaDecay; }, alphaTarget: function(_) { return arguments.length ? (alphaTarget = +_, simulation) : alphaTarget; }, velocityDecay: function(_) { return arguments.length ? (velocityDecay = 1 - _, simulation) : 1 - velocityDecay; }, randomSource: function(_) { return arguments.length ? (random = _, forces.forEach(initializeForce), simulation) : random; }, force: function(name, _) { return arguments.length > 1 ? ((_ == null ? forces.delete(name) : forces.set(name, initializeForce(_))), simulation) : forces.get(name); }, find: function(x, y, radius) { var i = 0, n = nodes.length, dx, dy, d2, node, closest; if (radius == null) radius = Infinity; else radius *= radius; for (i = 0; i < n; ++i) { node = nodes[i]; dx = x - node.x; dy = y - node.y; d2 = dx * dx + dy * dy; if (d2 < radius) closest = node, radius = d2; } return closest; }, on: function(name, _) { return arguments.length > 1 ? (event.on(name, _), simulation) : event.on(name); } }; } function manyBody() { var nodes, node, random, alpha, strength = constant$4(-30), strengths, distanceMin2 = 1, distanceMax2 = Infinity, theta2 = 0.81; function force(_) { var i, n = nodes.length, tree = quadtree(nodes, x$2, y$2).visitAfter(accumulate); for (alpha = _, i = 0; i < n; ++i) node = nodes[i], tree.visit(apply); } function initialize() { if (!nodes) return; var i, n = nodes.length, node; strengths = new Array(n); for (i = 0; i < n; ++i) node = nodes[i], strengths[node.index] = +strength(node, i, nodes); } function accumulate(quad) { var strength = 0, q, c, weight = 0, x, y, i; // For internal nodes, accumulate forces from child quadrants. if (quad.length) { for (x = y = i = 0; i < 4; ++i) { if ((q = quad[i]) && (c = Math.abs(q.value))) { strength += q.value, weight += c, x += c * q.x, y += c * q.y; } } quad.x = x / weight; quad.y = y / weight; } // For leaf nodes, accumulate forces from coincident quadrants. else { q = quad; q.x = q.data.x; q.y = q.data.y; do strength += strengths[q.data.index]; while (q = q.next); } quad.value = strength; } function apply(quad, x1, _, x2) { if (!quad.value) return true; var x = quad.x - node.x, y = quad.y - node.y, w = x2 - x1, l = x * x + y * y; // Apply the Barnes-Hut approximation if possible. // Limit forces for very close nodes; randomize direction if coincident. if (w * w / theta2 < l) { if (l < distanceMax2) { if (x === 0) x = jiggle(random), l += x * x; if (y === 0) y = jiggle(random), l += y * y; if (l < distanceMin2) l = Math.sqrt(distanceMin2 * l); node.vx += x * quad.value * alpha / l; node.vy += y * quad.value * alpha / l; } return true; } // Otherwise, process points directly. else if (quad.length || l >= distanceMax2) return; // Limit forces for very close nodes; randomize direction if coincident. if (quad.data !== node || quad.next) { if (x === 0) x = jiggle(random), l += x * x; if (y === 0) y = jiggle(random), l += y * y; if (l < distanceMin2) l = Math.sqrt(distanceMin2 * l); } do if (quad.data !== node) { w = strengths[quad.data.index] * alpha / l; node.vx += x * w; node.vy += y * w; } while (quad = quad.next); } force.initialize = function(_nodes, _random) { nodes = _nodes; random = _random; initialize(); }; force.strength = function(_) { return arguments.length ? (strength = typeof _ === "function" ? _ : constant$4(+_), initialize(), force) : strength; }; force.distanceMin = function(_) { return arguments.length ? (distanceMin2 = _ * _, force) : Math.sqrt(distanceMin2); }; force.distanceMax = function(_) { return arguments.length ? (distanceMax2 = _ * _, force) : Math.sqrt(distanceMax2); }; force.theta = function(_) { return arguments.length ? (theta2 = _ * _, force) : Math.sqrt(theta2); }; return force; } function radial$1(radius, x, y) { var nodes, strength = constant$4(0.1), strengths, radiuses; if (typeof radius !== "function") radius = constant$4(+radius); if (x == null) x = 0; if (y == null) y = 0; function force(alpha) { for (var i = 0, n = nodes.length; i < n; ++i) { var node = nodes[i], dx = node.x - x || 1e-6, dy = node.y - y || 1e-6, r = Math.sqrt(dx * dx + dy * dy), k = (radiuses[i] - r) * strengths[i] * alpha / r; node.vx += dx * k; node.vy += dy * k; } } function initialize() { if (!nodes) return; var i, n = nodes.length; strengths = new Array(n); radiuses = new Array(n); for (i = 0; i < n; ++i) { radiuses[i] = +radius(nodes[i], i, nodes); strengths[i] = isNaN(radiuses[i]) ? 0 : +strength(nodes[i], i, nodes); } } force.initialize = function(_) { nodes = _, initialize(); }; force.strength = function(_) { return arguments.length ? (strength = typeof _ === "function" ? _ : constant$4(+_), initialize(), force) : strength; }; force.radius = function(_) { return arguments.length ? (radius = typeof _ === "function" ? _ : constant$4(+_), initialize(), force) : radius; }; force.x = function(_) { return arguments.length ? (x = +_, force) : x; }; force.y = function(_) { return arguments.length ? (y = +_, force) : y; }; return force; } function x$1(x) { var strength = constant$4(0.1), nodes, strengths, xz; if (typeof x !== "function") x = constant$4(x == null ? 0 : +x); function force(alpha) { for (var i = 0, n = nodes.length, node; i < n; ++i) { node = nodes[i], node.vx += (xz[i] - node.x) * strengths[i] * alpha; } } function initialize() { if (!nodes) return; var i, n = nodes.length; strengths = new Array(n); xz = new Array(n); for (i = 0; i < n; ++i) { strengths[i] = isNaN(xz[i] = +x(nodes[i], i, nodes)) ? 0 : +strength(nodes[i], i, nodes); } } force.initialize = function(_) { nodes = _; initialize(); }; force.strength = function(_) { return arguments.length ? (strength = typeof _ === "function" ? _ : constant$4(+_), initialize(), force) : strength; }; force.x = function(_) { return arguments.length ? (x = typeof _ === "function" ? _ : constant$4(+_), initialize(), force) : x; }; return force; } function y$1(y) { var strength = constant$4(0.1), nodes, strengths, yz; if (typeof y !== "function") y = constant$4(y == null ? 0 : +y); function force(alpha) { for (var i = 0, n = nodes.length, node; i < n; ++i) { node = nodes[i], node.vy += (yz[i] - node.y) * strengths[i] * alpha; } } function initialize() { if (!nodes) return; var i, n = nodes.length; strengths = new Array(n); yz = new Array(n); for (i = 0; i < n; ++i) { strengths[i] = isNaN(yz[i] = +y(nodes[i], i, nodes)) ? 0 : +strength(nodes[i], i, nodes); } } force.initialize = function(_) { nodes = _; initialize(); }; force.strength = function(_) { return arguments.length ? (strength = typeof _ === "function" ? _ : constant$4(+_), initialize(), force) : strength; }; force.y = function(_) { return arguments.length ? (y = typeof _ === "function" ? _ : constant$4(+_), initialize(), force) : y; }; return force; } function formatDecimal(x) { return Math.abs(x = Math.round(x)) >= 1e21 ? x.toLocaleString("en").replace(/,/g, "") : x.toString(10); } // Computes the decimal coefficient and exponent of the specified number x with // significant digits p, where x is positive and p is in [1, 21] or undefined. // For example, formatDecimalParts(1.23) returns ["123", 0]. function formatDecimalParts(x, p) { if ((i = (x = p ? x.toExponential(p - 1) : x.toExponential()).indexOf("e")) < 0) return null; // NaN, ±Infinity var i, coefficient = x.slice(0, i); // The string returned by toExponential either has the form \d\.\d+e[-+]\d+ // (e.g., 1.2e+3) or the form \de[-+]\d+ (e.g., 1e+3). return [ coefficient.length > 1 ? coefficient[0] + coefficient.slice(2) : coefficient, +x.slice(i + 1) ]; } function exponent(x) { return x = formatDecimalParts(Math.abs(x)), x ? x[1] : NaN; } function formatGroup(grouping, thousands) { return function(value, width) { var i = value.length, t = [], j = 0, g = grouping[0], length = 0; while (i > 0 && g > 0) { if (length + g + 1 > width) g = Math.max(1, width - length); t.push(value.substring(i -= g, i + g)); if ((length += g + 1) > width) break; g = grouping[j = (j + 1) % grouping.length]; } return t.reverse().join(thousands); }; } function formatNumerals(numerals) { return function(value) { return value.replace(/[0-9]/g, function(i) { return numerals[+i]; }); }; } // [[fill]align][sign][symbol][0][width][,][.precision][~][type] var re = /^(?:(.)?([<>=^]))?([+\-( ])?([$#])?(0)?(\d+)?(,)?(\.\d+)?(~)?([a-z%])?$/i; function formatSpecifier(specifier) { if (!(match = re.exec(specifier))) throw new Error("invalid format: " + specifier); var match; return new FormatSpecifier({ fill: match[1], align: match[2], sign: match[3], symbol: match[4], zero: match[5], width: match[6], comma: match[7], precision: match[8] && match[8].slice(1), trim: match[9], type: match[10] }); } formatSpecifier.prototype = FormatSpecifier.prototype; // instanceof function FormatSpecifier(specifier) { this.fill = specifier.fill === undefined ? " " : specifier.fill + ""; this.align = specifier.align === undefined ? ">" : specifier.align + ""; this.sign = specifier.sign === undefined ? "-" : specifier.sign + ""; this.symbol = specifier.symbol === undefined ? "" : specifier.symbol + ""; this.zero = !!specifier.zero; this.width = specifier.width === undefined ? undefined : +specifier.width; this.comma = !!specifier.comma; this.precision = specifier.precision === undefined ? undefined : +specifier.precision; this.trim = !!specifier.trim; this.type = specifier.type === undefined ? "" : specifier.type + ""; } FormatSpecifier.prototype.toString = function() { return this.fill + this.align + this.sign + this.symbol + (this.zero ? "0" : "") + (this.width === undefined ? "" : Math.max(1, this.width | 0)) + (this.comma ? "," : "") + (this.precision === undefined ? "" : "." + Math.max(0, this.precision | 0)) + (this.trim ? "~" : "") + this.type; }; // Trims insignificant zeros, e.g., replaces 1.2000k with 1.2k. function formatTrim(s) { out: for (var n = s.length, i = 1, i0 = -1, i1; i < n; ++i) { switch (s[i]) { case ".": i0 = i1 = i; break; case "0": if (i0 === 0) i0 = i; i1 = i; break; default: if (!+s[i]) break out; if (i0 > 0) i0 = 0; break; } } return i0 > 0 ? s.slice(0, i0) + s.slice(i1 + 1) : s; } var prefixExponent; function formatPrefixAuto(x, p) { var d = formatDecimalParts(x, p); if (!d) return x + ""; var coefficient = d[0], exponent = d[1], i = exponent - (prefixExponent = Math.max(-8, Math.min(8, Math.floor(exponent / 3))) * 3) + 1, n = coefficient.length; return i === n ? coefficient : i > n ? coefficient + new Array(i - n + 1).join("0") : i > 0 ? coefficient.slice(0, i) + "." + coefficient.slice(i) : "0." + new Array(1 - i).join("0") + formatDecimalParts(x, Math.max(0, p + i - 1))[0]; // less than 1y! } function formatRounded(x, p) { var d = formatDecimalParts(x, p); if (!d) return x + ""; var coefficient = d[0], exponent = d[1]; return exponent < 0 ? "0." + new Array(-exponent).join("0") + coefficient : coefficient.length > exponent + 1 ? coefficient.slice(0, exponent + 1) + "." + coefficient.slice(exponent + 1) : coefficient + new Array(exponent - coefficient.length + 2).join("0"); } var formatTypes = { "%": (x, p) => (x * 100).toFixed(p), "b": (x) => Math.round(x).toString(2), "c": (x) => x + "", "d": formatDecimal, "e": (x, p) => x.toExponential(p), "f": (x, p) => x.toFixed(p), "g": (x, p) => x.toPrecision(p), "o": (x) => Math.round(x).toString(8), "p": (x, p) => formatRounded(x * 100, p), "r": formatRounded, "s": formatPrefixAuto, "X": (x) => Math.round(x).toString(16).toUpperCase(), "x": (x) => Math.round(x).toString(16) }; function identity$6(x) { return x; } var map = Array.prototype.map, prefixes = ["y","z","a","f","p","n","µ","m","","k","M","G","T","P","E","Z","Y"]; function formatLocale$1(locale) { var group = locale.grouping === undefined || locale.thousands === undefined ? identity$6 : formatGroup(map.call(locale.grouping, Number), locale.thousands + ""), currencyPrefix = locale.currency === undefined ? "" : locale.currency[0] + "", currencySuffix = locale.currency === undefined ? "" : locale.currency[1] + "", decimal = locale.decimal === undefined ? "." : locale.decimal + "", numerals = locale.numerals === undefined ? identity$6 : formatNumerals(map.call(locale.numerals, String)), percent = locale.percent === undefined ? "%" : locale.percent + "", minus = locale.minus === undefined ? "−" : locale.minus + "", nan = locale.nan === undefined ? "NaN" : locale.nan + ""; function newFormat(specifier) { specifier = formatSpecifier(specifier); var fill = specifier.fill, align = specifier.align, sign = specifier.sign, symbol = specifier.symbol, zero = specifier.zero, width = specifier.width, comma = specifier.comma, precision = specifier.precision, trim = specifier.trim, type = specifier.type; // The "n" type is an alias for ",g". if (type === "n") comma = true, type = "g"; // The "" type, and any invalid type, is an alias for ".12~g". else if (!formatTypes[type]) precision === undefined && (precision = 12), trim = true, type = "g"; // If zero fill is specified, padding goes after sign and before digits. if (zero || (fill === "0" && align === "=")) zero = true, fill = "0", align = "="; // Compute the prefix and suffix. // For SI-prefix, the suffix is lazily computed. var prefix = symbol === "$" ? currencyPrefix : symbol === "#" && /[boxX]/.test(type) ? "0" + type.toLowerCase() : "", suffix = symbol === "$" ? currencySuffix : /[%p]/.test(type) ? percent : ""; // What format function should we use? // Is this an integer type? // Can this type generate exponential notation? var formatType = formatTypes[type], maybeSuffix = /[defgprs%]/.test(type); // Set the default precision if not specified, // or clamp the specified precision to the supported range. // For significant precision, it must be in [1, 21]. // For fixed precision, it must be in [0, 20]. precision = precision === undefined ? 6 : /[gprs]/.test(type) ? Math.max(1, Math.min(21, precision)) : Math.max(0, Math.min(20, precision)); function format(value) { var valuePrefix = prefix, valueSuffix = suffix, i, n, c; if (type === "c") { valueSuffix = formatType(value) + valueSuffix; value = ""; } else { value = +value; // Determine the sign. -0 is not less than 0, but 1 / -0 is! var valueNegative = value < 0 || 1 / value < 0; // Perform the initial formatting. value = isNaN(value) ? nan : formatType(Math.abs(value), precision); // Trim insignificant zeros. if (trim) value = formatTrim(value); // If a negative value rounds to zero after formatting, and no explicit positive sign is requested, hide the sign. if (valueNegative && +value === 0 && sign !== "+") valueNegative = false; // Compute the prefix and suffix. valuePrefix = (valueNegative ? (sign === "(" ? sign : minus) : sign === "-" || sign === "(" ? "" : sign) + valuePrefix; valueSuffix = (type === "s" ? prefixes[8 + prefixExponent / 3] : "") + valueSuffix + (valueNegative && sign === "(" ? ")" : ""); // Break the formatted value into the integer “value” part that can be // grouped, and fractional or exponential “suffix” part that is not. if (maybeSuffix) { i = -1, n = value.length; while (++i < n) { if (c = value.charCodeAt(i), 48 > c || c > 57) { valueSuffix = (c === 46 ? decimal + value.slice(i + 1) : value.slice(i)) + valueSuffix; value = value.slice(0, i); break; } } } } // If the fill character is not "0", grouping is applied before padding. if (comma && !zero) value = group(value, Infinity); // Compute the padding. var length = valuePrefix.length + value.length + valueSuffix.length, padding = length < width ? new Array(width - length + 1).join(fill) : ""; // If the fill character is "0", grouping is applied after padding. if (comma && zero) value = group(padding + value, padding.length ? width - valueSuffix.length : Infinity), padding = ""; // Reconstruct the final output based on the desired alignment. switch (align) { case "<": value = valuePrefix + value + valueSuffix + padding; break; case "=": value = valuePrefix + padding + value + valueSuffix; break; case "^": value = padding.slice(0, length = padding.length >> 1) + valuePrefix + value + valueSuffix + padding.slice(length); break; default: value = padding + valuePrefix + value + valueSuffix; break; } return numerals(value); } format.toString = function() { return specifier + ""; }; return format; } function formatPrefix(specifier, value) { var f = newFormat((specifier = formatSpecifier(specifier), specifier.type = "f", specifier)), e = Math.max(-8, Math.min(8, Math.floor(exponent(value) / 3))) * 3, k = Math.pow(10, -e), prefix = prefixes[8 + e / 3]; return function(value) { return f(k * value) + prefix; }; } return { format: newFormat, formatPrefix: formatPrefix }; } var locale$1; exports.format = void 0; exports.formatPrefix = void 0; defaultLocale$1({ thousands: ",", grouping: [3], currency: ["$", ""] }); function defaultLocale$1(definition) { locale$1 = formatLocale$1(definition); exports.format = locale$1.format; exports.formatPrefix = locale$1.formatPrefix; return locale$1; } function precisionFixed(step) { return Math.max(0, -exponent(Math.abs(step))); } function precisionPrefix(step, value) { return Math.max(0, Math.max(-8, Math.min(8, Math.floor(exponent(value) / 3))) * 3 - exponent(Math.abs(step))); } function precisionRound(step, max) { step = Math.abs(step), max = Math.abs(max) - step; return Math.max(0, exponent(max) - exponent(step)) + 1; } var epsilon$1 = 1e-6; var epsilon2 = 1e-12; var pi$1 = Math.PI; var halfPi$1 = pi$1 / 2; var quarterPi = pi$1 / 4; var tau$1 = pi$1 * 2; var degrees = 180 / pi$1; var radians = pi$1 / 180; var abs$1 = Math.abs; var atan = Math.atan; var atan2$1 = Math.atan2; var cos$1 = Math.cos; var ceil = Math.ceil; var exp = Math.exp; var hypot = Math.hypot; var log$1 = Math.log; var pow$1 = Math.pow; var sin$1 = Math.sin; var sign$1 = Math.sign || function(x) { return x > 0 ? 1 : x < 0 ? -1 : 0; }; var sqrt$2 = Math.sqrt; var tan = Math.tan; function acos$1(x) { return x > 1 ? 0 : x < -1 ? pi$1 : Math.acos(x); } function asin$1(x) { return x > 1 ? halfPi$1 : x < -1 ? -halfPi$1 : Math.asin(x); } function haversin(x) { return (x = sin$1(x / 2)) * x; } function noop$1() {} function streamGeometry(geometry, stream) { if (geometry && streamGeometryType.hasOwnProperty(geometry.type)) { streamGeometryType[geometry.type](geometry, stream); } } var streamObjectType = { Feature: function(object, stream) { streamGeometry(object.geometry, stream); }, FeatureCollection: function(object, stream) { var features = object.features, i = -1, n = features.length; while (++i < n) streamGeometry(features[i].geometry, stream); } }; var streamGeometryType = { Sphere: function(object, stream) { stream.sphere(); }, Point: function(object, stream) { object = object.coordinates; stream.point(object[0], object[1], object[2]); }, MultiPoint: function(object, stream) { var coordinates = object.coordinates, i = -1, n = coordinates.length; while (++i < n) object = coordinates[i], stream.point(object[0], object[1], object[2]); }, LineString: function(object, stream) { streamLine(object.coordinates, stream, 0); }, MultiLineString: function(object, stream) { var coordinates = object.coordinates, i = -1, n = coordinates.length; while (++i < n) streamLine(coordinates[i], stream, 0); }, Polygon: function(object, stream) { streamPolygon(object.coordinates, stream); }, MultiPolygon: function(object, stream) { var coordinates = object.coordinates, i = -1, n = coordinates.length; while (++i < n) streamPolygon(coordinates[i], stream); }, GeometryCollection: function(object, stream) { var geometries = object.geometries, i = -1, n = geometries.length; while (++i < n) streamGeometry(geometries[i], stream); } }; function streamLine(coordinates, stream, closed) { var i = -1, n = coordinates.length - closed, coordinate; stream.lineStart(); while (++i < n) coordinate = coordinates[i], stream.point(coordinate[0], coordinate[1], coordinate[2]); stream.lineEnd(); } function streamPolygon(coordinates, stream) { var i = -1, n = coordinates.length; stream.polygonStart(); while (++i < n) streamLine(coordinates[i], stream, 1); stream.polygonEnd(); } function geoStream(object, stream) { if (object && streamObjectType.hasOwnProperty(object.type)) { streamObjectType[object.type](object, stream); } else { streamGeometry(object, stream); } } var areaRingSum$1 = new Adder(); // hello? var areaSum$1 = new Adder(), lambda00$2, phi00$2, lambda0$2, cosPhi0$1, sinPhi0$1; var areaStream$1 = { point: noop$1, lineStart: noop$1, lineEnd: noop$1, polygonStart: function() { areaRingSum$1 = new Adder(); areaStream$1.lineStart = areaRingStart$1; areaStream$1.lineEnd = areaRingEnd$1; }, polygonEnd: function() { var areaRing = +areaRingSum$1; areaSum$1.add(areaRing < 0 ? tau$1 + areaRing : areaRing); this.lineStart = this.lineEnd = this.point = noop$1; }, sphere: function() { areaSum$1.add(tau$1); } }; function areaRingStart$1() { areaStream$1.point = areaPointFirst$1; } function areaRingEnd$1() { areaPoint$1(lambda00$2, phi00$2); } function areaPointFirst$1(lambda, phi) { areaStream$1.point = areaPoint$1; lambda00$2 = lambda, phi00$2 = phi; lambda *= radians, phi *= radians; lambda0$2 = lambda, cosPhi0$1 = cos$1(phi = phi / 2 + quarterPi), sinPhi0$1 = sin$1(phi); } function areaPoint$1(lambda, phi) { lambda *= radians, phi *= radians; phi = phi / 2 + quarterPi; // half the angular distance from south pole // Spherical excess E for a spherical triangle with vertices: south pole, // previous point, current point. Uses a formula derived from Cagnoli’s // theorem. See Todhunter, Spherical Trig. (1871), Sec. 103, Eq. (2). var dLambda = lambda - lambda0$2, sdLambda = dLambda >= 0 ? 1 : -1, adLambda = sdLambda * dLambda, cosPhi = cos$1(phi), sinPhi = sin$1(phi), k = sinPhi0$1 * sinPhi, u = cosPhi0$1 * cosPhi + k * cos$1(adLambda), v = k * sdLambda * sin$1(adLambda); areaRingSum$1.add(atan2$1(v, u)); // Advance the previous points. lambda0$2 = lambda, cosPhi0$1 = cosPhi, sinPhi0$1 = sinPhi; } function area$2(object) { areaSum$1 = new Adder(); geoStream(object, areaStream$1); return areaSum$1 * 2; } function spherical(cartesian) { return [atan2$1(cartesian[1], cartesian[0]), asin$1(cartesian[2])]; } function cartesian(spherical) { var lambda = spherical[0], phi = spherical[1], cosPhi = cos$1(phi); return [cosPhi * cos$1(lambda), cosPhi * sin$1(lambda), sin$1(phi)]; } function cartesianDot(a, b) { return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; } function cartesianCross(a, b) { return [a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0]]; } // TODO return a function cartesianAddInPlace(a, b) { a[0] += b[0], a[1] += b[1], a[2] += b[2]; } function cartesianScale(vector, k) { return [vector[0] * k, vector[1] * k, vector[2] * k]; } // TODO return d function cartesianNormalizeInPlace(d) { var l = sqrt$2(d[0] * d[0] + d[1] * d[1] + d[2] * d[2]); d[0] /= l, d[1] /= l, d[2] /= l; } var lambda0$1, phi0, lambda1, phi1, // bounds lambda2, // previous lambda-coordinate lambda00$1, phi00$1, // first point p0, // previous 3D point deltaSum, ranges, range; var boundsStream$2 = { point: boundsPoint$1, lineStart: boundsLineStart, lineEnd: boundsLineEnd, polygonStart: function() { boundsStream$2.point = boundsRingPoint; boundsStream$2.lineStart = boundsRingStart; boundsStream$2.lineEnd = boundsRingEnd; deltaSum = new Adder(); areaStream$1.polygonStart(); }, polygonEnd: function() { areaStream$1.polygonEnd(); boundsStream$2.point = boundsPoint$1; boundsStream$2.lineStart = boundsLineStart; boundsStream$2.lineEnd = boundsLineEnd; if (areaRingSum$1 < 0) lambda0$1 = -(lambda1 = 180), phi0 = -(phi1 = 90); else if (deltaSum > epsilon$1) phi1 = 90; else if (deltaSum < -epsilon$1) phi0 = -90; range[0] = lambda0$1, range[1] = lambda1; }, sphere: function() { lambda0$1 = -(lambda1 = 180), phi0 = -(phi1 = 90); } }; function boundsPoint$1(lambda, phi) { ranges.push(range = [lambda0$1 = lambda, lambda1 = lambda]); if (phi < phi0) phi0 = phi; if (phi > phi1) phi1 = phi; } function linePoint(lambda, phi) { var p = cartesian([lambda * radians, phi * radians]); if (p0) { var normal = cartesianCross(p0, p), equatorial = [normal[1], -normal[0], 0], inflection = cartesianCross(equatorial, normal); cartesianNormalizeInPlace(inflection); inflection = spherical(inflection); var delta = lambda - lambda2, sign = delta > 0 ? 1 : -1, lambdai = inflection[0] * degrees * sign, phii, antimeridian = abs$1(delta) > 180; if (antimeridian ^ (sign * lambda2 < lambdai && lambdai < sign * lambda)) { phii = inflection[1] * degrees; if (phii > phi1) phi1 = phii; } else if (lambdai = (lambdai + 360) % 360 - 180, antimeridian ^ (sign * lambda2 < lambdai && lambdai < sign * lambda)) { phii = -inflection[1] * degrees; if (phii < phi0) phi0 = phii; } else { if (phi < phi0) phi0 = phi; if (phi > phi1) phi1 = phi; } if (antimeridian) { if (lambda < lambda2) { if (angle(lambda0$1, lambda) > angle(lambda0$1, lambda1)) lambda1 = lambda; } else { if (angle(lambda, lambda1) > angle(lambda0$1, lambda1)) lambda0$1 = lambda; } } else { if (lambda1 >= lambda0$1) { if (lambda < lambda0$1) lambda0$1 = lambda; if (lambda > lambda1) lambda1 = lambda; } else { if (lambda > lambda2) { if (angle(lambda0$1, lambda) > angle(lambda0$1, lambda1)) lambda1 = lambda; } else { if (angle(lambda, lambda1) > angle(lambda0$1, lambda1)) lambda0$1 = lambda; } } } } else { ranges.push(range = [lambda0$1 = lambda, lambda1 = lambda]); } if (phi < phi0) phi0 = phi; if (phi > phi1) phi1 = phi; p0 = p, lambda2 = lambda; } function boundsLineStart() { boundsStream$2.point = linePoint; } function boundsLineEnd() { range[0] = lambda0$1, range[1] = lambda1; boundsStream$2.point = boundsPoint$1; p0 = null; } function boundsRingPoint(lambda, phi) { if (p0) { var delta = lambda - lambda2; deltaSum.add(abs$1(delta) > 180 ? delta + (delta > 0 ? 360 : -360) : delta); } else { lambda00$1 = lambda, phi00$1 = phi; } areaStream$1.point(lambda, phi); linePoint(lambda, phi); } function boundsRingStart() { areaStream$1.lineStart(); } function boundsRingEnd() { boundsRingPoint(lambda00$1, phi00$1); areaStream$1.lineEnd(); if (abs$1(deltaSum) > epsilon$1) lambda0$1 = -(lambda1 = 180); range[0] = lambda0$1, range[1] = lambda1; p0 = null; } // Finds the left-right distance between two longitudes. // This is almost the same as (lambda1 - lambda0 + 360°) % 360°, except that we want // the distance between ±180° to be 360°. function angle(lambda0, lambda1) { return (lambda1 -= lambda0) < 0 ? lambda1 + 360 : lambda1; } function rangeCompare(a, b) { return a[0] - b[0]; } function rangeContains(range, x) { return range[0] <= range[1] ? range[0] <= x && x <= range[1] : x < range[0] || range[1] < x; } function bounds(feature) { var i, n, a, b, merged, deltaMax, delta; phi1 = lambda1 = -(lambda0$1 = phi0 = Infinity); ranges = []; geoStream(feature, boundsStream$2); // First, sort ranges by their minimum longitudes. if (n = ranges.length) { ranges.sort(rangeCompare); // Then, merge any ranges that overlap. for (i = 1, a = ranges[0], merged = [a]; i < n; ++i) { b = ranges[i]; if (rangeContains(a, b[0]) || rangeContains(a, b[1])) { if (angle(a[0], b[1]) > angle(a[0], a[1])) a[1] = b[1]; if (angle(b[0], a[1]) > angle(a[0], a[1])) a[0] = b[0]; } else { merged.push(a = b); } } // Finally, find the largest gap between the merged ranges. // The final bounding box will be the inverse of this gap. for (deltaMax = -Infinity, n = merged.length - 1, i = 0, a = merged[n]; i <= n; a = b, ++i) { b = merged[i]; if ((delta = angle(a[1], b[0])) > deltaMax) deltaMax = delta, lambda0$1 = b[0], lambda1 = a[1]; } } ranges = range = null; return lambda0$1 === Infinity || phi0 === Infinity ? [[NaN, NaN], [NaN, NaN]] : [[lambda0$1, phi0], [lambda1, phi1]]; } var W0, W1, X0$1, Y0$1, Z0$1, X1$1, Y1$1, Z1$1, X2$1, Y2$1, Z2$1, lambda00, phi00, // first point x0$4, y0$4, z0; // previous point var centroidStream$1 = { sphere: noop$1, point: centroidPoint$1, lineStart: centroidLineStart$1, lineEnd: centroidLineEnd$1, polygonStart: function() { centroidStream$1.lineStart = centroidRingStart$1; centroidStream$1.lineEnd = centroidRingEnd$1; }, polygonEnd: function() { centroidStream$1.lineStart = centroidLineStart$1; centroidStream$1.lineEnd = centroidLineEnd$1; } }; // Arithmetic mean of Cartesian vectors. function centroidPoint$1(lambda, phi) { lambda *= radians, phi *= radians; var cosPhi = cos$1(phi); centroidPointCartesian(cosPhi * cos$1(lambda), cosPhi * sin$1(lambda), sin$1(phi)); } function centroidPointCartesian(x, y, z) { ++W0; X0$1 += (x - X0$1) / W0; Y0$1 += (y - Y0$1) / W0; Z0$1 += (z - Z0$1) / W0; } function centroidLineStart$1() { centroidStream$1.point = centroidLinePointFirst; } function centroidLinePointFirst(lambda, phi) { lambda *= radians, phi *= radians; var cosPhi = cos$1(phi); x0$4 = cosPhi * cos$1(lambda); y0$4 = cosPhi * sin$1(lambda); z0 = sin$1(phi); centroidStream$1.point = centroidLinePoint; centroidPointCartesian(x0$4, y0$4, z0); } function centroidLinePoint(lambda, phi) { lambda *= radians, phi *= radians; var cosPhi = cos$1(phi), x = cosPhi * cos$1(lambda), y = cosPhi * sin$1(lambda), z = sin$1(phi), w = atan2$1(sqrt$2((w = y0$4 * z - z0 * y) * w + (w = z0 * x - x0$4 * z) * w + (w = x0$4 * y - y0$4 * x) * w), x0$4 * x + y0$4 * y + z0 * z); W1 += w; X1$1 += w * (x0$4 + (x0$4 = x)); Y1$1 += w * (y0$4 + (y0$4 = y)); Z1$1 += w * (z0 + (z0 = z)); centroidPointCartesian(x0$4, y0$4, z0); } function centroidLineEnd$1() { centroidStream$1.point = centroidPoint$1; } // See J. E. Brock, The Inertia Tensor for a Spherical Triangle, // J. Applied Mechanics 42, 239 (1975). function centroidRingStart$1() { centroidStream$1.point = centroidRingPointFirst; } function centroidRingEnd$1() { centroidRingPoint(lambda00, phi00); centroidStream$1.point = centroidPoint$1; } function centroidRingPointFirst(lambda, phi) { lambda00 = lambda, phi00 = phi; lambda *= radians, phi *= radians; centroidStream$1.point = centroidRingPoint; var cosPhi = cos$1(phi); x0$4 = cosPhi * cos$1(lambda); y0$4 = cosPhi * sin$1(lambda); z0 = sin$1(phi); centroidPointCartesian(x0$4, y0$4, z0); } function centroidRingPoint(lambda, phi) { lambda *= radians, phi *= radians; var cosPhi = cos$1(phi), x = cosPhi * cos$1(lambda), y = cosPhi * sin$1(lambda), z = sin$1(phi), cx = y0$4 * z - z0 * y, cy = z0 * x - x0$4 * z, cz = x0$4 * y - y0$4 * x, m = hypot(cx, cy, cz), w = asin$1(m), // line weight = angle v = m && -w / m; // area weight multiplier X2$1.add(v * cx); Y2$1.add(v * cy); Z2$1.add(v * cz); W1 += w; X1$1 += w * (x0$4 + (x0$4 = x)); Y1$1 += w * (y0$4 + (y0$4 = y)); Z1$1 += w * (z0 + (z0 = z)); centroidPointCartesian(x0$4, y0$4, z0); } function centroid$1(object) { W0 = W1 = X0$1 = Y0$1 = Z0$1 = X1$1 = Y1$1 = Z1$1 = 0; X2$1 = new Adder(); Y2$1 = new Adder(); Z2$1 = new Adder(); geoStream(object, centroidStream$1); var x = +X2$1, y = +Y2$1, z = +Z2$1, m = hypot(x, y, z); // If the area-weighted ccentroid is undefined, fall back to length-weighted ccentroid. if (m < epsilon2) { x = X1$1, y = Y1$1, z = Z1$1; // If the feature has zero length, fall back to arithmetic mean of point vectors. if (W1 < epsilon$1) x = X0$1, y = Y0$1, z = Z0$1; m = hypot(x, y, z); // If the feature still has an undefined ccentroid, then return. if (m < epsilon2) return [NaN, NaN]; } return [atan2$1(y, x) * degrees, asin$1(z / m) * degrees]; } function constant$3(x) { return function() { return x; }; } function compose(a, b) { function compose(x, y) { return x = a(x, y), b(x[0], x[1]); } if (a.invert && b.invert) compose.invert = function(x, y) { return x = b.invert(x, y), x && a.invert(x[0], x[1]); }; return compose; } function rotationIdentity(lambda, phi) { if (abs$1(lambda) > pi$1) lambda -= Math.round(lambda / tau$1) * tau$1; return [lambda, phi]; } rotationIdentity.invert = rotationIdentity; function rotateRadians(deltaLambda, deltaPhi, deltaGamma) { return (deltaLambda %= tau$1) ? (deltaPhi || deltaGamma ? compose(rotationLambda(deltaLambda), rotationPhiGamma(deltaPhi, deltaGamma)) : rotationLambda(deltaLambda)) : (deltaPhi || deltaGamma ? rotationPhiGamma(deltaPhi, deltaGamma) : rotationIdentity); } function forwardRotationLambda(deltaLambda) { return function(lambda, phi) { lambda += deltaLambda; if (abs$1(lambda) > pi$1) lambda -= Math.round(lambda / tau$1) * tau$1; return [lambda, phi]; }; } function rotationLambda(deltaLambda) { var rotation = forwardRotationLambda(deltaLambda); rotation.invert = forwardRotationLambda(-deltaLambda); return rotation; } function rotationPhiGamma(deltaPhi, deltaGamma) { var cosDeltaPhi = cos$1(deltaPhi), sinDeltaPhi = sin$1(deltaPhi), cosDeltaGamma = cos$1(deltaGamma), sinDeltaGamma = sin$1(deltaGamma); function rotation(lambda, phi) { var cosPhi = cos$1(phi), x = cos$1(lambda) * cosPhi, y = sin$1(lambda) * cosPhi, z = sin$1(phi), k = z * cosDeltaPhi + x * sinDeltaPhi; return [ atan2$1(y * cosDeltaGamma - k * sinDeltaGamma, x * cosDeltaPhi - z * sinDeltaPhi), asin$1(k * cosDeltaGamma + y * sinDeltaGamma) ]; } rotation.invert = function(lambda, phi) { var cosPhi = cos$1(phi), x = cos$1(lambda) * cosPhi, y = sin$1(lambda) * cosPhi, z = sin$1(phi), k = z * cosDeltaGamma - y * sinDeltaGamma; return [ atan2$1(y * cosDeltaGamma + z * sinDeltaGamma, x * cosDeltaPhi + k * sinDeltaPhi), asin$1(k * cosDeltaPhi - x * sinDeltaPhi) ]; }; return rotation; } function rotation(rotate) { rotate = rotateRadians(rotate[0] * radians, rotate[1] * radians, rotate.length > 2 ? rotate[2] * radians : 0); function forward(coordinates) { coordinates = rotate(coordinates[0] * radians, coordinates[1] * radians); return coordinates[0] *= degrees, coordinates[1] *= degrees, coordinates; } forward.invert = function(coordinates) { coordinates = rotate.invert(coordinates[0] * radians, coordinates[1] * radians); return coordinates[0] *= degrees, coordinates[1] *= degrees, coordinates; }; return forward; } // Generates a circle centered at [0°, 0°], with a given radius and precision. function circleStream(stream, radius, delta, direction, t0, t1) { if (!delta) return; var cosRadius = cos$1(radius), sinRadius = sin$1(radius), step = direction * delta; if (t0 == null) { t0 = radius + direction * tau$1; t1 = radius - step / 2; } else { t0 = circleRadius(cosRadius, t0); t1 = circleRadius(cosRadius, t1); if (direction > 0 ? t0 < t1 : t0 > t1) t0 += direction * tau$1; } for (var point, t = t0; direction > 0 ? t > t1 : t < t1; t -= step) { point = spherical([cosRadius, -sinRadius * cos$1(t), -sinRadius * sin$1(t)]); stream.point(point[0], point[1]); } } // Returns the signed angle of a cartesian point relative to [cosRadius, 0, 0]. function circleRadius(cosRadius, point) { point = cartesian(point), point[0] -= cosRadius; cartesianNormalizeInPlace(point); var radius = acos$1(-point[1]); return ((-point[2] < 0 ? -radius : radius) + tau$1 - epsilon$1) % tau$1; } function circle$1() { var center = constant$3([0, 0]), radius = constant$3(90), precision = constant$3(6), ring, rotate, stream = {point: point}; function point(x, y) { ring.push(x = rotate(x, y)); x[0] *= degrees, x[1] *= degrees; } function circle() { var c = center.apply(this, arguments), r = radius.apply(this, arguments) * radians, p = precision.apply(this, arguments) * radians; ring = []; rotate = rotateRadians(-c[0] * radians, -c[1] * radians, 0).invert; circleStream(stream, r, p, 1); c = {type: "Polygon", coordinates: [ring]}; ring = rotate = null; return c; } circle.center = function(_) { return arguments.length ? (center = typeof _ === "function" ? _ : constant$3([+_[0], +_[1]]), circle) : center; }; circle.radius = function(_) { return arguments.length ? (radius = typeof _ === "function" ? _ : constant$3(+_), circle) : radius; }; circle.precision = function(_) { return arguments.length ? (precision = typeof _ === "function" ? _ : constant$3(+_), circle) : precision; }; return circle; } function clipBuffer() { var lines = [], line; return { point: function(x, y, m) { line.push([x, y, m]); }, lineStart: function() { lines.push(line = []); }, lineEnd: noop$1, rejoin: function() { if (lines.length > 1) lines.push(lines.pop().concat(lines.shift())); }, result: function() { var result = lines; lines = []; line = null; return result; } }; } function pointEqual(a, b) { return abs$1(a[0] - b[0]) < epsilon$1 && abs$1(a[1] - b[1]) < epsilon$1; } function Intersection(point, points, other, entry) { this.x = point; this.z = points; this.o = other; // another intersection this.e = entry; // is an entry? this.v = false; // visited this.n = this.p = null; // next & previous } // A generalized polygon clipping algorithm: given a polygon that has been cut // into its visible line segments, and rejoins the segments by interpolating // along the clip edge. function clipRejoin(segments, compareIntersection, startInside, interpolate, stream) { var subject = [], clip = [], i, n; segments.forEach(function(segment) { if ((n = segment.length - 1) <= 0) return; var n, p0 = segment[0], p1 = segment[n], x; if (pointEqual(p0, p1)) { if (!p0[2] && !p1[2]) { stream.lineStart(); for (i = 0; i < n; ++i) stream.point((p0 = segment[i])[0], p0[1]); stream.lineEnd(); return; } // handle degenerate cases by moving the point p1[0] += 2 * epsilon$1; } subject.push(x = new Intersection(p0, segment, null, true)); clip.push(x.o = new Intersection(p0, null, x, false)); subject.push(x = new Intersection(p1, segment, null, false)); clip.push(x.o = new Intersection(p1, null, x, true)); }); if (!subject.length) return; clip.sort(compareIntersection); link$1(subject); link$1(clip); for (i = 0, n = clip.length; i < n; ++i) { clip[i].e = startInside = !startInside; } var start = subject[0], points, point; while (1) { // Find first unvisited intersection. var current = start, isSubject = true; while (current.v) if ((current = current.n) === start) return; points = current.z; stream.lineStart(); do { current.v = current.o.v = true; if (current.e) { if (isSubject) { for (i = 0, n = points.length; i < n; ++i) stream.point((point = points[i])[0], point[1]); } else { interpolate(current.x, current.n.x, 1, stream); } current = current.n; } else { if (isSubject) { points = current.p.z; for (i = points.length - 1; i >= 0; --i) stream.point((point = points[i])[0], point[1]); } else { interpolate(current.x, current.p.x, -1, stream); } current = current.p; } current = current.o; points = current.z; isSubject = !isSubject; } while (!current.v); stream.lineEnd(); } } function link$1(array) { if (!(n = array.length)) return; var n, i = 0, a = array[0], b; while (++i < n) { a.n = b = array[i]; b.p = a; a = b; } a.n = b = array[0]; b.p = a; } function longitude(point) { return abs$1(point[0]) <= pi$1 ? point[0] : sign$1(point[0]) * ((abs$1(point[0]) + pi$1) % tau$1 - pi$1); } function polygonContains(polygon, point) { var lambda = longitude(point), phi = point[1], sinPhi = sin$1(phi), normal = [sin$1(lambda), -cos$1(lambda), 0], angle = 0, winding = 0; var sum = new Adder(); if (sinPhi === 1) phi = halfPi$1 + epsilon$1; else if (sinPhi === -1) phi = -halfPi$1 - epsilon$1; for (var i = 0, n = polygon.length; i < n; ++i) { if (!(m = (ring = polygon[i]).length)) continue; var ring, m, point0 = ring[m - 1], lambda0 = longitude(point0), phi0 = point0[1] / 2 + quarterPi, sinPhi0 = sin$1(phi0), cosPhi0 = cos$1(phi0); for (var j = 0; j < m; ++j, lambda0 = lambda1, sinPhi0 = sinPhi1, cosPhi0 = cosPhi1, point0 = point1) { var point1 = ring[j], lambda1 = longitude(point1), phi1 = point1[1] / 2 + quarterPi, sinPhi1 = sin$1(phi1), cosPhi1 = cos$1(phi1), delta = lambda1 - lambda0, sign = delta >= 0 ? 1 : -1, absDelta = sign * delta, antimeridian = absDelta > pi$1, k = sinPhi0 * sinPhi1; sum.add(atan2$1(k * sign * sin$1(absDelta), cosPhi0 * cosPhi1 + k * cos$1(absDelta))); angle += antimeridian ? delta + sign * tau$1 : delta; // Are the longitudes either side of the point’s meridian (lambda), // and are the latitudes smaller than the parallel (phi)? if (antimeridian ^ lambda0 >= lambda ^ lambda1 >= lambda) { var arc = cartesianCross(cartesian(point0), cartesian(point1)); cartesianNormalizeInPlace(arc); var intersection = cartesianCross(normal, arc); cartesianNormalizeInPlace(intersection); var phiArc = (antimeridian ^ delta >= 0 ? -1 : 1) * asin$1(intersection[2]); if (phi > phiArc || phi === phiArc && (arc[0] || arc[1])) { winding += antimeridian ^ delta >= 0 ? 1 : -1; } } } } // First, determine whether the South pole is inside or outside: // // It is inside if: // * the polygon winds around it in a clockwise direction. // * the polygon does not (cumulatively) wind around it, but has a negative // (counter-clockwise) area. // // Second, count the (signed) number of times a segment crosses a lambda // from the point to the South pole. If it is zero, then the point is the // same side as the South pole. return (angle < -epsilon$1 || angle < epsilon$1 && sum < -epsilon2) ^ (winding & 1); } function clip(pointVisible, clipLine, interpolate, start) { return function(sink) { var line = clipLine(sink), ringBuffer = clipBuffer(), ringSink = clipLine(ringBuffer), polygonStarted = false, polygon, segments, ring; var clip = { point: point, lineStart: lineStart, lineEnd: lineEnd, polygonStart: function() { clip.point = pointRing; clip.lineStart = ringStart; clip.lineEnd = ringEnd; segments = []; polygon = []; }, polygonEnd: function() { clip.point = point; clip.lineStart = lineStart; clip.lineEnd = lineEnd; segments = merge(segments); var startInside = polygonContains(polygon, start); if (segments.length) { if (!polygonStarted) sink.polygonStart(), polygonStarted = true; clipRejoin(segments, compareIntersection, startInside, interpolate, sink); } else if (startInside) { if (!polygonStarted) sink.polygonStart(), polygonStarted = true; sink.lineStart(); interpolate(null, null, 1, sink); sink.lineEnd(); } if (polygonStarted) sink.polygonEnd(), polygonStarted = false; segments = polygon = null; }, sphere: function() { sink.polygonStart(); sink.lineStart(); interpolate(null, null, 1, sink); sink.lineEnd(); sink.polygonEnd(); } }; function point(lambda, phi) { if (pointVisible(lambda, phi)) sink.point(lambda, phi); } function pointLine(lambda, phi) { line.point(lambda, phi); } function lineStart() { clip.point = pointLine; line.lineStart(); } function lineEnd() { clip.point = point; line.lineEnd(); } function pointRing(lambda, phi) { ring.push([lambda, phi]); ringSink.point(lambda, phi); } function ringStart() { ringSink.lineStart(); ring = []; } function ringEnd() { pointRing(ring[0][0], ring[0][1]); ringSink.lineEnd(); var clean = ringSink.clean(), ringSegments = ringBuffer.result(), i, n = ringSegments.length, m, segment, point; ring.pop(); polygon.push(ring); ring = null; if (!n) return; // No intersections. if (clean & 1) { segment = ringSegments[0]; if ((m = segment.length - 1) > 0) { if (!polygonStarted) sink.polygonStart(), polygonStarted = true; sink.lineStart(); for (i = 0; i < m; ++i) sink.point((point = segment[i])[0], point[1]); sink.lineEnd(); } return; } // Rejoin connected segments. // TODO reuse ringBuffer.rejoin()? if (n > 1 && clean & 2) ringSegments.push(ringSegments.pop().concat(ringSegments.shift())); segments.push(ringSegments.filter(validSegment)); } return clip; }; } function validSegment(segment) { return segment.length > 1; } // Intersections are sorted along the clip edge. For both antimeridian cutting // and circle clipping, the same comparison is used. function compareIntersection(a, b) { return ((a = a.x)[0] < 0 ? a[1] - halfPi$1 - epsilon$1 : halfPi$1 - a[1]) - ((b = b.x)[0] < 0 ? b[1] - halfPi$1 - epsilon$1 : halfPi$1 - b[1]); } var clipAntimeridian = clip( function() { return true; }, clipAntimeridianLine, clipAntimeridianInterpolate, [-pi$1, -halfPi$1] ); // Takes a line and cuts into visible segments. Return values: 0 - there were // intersections or the line was empty; 1 - no intersections; 2 - there were // intersections, and the first and last segments should be rejoined. function clipAntimeridianLine(stream) { var lambda0 = NaN, phi0 = NaN, sign0 = NaN, clean; // no intersections return { lineStart: function() { stream.lineStart(); clean = 1; }, point: function(lambda1, phi1) { var sign1 = lambda1 > 0 ? pi$1 : -pi$1, delta = abs$1(lambda1 - lambda0); if (abs$1(delta - pi$1) < epsilon$1) { // line crosses a pole stream.point(lambda0, phi0 = (phi0 + phi1) / 2 > 0 ? halfPi$1 : -halfPi$1); stream.point(sign0, phi0); stream.lineEnd(); stream.lineStart(); stream.point(sign1, phi0); stream.point(lambda1, phi0); clean = 0; } else if (sign0 !== sign1 && delta >= pi$1) { // line crosses antimeridian if (abs$1(lambda0 - sign0) < epsilon$1) lambda0 -= sign0 * epsilon$1; // handle degeneracies if (abs$1(lambda1 - sign1) < epsilon$1) lambda1 -= sign1 * epsilon$1; phi0 = clipAntimeridianIntersect(lambda0, phi0, lambda1, phi1); stream.point(sign0, phi0); stream.lineEnd(); stream.lineStart(); stream.point(sign1, phi0); clean = 0; } stream.point(lambda0 = lambda1, phi0 = phi1); sign0 = sign1; }, lineEnd: function() { stream.lineEnd(); lambda0 = phi0 = NaN; }, clean: function() { return 2 - clean; // if intersections, rejoin first and last segments } }; } function clipAntimeridianIntersect(lambda0, phi0, lambda1, phi1) { var cosPhi0, cosPhi1, sinLambda0Lambda1 = sin$1(lambda0 - lambda1); return abs$1(sinLambda0Lambda1) > epsilon$1 ? atan((sin$1(phi0) * (cosPhi1 = cos$1(phi1)) * sin$1(lambda1) - sin$1(phi1) * (cosPhi0 = cos$1(phi0)) * sin$1(lambda0)) / (cosPhi0 * cosPhi1 * sinLambda0Lambda1)) : (phi0 + phi1) / 2; } function clipAntimeridianInterpolate(from, to, direction, stream) { var phi; if (from == null) { phi = direction * halfPi$1; stream.point(-pi$1, phi); stream.point(0, phi); stream.point(pi$1, phi); stream.point(pi$1, 0); stream.point(pi$1, -phi); stream.point(0, -phi); stream.point(-pi$1, -phi); stream.point(-pi$1, 0); stream.point(-pi$1, phi); } else if (abs$1(from[0] - to[0]) > epsilon$1) { var lambda = from[0] < to[0] ? pi$1 : -pi$1; phi = direction * lambda / 2; stream.point(-lambda, phi); stream.point(0, phi); stream.point(lambda, phi); } else { stream.point(to[0], to[1]); } } function clipCircle(radius) { var cr = cos$1(radius), delta = 6 * radians, smallRadius = cr > 0, notHemisphere = abs$1(cr) > epsilon$1; // TODO optimise for this common case function interpolate(from, to, direction, stream) { circleStream(stream, radius, delta, direction, from, to); } function visible(lambda, phi) { return cos$1(lambda) * cos$1(phi) > cr; } // Takes a line and cuts into visible segments. Return values used for polygon // clipping: 0 - there were intersections or the line was empty; 1 - no // intersections 2 - there were intersections, and the first and last segments // should be rejoined. function clipLine(stream) { var point0, // previous point c0, // code for previous point v0, // visibility of previous point v00, // visibility of first point clean; // no intersections return { lineStart: function() { v00 = v0 = false; clean = 1; }, point: function(lambda, phi) { var point1 = [lambda, phi], point2, v = visible(lambda, phi), c = smallRadius ? v ? 0 : code(lambda, phi) : v ? code(lambda + (lambda < 0 ? pi$1 : -pi$1), phi) : 0; if (!point0 && (v00 = v0 = v)) stream.lineStart(); if (v !== v0) { point2 = intersect(point0, point1); if (!point2 || pointEqual(point0, point2) || pointEqual(point1, point2)) point1[2] = 1; } if (v !== v0) { clean = 0; if (v) { // outside going in stream.lineStart(); point2 = intersect(point1, point0); stream.point(point2[0], point2[1]); } else { // inside going out point2 = intersect(point0, point1); stream.point(point2[0], point2[1], 2); stream.lineEnd(); } point0 = point2; } else if (notHemisphere && point0 && smallRadius ^ v) { var t; // If the codes for two points are different, or are both zero, // and there this segment intersects with the small circle. if (!(c & c0) && (t = intersect(point1, point0, true))) { clean = 0; if (smallRadius) { stream.lineStart(); stream.point(t[0][0], t[0][1]); stream.point(t[1][0], t[1][1]); stream.lineEnd(); } else { stream.point(t[1][0], t[1][1]); stream.lineEnd(); stream.lineStart(); stream.point(t[0][0], t[0][1], 3); } } } if (v && (!point0 || !pointEqual(point0, point1))) { stream.point(point1[0], point1[1]); } point0 = point1, v0 = v, c0 = c; }, lineEnd: function() { if (v0) stream.lineEnd(); point0 = null; }, // Rejoin first and last segments if there were intersections and the first // and last points were visible. clean: function() { return clean | ((v00 && v0) << 1); } }; } // Intersects the great circle between a and b with the clip circle. function intersect(a, b, two) { var pa = cartesian(a), pb = cartesian(b); // We have two planes, n1.p = d1 and n2.p = d2. // Find intersection line p(t) = c1 n1 + c2 n2 + t (n1 ⨯ n2). var n1 = [1, 0, 0], // normal n2 = cartesianCross(pa, pb), n2n2 = cartesianDot(n2, n2), n1n2 = n2[0], // cartesianDot(n1, n2), determinant = n2n2 - n1n2 * n1n2; // Two polar points. if (!determinant) return !two && a; var c1 = cr * n2n2 / determinant, c2 = -cr * n1n2 / determinant, n1xn2 = cartesianCross(n1, n2), A = cartesianScale(n1, c1), B = cartesianScale(n2, c2); cartesianAddInPlace(A, B); // Solve |p(t)|^2 = 1. var u = n1xn2, w = cartesianDot(A, u), uu = cartesianDot(u, u), t2 = w * w - uu * (cartesianDot(A, A) - 1); if (t2 < 0) return; var t = sqrt$2(t2), q = cartesianScale(u, (-w - t) / uu); cartesianAddInPlace(q, A); q = spherical(q); if (!two) return q; // Two intersection points. var lambda0 = a[0], lambda1 = b[0], phi0 = a[1], phi1 = b[1], z; if (lambda1 < lambda0) z = lambda0, lambda0 = lambda1, lambda1 = z; var delta = lambda1 - lambda0, polar = abs$1(delta - pi$1) < epsilon$1, meridian = polar || delta < epsilon$1; if (!polar && phi1 < phi0) z = phi0, phi0 = phi1, phi1 = z; // Check that the first point is between a and b. if (meridian ? polar ? phi0 + phi1 > 0 ^ q[1] < (abs$1(q[0] - lambda0) < epsilon$1 ? phi0 : phi1) : phi0 <= q[1] && q[1] <= phi1 : delta > pi$1 ^ (lambda0 <= q[0] && q[0] <= lambda1)) { var q1 = cartesianScale(u, (-w + t) / uu); cartesianAddInPlace(q1, A); return [q, spherical(q1)]; } } // Generates a 4-bit vector representing the location of a point relative to // the small circle's bounding box. function code(lambda, phi) { var r = smallRadius ? radius : pi$1 - radius, code = 0; if (lambda < -r) code |= 1; // left else if (lambda > r) code |= 2; // right if (phi < -r) code |= 4; // below else if (phi > r) code |= 8; // above return code; } return clip(visible, clipLine, interpolate, smallRadius ? [0, -radius] : [-pi$1, radius - pi$1]); } function clipLine(a, b, x0, y0, x1, y1) { var ax = a[0], ay = a[1], bx = b[0], by = b[1], t0 = 0, t1 = 1, dx = bx - ax, dy = by - ay, r; r = x0 - ax; if (!dx && r > 0) return; r /= dx; if (dx < 0) { if (r < t0) return; if (r < t1) t1 = r; } else if (dx > 0) { if (r > t1) return; if (r > t0) t0 = r; } r = x1 - ax; if (!dx && r < 0) return; r /= dx; if (dx < 0) { if (r > t1) return; if (r > t0) t0 = r; } else if (dx > 0) { if (r < t0) return; if (r < t1) t1 = r; } r = y0 - ay; if (!dy && r > 0) return; r /= dy; if (dy < 0) { if (r < t0) return; if (r < t1) t1 = r; } else if (dy > 0) { if (r > t1) return; if (r > t0) t0 = r; } r = y1 - ay; if (!dy && r < 0) return; r /= dy; if (dy < 0) { if (r > t1) return; if (r > t0) t0 = r; } else if (dy > 0) { if (r < t0) return; if (r < t1) t1 = r; } if (t0 > 0) a[0] = ax + t0 * dx, a[1] = ay + t0 * dy; if (t1 < 1) b[0] = ax + t1 * dx, b[1] = ay + t1 * dy; return true; } var clipMax = 1e9, clipMin = -clipMax; // TODO Use d3-polygon’s polygonContains here for the ring check? // TODO Eliminate duplicate buffering in clipBuffer and polygon.push? function clipRectangle(x0, y0, x1, y1) { function visible(x, y) { return x0 <= x && x <= x1 && y0 <= y && y <= y1; } function interpolate(from, to, direction, stream) { var a = 0, a1 = 0; if (from == null || (a = corner(from, direction)) !== (a1 = corner(to, direction)) || comparePoint(from, to) < 0 ^ direction > 0) { do stream.point(a === 0 || a === 3 ? x0 : x1, a > 1 ? y1 : y0); while ((a = (a + direction + 4) % 4) !== a1); } else { stream.point(to[0], to[1]); } } function corner(p, direction) { return abs$1(p[0] - x0) < epsilon$1 ? direction > 0 ? 0 : 3 : abs$1(p[0] - x1) < epsilon$1 ? direction > 0 ? 2 : 1 : abs$1(p[1] - y0) < epsilon$1 ? direction > 0 ? 1 : 0 : direction > 0 ? 3 : 2; // abs(p[1] - y1) < epsilon } function compareIntersection(a, b) { return comparePoint(a.x, b.x); } function comparePoint(a, b) { var ca = corner(a, 1), cb = corner(b, 1); return ca !== cb ? ca - cb : ca === 0 ? b[1] - a[1] : ca === 1 ? a[0] - b[0] : ca === 2 ? a[1] - b[1] : b[0] - a[0]; } return function(stream) { var activeStream = stream, bufferStream = clipBuffer(), segments, polygon, ring, x__, y__, v__, // first point x_, y_, v_, // previous point first, clean; var clipStream = { point: point, lineStart: lineStart, lineEnd: lineEnd, polygonStart: polygonStart, polygonEnd: polygonEnd }; function point(x, y) { if (visible(x, y)) activeStream.point(x, y); } function polygonInside() { var winding = 0; for (var i = 0, n = polygon.length; i < n; ++i) { for (var ring = polygon[i], j = 1, m = ring.length, point = ring[0], a0, a1, b0 = point[0], b1 = point[1]; j < m; ++j) { a0 = b0, a1 = b1, point = ring[j], b0 = point[0], b1 = point[1]; if (a1 <= y1) { if (b1 > y1 && (b0 - a0) * (y1 - a1) > (b1 - a1) * (x0 - a0)) ++winding; } else { if (b1 <= y1 && (b0 - a0) * (y1 - a1) < (b1 - a1) * (x0 - a0)) --winding; } } } return winding; } // Buffer geometry within a polygon and then clip it en masse. function polygonStart() { activeStream = bufferStream, segments = [], polygon = [], clean = true; } function polygonEnd() { var startInside = polygonInside(), cleanInside = clean && startInside, visible = (segments = merge(segments)).length; if (cleanInside || visible) { stream.polygonStart(); if (cleanInside) { stream.lineStart(); interpolate(null, null, 1, stream); stream.lineEnd(); } if (visible) { clipRejoin(segments, compareIntersection, startInside, interpolate, stream); } stream.polygonEnd(); } activeStream = stream, segments = polygon = ring = null; } function lineStart() { clipStream.point = linePoint; if (polygon) polygon.push(ring = []); first = true; v_ = false; x_ = y_ = NaN; } // TODO rather than special-case polygons, simply handle them separately. // Ideally, coincident intersection points should be jittered to avoid // clipping issues. function lineEnd() { if (segments) { linePoint(x__, y__); if (v__ && v_) bufferStream.rejoin(); segments.push(bufferStream.result()); } clipStream.point = point; if (v_) activeStream.lineEnd(); } function linePoint(x, y) { var v = visible(x, y); if (polygon) ring.push([x, y]); if (first) { x__ = x, y__ = y, v__ = v; first = false; if (v) { activeStream.lineStart(); activeStream.point(x, y); } } else { if (v && v_) activeStream.point(x, y); else { var a = [x_ = Math.max(clipMin, Math.min(clipMax, x_)), y_ = Math.max(clipMin, Math.min(clipMax, y_))], b = [x = Math.max(clipMin, Math.min(clipMax, x)), y = Math.max(clipMin, Math.min(clipMax, y))]; if (clipLine(a, b, x0, y0, x1, y1)) { if (!v_) { activeStream.lineStart(); activeStream.point(a[0], a[1]); } activeStream.point(b[0], b[1]); if (!v) activeStream.lineEnd(); clean = false; } else if (v) { activeStream.lineStart(); activeStream.point(x, y); clean = false; } } } x_ = x, y_ = y, v_ = v; } return clipStream; }; } function extent() { var x0 = 0, y0 = 0, x1 = 960, y1 = 500, cache, cacheStream, clip; return clip = { stream: function(stream) { return cache && cacheStream === stream ? cache : cache = clipRectangle(x0, y0, x1, y1)(cacheStream = stream); }, extent: function(_) { return arguments.length ? (x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1], cache = cacheStream = null, clip) : [[x0, y0], [x1, y1]]; } }; } var lengthSum$1, lambda0, sinPhi0, cosPhi0; var lengthStream$1 = { sphere: noop$1, point: noop$1, lineStart: lengthLineStart, lineEnd: noop$1, polygonStart: noop$1, polygonEnd: noop$1 }; function lengthLineStart() { lengthStream$1.point = lengthPointFirst$1; lengthStream$1.lineEnd = lengthLineEnd; } function lengthLineEnd() { lengthStream$1.point = lengthStream$1.lineEnd = noop$1; } function lengthPointFirst$1(lambda, phi) { lambda *= radians, phi *= radians; lambda0 = lambda, sinPhi0 = sin$1(phi), cosPhi0 = cos$1(phi); lengthStream$1.point = lengthPoint$1; } function lengthPoint$1(lambda, phi) { lambda *= radians, phi *= radians; var sinPhi = sin$1(phi), cosPhi = cos$1(phi), delta = abs$1(lambda - lambda0), cosDelta = cos$1(delta), sinDelta = sin$1(delta), x = cosPhi * sinDelta, y = cosPhi0 * sinPhi - sinPhi0 * cosPhi * cosDelta, z = sinPhi0 * sinPhi + cosPhi0 * cosPhi * cosDelta; lengthSum$1.add(atan2$1(sqrt$2(x * x + y * y), z)); lambda0 = lambda, sinPhi0 = sinPhi, cosPhi0 = cosPhi; } function length$1(object) { lengthSum$1 = new Adder(); geoStream(object, lengthStream$1); return +lengthSum$1; } var coordinates = [null, null], object = {type: "LineString", coordinates: coordinates}; function distance(a, b) { coordinates[0] = a; coordinates[1] = b; return length$1(object); } var containsObjectType = { Feature: function(object, point) { return containsGeometry(object.geometry, point); }, FeatureCollection: function(object, point) { var features = object.features, i = -1, n = features.length; while (++i < n) if (containsGeometry(features[i].geometry, point)) return true; return false; } }; var containsGeometryType = { Sphere: function() { return true; }, Point: function(object, point) { return containsPoint(object.coordinates, point); }, MultiPoint: function(object, point) { var coordinates = object.coordinates, i = -1, n = coordinates.length; while (++i < n) if (containsPoint(coordinates[i], point)) return true; return false; }, LineString: function(object, point) { return containsLine(object.coordinates, point); }, MultiLineString: function(object, point) { var coordinates = object.coordinates, i = -1, n = coordinates.length; while (++i < n) if (containsLine(coordinates[i], point)) return true; return false; }, Polygon: function(object, point) { return containsPolygon(object.coordinates, point); }, MultiPolygon: function(object, point) { var coordinates = object.coordinates, i = -1, n = coordinates.length; while (++i < n) if (containsPolygon(coordinates[i], point)) return true; return false; }, GeometryCollection: function(object, point) { var geometries = object.geometries, i = -1, n = geometries.length; while (++i < n) if (containsGeometry(geometries[i], point)) return true; return false; } }; function containsGeometry(geometry, point) { return geometry && containsGeometryType.hasOwnProperty(geometry.type) ? containsGeometryType[geometry.type](geometry, point) : false; } function containsPoint(coordinates, point) { return distance(coordinates, point) === 0; } function containsLine(coordinates, point) { var ao, bo, ab; for (var i = 0, n = coordinates.length; i < n; i++) { bo = distance(coordinates[i], point); if (bo === 0) return true; if (i > 0) { ab = distance(coordinates[i], coordinates[i - 1]); if ( ab > 0 && ao <= ab && bo <= ab && (ao + bo - ab) * (1 - Math.pow((ao - bo) / ab, 2)) < epsilon2 * ab ) return true; } ao = bo; } return false; } function containsPolygon(coordinates, point) { return !!polygonContains(coordinates.map(ringRadians), pointRadians(point)); } function ringRadians(ring) { return ring = ring.map(pointRadians), ring.pop(), ring; } function pointRadians(point) { return [point[0] * radians, point[1] * radians]; } function contains$1(object, point) { return (object && containsObjectType.hasOwnProperty(object.type) ? containsObjectType[object.type] : containsGeometry)(object, point); } function graticuleX(y0, y1, dy) { var y = range$2(y0, y1 - epsilon$1, dy).concat(y1); return function(x) { return y.map(function(y) { return [x, y]; }); }; } function graticuleY(x0, x1, dx) { var x = range$2(x0, x1 - epsilon$1, dx).concat(x1); return function(y) { return x.map(function(x) { return [x, y]; }); }; } function graticule() { var x1, x0, X1, X0, y1, y0, Y1, Y0, dx = 10, dy = dx, DX = 90, DY = 360, x, y, X, Y, precision = 2.5; function graticule() { return {type: "MultiLineString", coordinates: lines()}; } function lines() { return range$2(ceil(X0 / DX) * DX, X1, DX).map(X) .concat(range$2(ceil(Y0 / DY) * DY, Y1, DY).map(Y)) .concat(range$2(ceil(x0 / dx) * dx, x1, dx).filter(function(x) { return abs$1(x % DX) > epsilon$1; }).map(x)) .concat(range$2(ceil(y0 / dy) * dy, y1, dy).filter(function(y) { return abs$1(y % DY) > epsilon$1; }).map(y)); } graticule.lines = function() { return lines().map(function(coordinates) { return {type: "LineString", coordinates: coordinates}; }); }; graticule.outline = function() { return { type: "Polygon", coordinates: [ X(X0).concat( Y(Y1).slice(1), X(X1).reverse().slice(1), Y(Y0).reverse().slice(1)) ] }; }; graticule.extent = function(_) { if (!arguments.length) return graticule.extentMinor(); return graticule.extentMajor(_).extentMinor(_); }; graticule.extentMajor = function(_) { if (!arguments.length) return [[X0, Y0], [X1, Y1]]; X0 = +_[0][0], X1 = +_[1][0]; Y0 = +_[0][1], Y1 = +_[1][1]; if (X0 > X1) _ = X0, X0 = X1, X1 = _; if (Y0 > Y1) _ = Y0, Y0 = Y1, Y1 = _; return graticule.precision(precision); }; graticule.extentMinor = function(_) { if (!arguments.length) return [[x0, y0], [x1, y1]]; x0 = +_[0][0], x1 = +_[1][0]; y0 = +_[0][1], y1 = +_[1][1]; if (x0 > x1) _ = x0, x0 = x1, x1 = _; if (y0 > y1) _ = y0, y0 = y1, y1 = _; return graticule.precision(precision); }; graticule.step = function(_) { if (!arguments.length) return graticule.stepMinor(); return graticule.stepMajor(_).stepMinor(_); }; graticule.stepMajor = function(_) { if (!arguments.length) return [DX, DY]; DX = +_[0], DY = +_[1]; return graticule; }; graticule.stepMinor = function(_) { if (!arguments.length) return [dx, dy]; dx = +_[0], dy = +_[1]; return graticule; }; graticule.precision = function(_) { if (!arguments.length) return precision; precision = +_; x = graticuleX(y0, y1, 90); y = graticuleY(x0, x1, precision); X = graticuleX(Y0, Y1, 90); Y = graticuleY(X0, X1, precision); return graticule; }; return graticule .extentMajor([[-180, -90 + epsilon$1], [180, 90 - epsilon$1]]) .extentMinor([[-180, -80 - epsilon$1], [180, 80 + epsilon$1]]); } function graticule10() { return graticule()(); } function interpolate(a, b) { var x0 = a[0] * radians, y0 = a[1] * radians, x1 = b[0] * radians, y1 = b[1] * radians, cy0 = cos$1(y0), sy0 = sin$1(y0), cy1 = cos$1(y1), sy1 = sin$1(y1), kx0 = cy0 * cos$1(x0), ky0 = cy0 * sin$1(x0), kx1 = cy1 * cos$1(x1), ky1 = cy1 * sin$1(x1), d = 2 * asin$1(sqrt$2(haversin(y1 - y0) + cy0 * cy1 * haversin(x1 - x0))), k = sin$1(d); var interpolate = d ? function(t) { var B = sin$1(t *= d) / k, A = sin$1(d - t) / k, x = A * kx0 + B * kx1, y = A * ky0 + B * ky1, z = A * sy0 + B * sy1; return [ atan2$1(y, x) * degrees, atan2$1(z, sqrt$2(x * x + y * y)) * degrees ]; } : function() { return [x0 * degrees, y0 * degrees]; }; interpolate.distance = d; return interpolate; } var identity$5 = x => x; var areaSum = new Adder(), areaRingSum = new Adder(), x00$2, y00$2, x0$3, y0$3; var areaStream = { point: noop$1, lineStart: noop$1, lineEnd: noop$1, polygonStart: function() { areaStream.lineStart = areaRingStart; areaStream.lineEnd = areaRingEnd; }, polygonEnd: function() { areaStream.lineStart = areaStream.lineEnd = areaStream.point = noop$1; areaSum.add(abs$1(areaRingSum)); areaRingSum = new Adder(); }, result: function() { var area = areaSum / 2; areaSum = new Adder(); return area; } }; function areaRingStart() { areaStream.point = areaPointFirst; } function areaPointFirst(x, y) { areaStream.point = areaPoint; x00$2 = x0$3 = x, y00$2 = y0$3 = y; } function areaPoint(x, y) { areaRingSum.add(y0$3 * x - x0$3 * y); x0$3 = x, y0$3 = y; } function areaRingEnd() { areaPoint(x00$2, y00$2); } var pathArea = areaStream; var x0$2 = Infinity, y0$2 = x0$2, x1 = -x0$2, y1 = x1; var boundsStream = { point: boundsPoint, lineStart: noop$1, lineEnd: noop$1, polygonStart: noop$1, polygonEnd: noop$1, result: function() { var bounds = [[x0$2, y0$2], [x1, y1]]; x1 = y1 = -(y0$2 = x0$2 = Infinity); return bounds; } }; function boundsPoint(x, y) { if (x < x0$2) x0$2 = x; if (x > x1) x1 = x; if (y < y0$2) y0$2 = y; if (y > y1) y1 = y; } var boundsStream$1 = boundsStream; // TODO Enforce positive area for exterior, negative area for interior? var X0 = 0, Y0 = 0, Z0 = 0, X1 = 0, Y1 = 0, Z1 = 0, X2 = 0, Y2 = 0, Z2 = 0, x00$1, y00$1, x0$1, y0$1; var centroidStream = { point: centroidPoint, lineStart: centroidLineStart, lineEnd: centroidLineEnd, polygonStart: function() { centroidStream.lineStart = centroidRingStart; centroidStream.lineEnd = centroidRingEnd; }, polygonEnd: function() { centroidStream.point = centroidPoint; centroidStream.lineStart = centroidLineStart; centroidStream.lineEnd = centroidLineEnd; }, result: function() { var centroid = Z2 ? [X2 / Z2, Y2 / Z2] : Z1 ? [X1 / Z1, Y1 / Z1] : Z0 ? [X0 / Z0, Y0 / Z0] : [NaN, NaN]; X0 = Y0 = Z0 = X1 = Y1 = Z1 = X2 = Y2 = Z2 = 0; return centroid; } }; function centroidPoint(x, y) { X0 += x; Y0 += y; ++Z0; } function centroidLineStart() { centroidStream.point = centroidPointFirstLine; } function centroidPointFirstLine(x, y) { centroidStream.point = centroidPointLine; centroidPoint(x0$1 = x, y0$1 = y); } function centroidPointLine(x, y) { var dx = x - x0$1, dy = y - y0$1, z = sqrt$2(dx * dx + dy * dy); X1 += z * (x0$1 + x) / 2; Y1 += z * (y0$1 + y) / 2; Z1 += z; centroidPoint(x0$1 = x, y0$1 = y); } function centroidLineEnd() { centroidStream.point = centroidPoint; } function centroidRingStart() { centroidStream.point = centroidPointFirstRing; } function centroidRingEnd() { centroidPointRing(x00$1, y00$1); } function centroidPointFirstRing(x, y) { centroidStream.point = centroidPointRing; centroidPoint(x00$1 = x0$1 = x, y00$1 = y0$1 = y); } function centroidPointRing(x, y) { var dx = x - x0$1, dy = y - y0$1, z = sqrt$2(dx * dx + dy * dy); X1 += z * (x0$1 + x) / 2; Y1 += z * (y0$1 + y) / 2; Z1 += z; z = y0$1 * x - x0$1 * y; X2 += z * (x0$1 + x); Y2 += z * (y0$1 + y); Z2 += z * 3; centroidPoint(x0$1 = x, y0$1 = y); } var pathCentroid = centroidStream; function PathContext(context) { this._context = context; } PathContext.prototype = { _radius: 4.5, pointRadius: function(_) { return this._radius = _, this; }, polygonStart: function() { this._line = 0; }, polygonEnd: function() { this._line = NaN; }, lineStart: function() { this._point = 0; }, lineEnd: function() { if (this._line === 0) this._context.closePath(); this._point = NaN; }, point: function(x, y) { switch (this._point) { case 0: { this._context.moveTo(x, y); this._point = 1; break; } case 1: { this._context.lineTo(x, y); break; } default: { this._context.moveTo(x + this._radius, y); this._context.arc(x, y, this._radius, 0, tau$1); break; } } }, result: noop$1 }; var lengthSum = new Adder(), lengthRing, x00, y00, x0, y0; var lengthStream = { point: noop$1, lineStart: function() { lengthStream.point = lengthPointFirst; }, lineEnd: function() { if (lengthRing) lengthPoint(x00, y00); lengthStream.point = noop$1; }, polygonStart: function() { lengthRing = true; }, polygonEnd: function() { lengthRing = null; }, result: function() { var length = +lengthSum; lengthSum = new Adder(); return length; } }; function lengthPointFirst(x, y) { lengthStream.point = lengthPoint; x00 = x0 = x, y00 = y0 = y; } function lengthPoint(x, y) { x0 -= x, y0 -= y; lengthSum.add(sqrt$2(x0 * x0 + y0 * y0)); x0 = x, y0 = y; } var pathMeasure = lengthStream; // Simple caching for constant-radius points. let cacheDigits, cacheAppend, cacheRadius, cacheCircle; class PathString { constructor(digits) { this._append = digits == null ? append : appendRound(digits); this._radius = 4.5; this._ = ""; } pointRadius(_) { this._radius = +_; return this; } polygonStart() { this._line = 0; } polygonEnd() { this._line = NaN; } lineStart() { this._point = 0; } lineEnd() { if (this._line === 0) this._ += "Z"; this._point = NaN; } point(x, y) { switch (this._point) { case 0: { this._append`M${x},${y}`; this._point = 1; break; } case 1: { this._append`L${x},${y}`; break; } default: { this._append`M${x},${y}`; if (this._radius !== cacheRadius || this._append !== cacheAppend) { const r = this._radius; const s = this._; this._ = ""; // stash the old string so we can cache the circle path fragment this._append`m0,${r}a${r},${r} 0 1,1 0,${-2 * r}a${r},${r} 0 1,1 0,${2 * r}z`; cacheRadius = r; cacheAppend = this._append; cacheCircle = this._; this._ = s; } this._ += cacheCircle; break; } } } result() { const result = this._; this._ = ""; return result.length ? result : null; } } function append(strings) { let i = 1; this._ += strings[0]; for (const j = strings.length; i < j; ++i) { this._ += arguments[i] + strings[i]; } } function appendRound(digits) { const d = Math.floor(digits); if (!(d >= 0)) throw new RangeError(`invalid digits: ${digits}`); if (d > 15) return append; if (d !== cacheDigits) { const k = 10 ** d; cacheDigits = d; cacheAppend = function append(strings) { let i = 1; this._ += strings[0]; for (const j = strings.length; i < j; ++i) { this._ += Math.round(arguments[i] * k) / k + strings[i]; } }; } return cacheAppend; } function index$2(projection, context) { let digits = 3, pointRadius = 4.5, projectionStream, contextStream; function path(object) { if (object) { if (typeof pointRadius === "function") contextStream.pointRadius(+pointRadius.apply(this, arguments)); geoStream(object, projectionStream(contextStream)); } return contextStream.result(); } path.area = function(object) { geoStream(object, projectionStream(pathArea)); return pathArea.result(); }; path.measure = function(object) { geoStream(object, projectionStream(pathMeasure)); return pathMeasure.result(); }; path.bounds = function(object) { geoStream(object, projectionStream(boundsStream$1)); return boundsStream$1.result(); }; path.centroid = function(object) { geoStream(object, projectionStream(pathCentroid)); return pathCentroid.result(); }; path.projection = function(_) { if (!arguments.length) return projection; projectionStream = _ == null ? (projection = null, identity$5) : (projection = _).stream; return path; }; path.context = function(_) { if (!arguments.length) return context; contextStream = _ == null ? (context = null, new PathString(digits)) : new PathContext(context = _); if (typeof pointRadius !== "function") contextStream.pointRadius(pointRadius); return path; }; path.pointRadius = function(_) { if (!arguments.length) return pointRadius; pointRadius = typeof _ === "function" ? _ : (contextStream.pointRadius(+_), +_); return path; }; path.digits = function(_) { if (!arguments.length) return digits; if (_ == null) digits = null; else { const d = Math.floor(_); if (!(d >= 0)) throw new RangeError(`invalid digits: ${_}`); digits = d; } if (context === null) contextStream = new PathString(digits); return path; }; return path.projection(projection).digits(digits).context(context); } function transform$1(methods) { return { stream: transformer$3(methods) }; } function transformer$3(methods) { return function(stream) { var s = new TransformStream; for (var key in methods) s[key] = methods[key]; s.stream = stream; return s; }; } function TransformStream() {} TransformStream.prototype = { constructor: TransformStream, point: function(x, y) { this.stream.point(x, y); }, sphere: function() { this.stream.sphere(); }, lineStart: function() { this.stream.lineStart(); }, lineEnd: function() { this.stream.lineEnd(); }, polygonStart: function() { this.stream.polygonStart(); }, polygonEnd: function() { this.stream.polygonEnd(); } }; function fit(projection, fitBounds, object) { var clip = projection.clipExtent && projection.clipExtent(); projection.scale(150).translate([0, 0]); if (clip != null) projection.clipExtent(null); geoStream(object, projection.stream(boundsStream$1)); fitBounds(boundsStream$1.result()); if (clip != null) projection.clipExtent(clip); return projection; } function fitExtent(projection, extent, object) { return fit(projection, function(b) { var w = extent[1][0] - extent[0][0], h = extent[1][1] - extent[0][1], k = Math.min(w / (b[1][0] - b[0][0]), h / (b[1][1] - b[0][1])), x = +extent[0][0] + (w - k * (b[1][0] + b[0][0])) / 2, y = +extent[0][1] + (h - k * (b[1][1] + b[0][1])) / 2; projection.scale(150 * k).translate([x, y]); }, object); } function fitSize(projection, size, object) { return fitExtent(projection, [[0, 0], size], object); } function fitWidth(projection, width, object) { return fit(projection, function(b) { var w = +width, k = w / (b[1][0] - b[0][0]), x = (w - k * (b[1][0] + b[0][0])) / 2, y = -k * b[0][1]; projection.scale(150 * k).translate([x, y]); }, object); } function fitHeight(projection, height, object) { return fit(projection, function(b) { var h = +height, k = h / (b[1][1] - b[0][1]), x = -k * b[0][0], y = (h - k * (b[1][1] + b[0][1])) / 2; projection.scale(150 * k).translate([x, y]); }, object); } var maxDepth = 16, // maximum depth of subdivision cosMinDistance = cos$1(30 * radians); // cos(minimum angular distance) function resample(project, delta2) { return +delta2 ? resample$1(project, delta2) : resampleNone(project); } function resampleNone(project) { return transformer$3({ point: function(x, y) { x = project(x, y); this.stream.point(x[0], x[1]); } }); } function resample$1(project, delta2) { function resampleLineTo(x0, y0, lambda0, a0, b0, c0, x1, y1, lambda1, a1, b1, c1, depth, stream) { var dx = x1 - x0, dy = y1 - y0, d2 = dx * dx + dy * dy; if (d2 > 4 * delta2 && depth--) { var a = a0 + a1, b = b0 + b1, c = c0 + c1, m = sqrt$2(a * a + b * b + c * c), phi2 = asin$1(c /= m), lambda2 = abs$1(abs$1(c) - 1) < epsilon$1 || abs$1(lambda0 - lambda1) < epsilon$1 ? (lambda0 + lambda1) / 2 : atan2$1(b, a), p = project(lambda2, phi2), x2 = p[0], y2 = p[1], dx2 = x2 - x0, dy2 = y2 - y0, dz = dy * dx2 - dx * dy2; if (dz * dz / d2 > delta2 // perpendicular projected distance || abs$1((dx * dx2 + dy * dy2) / d2 - 0.5) > 0.3 // midpoint close to an end || a0 * a1 + b0 * b1 + c0 * c1 < cosMinDistance) { // angular distance resampleLineTo(x0, y0, lambda0, a0, b0, c0, x2, y2, lambda2, a /= m, b /= m, c, depth, stream); stream.point(x2, y2); resampleLineTo(x2, y2, lambda2, a, b, c, x1, y1, lambda1, a1, b1, c1, depth, stream); } } } return function(stream) { var lambda00, x00, y00, a00, b00, c00, // first point lambda0, x0, y0, a0, b0, c0; // previous point var resampleStream = { point: point, lineStart: lineStart, lineEnd: lineEnd, polygonStart: function() { stream.polygonStart(); resampleStream.lineStart = ringStart; }, polygonEnd: function() { stream.polygonEnd(); resampleStream.lineStart = lineStart; } }; function point(x, y) { x = project(x, y); stream.point(x[0], x[1]); } function lineStart() { x0 = NaN; resampleStream.point = linePoint; stream.lineStart(); } function linePoint(lambda, phi) { var c = cartesian([lambda, phi]), p = project(lambda, phi); resampleLineTo(x0, y0, lambda0, a0, b0, c0, x0 = p[0], y0 = p[1], lambda0 = lambda, a0 = c[0], b0 = c[1], c0 = c[2], maxDepth, stream); stream.point(x0, y0); } function lineEnd() { resampleStream.point = point; stream.lineEnd(); } function ringStart() { lineStart(); resampleStream.point = ringPoint; resampleStream.lineEnd = ringEnd; } function ringPoint(lambda, phi) { linePoint(lambda00 = lambda, phi), x00 = x0, y00 = y0, a00 = a0, b00 = b0, c00 = c0; resampleStream.point = linePoint; } function ringEnd() { resampleLineTo(x0, y0, lambda0, a0, b0, c0, x00, y00, lambda00, a00, b00, c00, maxDepth, stream); resampleStream.lineEnd = lineEnd; lineEnd(); } return resampleStream; }; } var transformRadians = transformer$3({ point: function(x, y) { this.stream.point(x * radians, y * radians); } }); function transformRotate(rotate) { return transformer$3({ point: function(x, y) { var r = rotate(x, y); return this.stream.point(r[0], r[1]); } }); } function scaleTranslate(k, dx, dy, sx, sy) { function transform(x, y) { x *= sx; y *= sy; return [dx + k * x, dy - k * y]; } transform.invert = function(x, y) { return [(x - dx) / k * sx, (dy - y) / k * sy]; }; return transform; } function scaleTranslateRotate(k, dx, dy, sx, sy, alpha) { if (!alpha) return scaleTranslate(k, dx, dy, sx, sy); var cosAlpha = cos$1(alpha), sinAlpha = sin$1(alpha), a = cosAlpha * k, b = sinAlpha * k, ai = cosAlpha / k, bi = sinAlpha / k, ci = (sinAlpha * dy - cosAlpha * dx) / k, fi = (sinAlpha * dx + cosAlpha * dy) / k; function transform(x, y) { x *= sx; y *= sy; return [a * x - b * y + dx, dy - b * x - a * y]; } transform.invert = function(x, y) { return [sx * (ai * x - bi * y + ci), sy * (fi - bi * x - ai * y)]; }; return transform; } function projection(project) { return projectionMutator(function() { return project; })(); } function projectionMutator(projectAt) { var project, k = 150, // scale x = 480, y = 250, // translate lambda = 0, phi = 0, // center deltaLambda = 0, deltaPhi = 0, deltaGamma = 0, rotate, // pre-rotate alpha = 0, // post-rotate angle sx = 1, // reflectX sy = 1, // reflectX theta = null, preclip = clipAntimeridian, // pre-clip angle x0 = null, y0, x1, y1, postclip = identity$5, // post-clip extent delta2 = 0.5, // precision projectResample, projectTransform, projectRotateTransform, cache, cacheStream; function projection(point) { return projectRotateTransform(point[0] * radians, point[1] * radians); } function invert(point) { point = projectRotateTransform.invert(point[0], point[1]); return point && [point[0] * degrees, point[1] * degrees]; } projection.stream = function(stream) { return cache && cacheStream === stream ? cache : cache = transformRadians(transformRotate(rotate)(preclip(projectResample(postclip(cacheStream = stream))))); }; projection.preclip = function(_) { return arguments.length ? (preclip = _, theta = undefined, reset()) : preclip; }; projection.postclip = function(_) { return arguments.length ? (postclip = _, x0 = y0 = x1 = y1 = null, reset()) : postclip; }; projection.clipAngle = function(_) { return arguments.length ? (preclip = +_ ? clipCircle(theta = _ * radians) : (theta = null, clipAntimeridian), reset()) : theta * degrees; }; projection.clipExtent = function(_) { return arguments.length ? (postclip = _ == null ? (x0 = y0 = x1 = y1 = null, identity$5) : clipRectangle(x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1]), reset()) : x0 == null ? null : [[x0, y0], [x1, y1]]; }; projection.scale = function(_) { return arguments.length ? (k = +_, recenter()) : k; }; projection.translate = function(_) { return arguments.length ? (x = +_[0], y = +_[1], recenter()) : [x, y]; }; projection.center = function(_) { return arguments.length ? (lambda = _[0] % 360 * radians, phi = _[1] % 360 * radians, recenter()) : [lambda * degrees, phi * degrees]; }; projection.rotate = function(_) { return arguments.length ? (deltaLambda = _[0] % 360 * radians, deltaPhi = _[1] % 360 * radians, deltaGamma = _.length > 2 ? _[2] % 360 * radians : 0, recenter()) : [deltaLambda * degrees, deltaPhi * degrees, deltaGamma * degrees]; }; projection.angle = function(_) { return arguments.length ? (alpha = _ % 360 * radians, recenter()) : alpha * degrees; }; projection.reflectX = function(_) { return arguments.length ? (sx = _ ? -1 : 1, recenter()) : sx < 0; }; projection.reflectY = function(_) { return arguments.length ? (sy = _ ? -1 : 1, recenter()) : sy < 0; }; projection.precision = function(_) { return arguments.length ? (projectResample = resample(projectTransform, delta2 = _ * _), reset()) : sqrt$2(delta2); }; projection.fitExtent = function(extent, object) { return fitExtent(projection, extent, object); }; projection.fitSize = function(size, object) { return fitSize(projection, size, object); }; projection.fitWidth = function(width, object) { return fitWidth(projection, width, object); }; projection.fitHeight = function(height, object) { return fitHeight(projection, height, object); }; function recenter() { var center = scaleTranslateRotate(k, 0, 0, sx, sy, alpha).apply(null, project(lambda, phi)), transform = scaleTranslateRotate(k, x - center[0], y - center[1], sx, sy, alpha); rotate = rotateRadians(deltaLambda, deltaPhi, deltaGamma); projectTransform = compose(project, transform); projectRotateTransform = compose(rotate, projectTransform); projectResample = resample(projectTransform, delta2); return reset(); } function reset() { cache = cacheStream = null; return projection; } return function() { project = projectAt.apply(this, arguments); projection.invert = project.invert && invert; return recenter(); }; } function conicProjection(projectAt) { var phi0 = 0, phi1 = pi$1 / 3, m = projectionMutator(projectAt), p = m(phi0, phi1); p.parallels = function(_) { return arguments.length ? m(phi0 = _[0] * radians, phi1 = _[1] * radians) : [phi0 * degrees, phi1 * degrees]; }; return p; } function cylindricalEqualAreaRaw(phi0) { var cosPhi0 = cos$1(phi0); function forward(lambda, phi) { return [lambda * cosPhi0, sin$1(phi) / cosPhi0]; } forward.invert = function(x, y) { return [x / cosPhi0, asin$1(y * cosPhi0)]; }; return forward; } function conicEqualAreaRaw(y0, y1) { var sy0 = sin$1(y0), n = (sy0 + sin$1(y1)) / 2; // Are the parallels symmetrical around the Equator? if (abs$1(n) < epsilon$1) return cylindricalEqualAreaRaw(y0); var c = 1 + sy0 * (2 * n - sy0), r0 = sqrt$2(c) / n; function project(x, y) { var r = sqrt$2(c - 2 * n * sin$1(y)) / n; return [r * sin$1(x *= n), r0 - r * cos$1(x)]; } project.invert = function(x, y) { var r0y = r0 - y, l = atan2$1(x, abs$1(r0y)) * sign$1(r0y); if (r0y * n < 0) l -= pi$1 * sign$1(x) * sign$1(r0y); return [l / n, asin$1((c - (x * x + r0y * r0y) * n * n) / (2 * n))]; }; return project; } function conicEqualArea() { return conicProjection(conicEqualAreaRaw) .scale(155.424) .center([0, 33.6442]); } function albers() { return conicEqualArea() .parallels([29.5, 45.5]) .scale(1070) .translate([480, 250]) .rotate([96, 0]) .center([-0.6, 38.7]); } // The projections must have mutually exclusive clip regions on the sphere, // as this will avoid emitting interleaving lines and polygons. function multiplex(streams) { var n = streams.length; return { point: function(x, y) { var i = -1; while (++i < n) streams[i].point(x, y); }, sphere: function() { var i = -1; while (++i < n) streams[i].sphere(); }, lineStart: function() { var i = -1; while (++i < n) streams[i].lineStart(); }, lineEnd: function() { var i = -1; while (++i < n) streams[i].lineEnd(); }, polygonStart: function() { var i = -1; while (++i < n) streams[i].polygonStart(); }, polygonEnd: function() { var i = -1; while (++i < n) streams[i].polygonEnd(); } }; } // A composite projection for the United States, configured by default for // 960×500. The projection also works quite well at 960×600 if you change the // scale to 1285 and adjust the translate accordingly. The set of standard // parallels for each region comes from USGS, which is published here: // http://egsc.usgs.gov/isb/pubs/MapProjections/projections.html#albers function albersUsa() { var cache, cacheStream, lower48 = albers(), lower48Point, alaska = conicEqualArea().rotate([154, 0]).center([-2, 58.5]).parallels([55, 65]), alaskaPoint, // EPSG:3338 hawaii = conicEqualArea().rotate([157, 0]).center([-3, 19.9]).parallels([8, 18]), hawaiiPoint, // ESRI:102007 point, pointStream = {point: function(x, y) { point = [x, y]; }}; function albersUsa(coordinates) { var x = coordinates[0], y = coordinates[1]; return point = null, (lower48Point.point(x, y), point) || (alaskaPoint.point(x, y), point) || (hawaiiPoint.point(x, y), point); } albersUsa.invert = function(coordinates) { var k = lower48.scale(), t = lower48.translate(), x = (coordinates[0] - t[0]) / k, y = (coordinates[1] - t[1]) / k; return (y >= 0.120 && y < 0.234 && x >= -0.425 && x < -0.214 ? alaska : y >= 0.166 && y < 0.234 && x >= -0.214 && x < -0.115 ? hawaii : lower48).invert(coordinates); }; albersUsa.stream = function(stream) { return cache && cacheStream === stream ? cache : cache = multiplex([lower48.stream(cacheStream = stream), alaska.stream(stream), hawaii.stream(stream)]); }; albersUsa.precision = function(_) { if (!arguments.length) return lower48.precision(); lower48.precision(_), alaska.precision(_), hawaii.precision(_); return reset(); }; albersUsa.scale = function(_) { if (!arguments.length) return lower48.scale(); lower48.scale(_), alaska.scale(_ * 0.35), hawaii.scale(_); return albersUsa.translate(lower48.translate()); }; albersUsa.translate = function(_) { if (!arguments.length) return lower48.translate(); var k = lower48.scale(), x = +_[0], y = +_[1]; lower48Point = lower48 .translate(_) .clipExtent([[x - 0.455 * k, y - 0.238 * k], [x + 0.455 * k, y + 0.238 * k]]) .stream(pointStream); alaskaPoint = alaska .translate([x - 0.307 * k, y + 0.201 * k]) .clipExtent([[x - 0.425 * k + epsilon$1, y + 0.120 * k + epsilon$1], [x - 0.214 * k - epsilon$1, y + 0.234 * k - epsilon$1]]) .stream(pointStream); hawaiiPoint = hawaii .translate([x - 0.205 * k, y + 0.212 * k]) .clipExtent([[x - 0.214 * k + epsilon$1, y + 0.166 * k + epsilon$1], [x - 0.115 * k - epsilon$1, y + 0.234 * k - epsilon$1]]) .stream(pointStream); return reset(); }; albersUsa.fitExtent = function(extent, object) { return fitExtent(albersUsa, extent, object); }; albersUsa.fitSize = function(size, object) { return fitSize(albersUsa, size, object); }; albersUsa.fitWidth = function(width, object) { return fitWidth(albersUsa, width, object); }; albersUsa.fitHeight = function(height, object) { return fitHeight(albersUsa, height, object); }; function reset() { cache = cacheStream = null; return albersUsa; } return albersUsa.scale(1070); } function azimuthalRaw(scale) { return function(x, y) { var cx = cos$1(x), cy = cos$1(y), k = scale(cx * cy); if (k === Infinity) return [2, 0]; return [ k * cy * sin$1(x), k * sin$1(y) ]; } } function azimuthalInvert(angle) { return function(x, y) { var z = sqrt$2(x * x + y * y), c = angle(z), sc = sin$1(c), cc = cos$1(c); return [ atan2$1(x * sc, z * cc), asin$1(z && y * sc / z) ]; } } var azimuthalEqualAreaRaw = azimuthalRaw(function(cxcy) { return sqrt$2(2 / (1 + cxcy)); }); azimuthalEqualAreaRaw.invert = azimuthalInvert(function(z) { return 2 * asin$1(z / 2); }); function azimuthalEqualArea() { return projection(azimuthalEqualAreaRaw) .scale(124.75) .clipAngle(180 - 1e-3); } var azimuthalEquidistantRaw = azimuthalRaw(function(c) { return (c = acos$1(c)) && c / sin$1(c); }); azimuthalEquidistantRaw.invert = azimuthalInvert(function(z) { return z; }); function azimuthalEquidistant() { return projection(azimuthalEquidistantRaw) .scale(79.4188) .clipAngle(180 - 1e-3); } function mercatorRaw(lambda, phi) { return [lambda, log$1(tan((halfPi$1 + phi) / 2))]; } mercatorRaw.invert = function(x, y) { return [x, 2 * atan(exp(y)) - halfPi$1]; }; function mercator() { return mercatorProjection(mercatorRaw) .scale(961 / tau$1); } function mercatorProjection(project) { var m = projection(project), center = m.center, scale = m.scale, translate = m.translate, clipExtent = m.clipExtent, x0 = null, y0, x1, y1; // clip extent m.scale = function(_) { return arguments.length ? (scale(_), reclip()) : scale(); }; m.translate = function(_) { return arguments.length ? (translate(_), reclip()) : translate(); }; m.center = function(_) { return arguments.length ? (center(_), reclip()) : center(); }; m.clipExtent = function(_) { return arguments.length ? ((_ == null ? x0 = y0 = x1 = y1 = null : (x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1])), reclip()) : x0 == null ? null : [[x0, y0], [x1, y1]]; }; function reclip() { var k = pi$1 * scale(), t = m(rotation(m.rotate()).invert([0, 0])); return clipExtent(x0 == null ? [[t[0] - k, t[1] - k], [t[0] + k, t[1] + k]] : project === mercatorRaw ? [[Math.max(t[0] - k, x0), y0], [Math.min(t[0] + k, x1), y1]] : [[x0, Math.max(t[1] - k, y0)], [x1, Math.min(t[1] + k, y1)]]); } return reclip(); } function tany(y) { return tan((halfPi$1 + y) / 2); } function conicConformalRaw(y0, y1) { var cy0 = cos$1(y0), n = y0 === y1 ? sin$1(y0) : log$1(cy0 / cos$1(y1)) / log$1(tany(y1) / tany(y0)), f = cy0 * pow$1(tany(y0), n) / n; if (!n) return mercatorRaw; function project(x, y) { if (f > 0) { if (y < -halfPi$1 + epsilon$1) y = -halfPi$1 + epsilon$1; } else { if (y > halfPi$1 - epsilon$1) y = halfPi$1 - epsilon$1; } var r = f / pow$1(tany(y), n); return [r * sin$1(n * x), f - r * cos$1(n * x)]; } project.invert = function(x, y) { var fy = f - y, r = sign$1(n) * sqrt$2(x * x + fy * fy), l = atan2$1(x, abs$1(fy)) * sign$1(fy); if (fy * n < 0) l -= pi$1 * sign$1(x) * sign$1(fy); return [l / n, 2 * atan(pow$1(f / r, 1 / n)) - halfPi$1]; }; return project; } function conicConformal() { return conicProjection(conicConformalRaw) .scale(109.5) .parallels([30, 30]); } function equirectangularRaw(lambda, phi) { return [lambda, phi]; } equirectangularRaw.invert = equirectangularRaw; function equirectangular() { return projection(equirectangularRaw) .scale(152.63); } function conicEquidistantRaw(y0, y1) { var cy0 = cos$1(y0), n = y0 === y1 ? sin$1(y0) : (cy0 - cos$1(y1)) / (y1 - y0), g = cy0 / n + y0; if (abs$1(n) < epsilon$1) return equirectangularRaw; function project(x, y) { var gy = g - y, nx = n * x; return [gy * sin$1(nx), g - gy * cos$1(nx)]; } project.invert = function(x, y) { var gy = g - y, l = atan2$1(x, abs$1(gy)) * sign$1(gy); if (gy * n < 0) l -= pi$1 * sign$1(x) * sign$1(gy); return [l / n, g - sign$1(n) * sqrt$2(x * x + gy * gy)]; }; return project; } function conicEquidistant() { return conicProjection(conicEquidistantRaw) .scale(131.154) .center([0, 13.9389]); } var A1 = 1.340264, A2 = -0.081106, A3 = 0.000893, A4 = 0.003796, M = sqrt$2(3) / 2, iterations = 12; function equalEarthRaw(lambda, phi) { var l = asin$1(M * sin$1(phi)), l2 = l * l, l6 = l2 * l2 * l2; return [ lambda * cos$1(l) / (M * (A1 + 3 * A2 * l2 + l6 * (7 * A3 + 9 * A4 * l2))), l * (A1 + A2 * l2 + l6 * (A3 + A4 * l2)) ]; } equalEarthRaw.invert = function(x, y) { var l = y, l2 = l * l, l6 = l2 * l2 * l2; for (var i = 0, delta, fy, fpy; i < iterations; ++i) { fy = l * (A1 + A2 * l2 + l6 * (A3 + A4 * l2)) - y; fpy = A1 + 3 * A2 * l2 + l6 * (7 * A3 + 9 * A4 * l2); l -= delta = fy / fpy, l2 = l * l, l6 = l2 * l2 * l2; if (abs$1(delta) < epsilon2) break; } return [ M * x * (A1 + 3 * A2 * l2 + l6 * (7 * A3 + 9 * A4 * l2)) / cos$1(l), asin$1(sin$1(l) / M) ]; }; function equalEarth() { return projection(equalEarthRaw) .scale(177.158); } function gnomonicRaw(x, y) { var cy = cos$1(y), k = cos$1(x) * cy; return [cy * sin$1(x) / k, sin$1(y) / k]; } gnomonicRaw.invert = azimuthalInvert(atan); function gnomonic() { return projection(gnomonicRaw) .scale(144.049) .clipAngle(60); } function identity$4() { var k = 1, tx = 0, ty = 0, sx = 1, sy = 1, // scale, translate and reflect alpha = 0, ca, sa, // angle x0 = null, y0, x1, y1, // clip extent kx = 1, ky = 1, transform = transformer$3({ point: function(x, y) { var p = projection([x, y]); this.stream.point(p[0], p[1]); } }), postclip = identity$5, cache, cacheStream; function reset() { kx = k * sx; ky = k * sy; cache = cacheStream = null; return projection; } function projection (p) { var x = p[0] * kx, y = p[1] * ky; if (alpha) { var t = y * ca - x * sa; x = x * ca + y * sa; y = t; } return [x + tx, y + ty]; } projection.invert = function(p) { var x = p[0] - tx, y = p[1] - ty; if (alpha) { var t = y * ca + x * sa; x = x * ca - y * sa; y = t; } return [x / kx, y / ky]; }; projection.stream = function(stream) { return cache && cacheStream === stream ? cache : cache = transform(postclip(cacheStream = stream)); }; projection.postclip = function(_) { return arguments.length ? (postclip = _, x0 = y0 = x1 = y1 = null, reset()) : postclip; }; projection.clipExtent = function(_) { return arguments.length ? (postclip = _ == null ? (x0 = y0 = x1 = y1 = null, identity$5) : clipRectangle(x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1]), reset()) : x0 == null ? null : [[x0, y0], [x1, y1]]; }; projection.scale = function(_) { return arguments.length ? (k = +_, reset()) : k; }; projection.translate = function(_) { return arguments.length ? (tx = +_[0], ty = +_[1], reset()) : [tx, ty]; }; projection.angle = function(_) { return arguments.length ? (alpha = _ % 360 * radians, sa = sin$1(alpha), ca = cos$1(alpha), reset()) : alpha * degrees; }; projection.reflectX = function(_) { return arguments.length ? (sx = _ ? -1 : 1, reset()) : sx < 0; }; projection.reflectY = function(_) { return arguments.length ? (sy = _ ? -1 : 1, reset()) : sy < 0; }; projection.fitExtent = function(extent, object) { return fitExtent(projection, extent, object); }; projection.fitSize = function(size, object) { return fitSize(projection, size, object); }; projection.fitWidth = function(width, object) { return fitWidth(projection, width, object); }; projection.fitHeight = function(height, object) { return fitHeight(projection, height, object); }; return projection; } function naturalEarth1Raw(lambda, phi) { var phi2 = phi * phi, phi4 = phi2 * phi2; return [ lambda * (0.8707 - 0.131979 * phi2 + phi4 * (-0.013791 + phi4 * (0.003971 * phi2 - 0.001529 * phi4))), phi * (1.007226 + phi2 * (0.015085 + phi4 * (-0.044475 + 0.028874 * phi2 - 0.005916 * phi4))) ]; } naturalEarth1Raw.invert = function(x, y) { var phi = y, i = 25, delta; do { var phi2 = phi * phi, phi4 = phi2 * phi2; phi -= delta = (phi * (1.007226 + phi2 * (0.015085 + phi4 * (-0.044475 + 0.028874 * phi2 - 0.005916 * phi4))) - y) / (1.007226 + phi2 * (0.015085 * 3 + phi4 * (-0.044475 * 7 + 0.028874 * 9 * phi2 - 0.005916 * 11 * phi4))); } while (abs$1(delta) > epsilon$1 && --i > 0); return [ x / (0.8707 + (phi2 = phi * phi) * (-0.131979 + phi2 * (-0.013791 + phi2 * phi2 * phi2 * (0.003971 - 0.001529 * phi2)))), phi ]; }; function naturalEarth1() { return projection(naturalEarth1Raw) .scale(175.295); } function orthographicRaw(x, y) { return [cos$1(y) * sin$1(x), sin$1(y)]; } orthographicRaw.invert = azimuthalInvert(asin$1); function orthographic() { return projection(orthographicRaw) .scale(249.5) .clipAngle(90 + epsilon$1); } function stereographicRaw(x, y) { var cy = cos$1(y), k = 1 + cos$1(x) * cy; return [cy * sin$1(x) / k, sin$1(y) / k]; } stereographicRaw.invert = azimuthalInvert(function(z) { return 2 * atan(z); }); function stereographic() { return projection(stereographicRaw) .scale(250) .clipAngle(142); } function transverseMercatorRaw(lambda, phi) { return [log$1(tan((halfPi$1 + phi) / 2)), -lambda]; } transverseMercatorRaw.invert = function(x, y) { return [-y, 2 * atan(exp(x)) - halfPi$1]; }; function transverseMercator() { var m = mercatorProjection(transverseMercatorRaw), center = m.center, rotate = m.rotate; m.center = function(_) { return arguments.length ? center([-_[1], _[0]]) : (_ = center(), [_[1], -_[0]]); }; m.rotate = function(_) { return arguments.length ? rotate([_[0], _[1], _.length > 2 ? _[2] + 90 : 90]) : (_ = rotate(), [_[0], _[1], _[2] - 90]); }; return rotate([0, 0, 90]) .scale(159.155); } function defaultSeparation$1(a, b) { return a.parent === b.parent ? 1 : 2; } function meanX(children) { return children.reduce(meanXReduce, 0) / children.length; } function meanXReduce(x, c) { return x + c.x; } function maxY(children) { return 1 + children.reduce(maxYReduce, 0); } function maxYReduce(y, c) { return Math.max(y, c.y); } function leafLeft(node) { var children; while (children = node.children) node = children[0]; return node; } function leafRight(node) { var children; while (children = node.children) node = children[children.length - 1]; return node; } function cluster() { var separation = defaultSeparation$1, dx = 1, dy = 1, nodeSize = false; function cluster(root) { var previousNode, x = 0; // First walk, computing the initial x & y values. root.eachAfter(function(node) { var children = node.children; if (children) { node.x = meanX(children); node.y = maxY(children); } else { node.x = previousNode ? x += separation(node, previousNode) : 0; node.y = 0; previousNode = node; } }); var left = leafLeft(root), right = leafRight(root), x0 = left.x - separation(left, right) / 2, x1 = right.x + separation(right, left) / 2; // Second walk, normalizing x & y to the desired size. return root.eachAfter(nodeSize ? function(node) { node.x = (node.x - root.x) * dx; node.y = (root.y - node.y) * dy; } : function(node) { node.x = (node.x - x0) / (x1 - x0) * dx; node.y = (1 - (root.y ? node.y / root.y : 1)) * dy; }); } cluster.separation = function(x) { return arguments.length ? (separation = x, cluster) : separation; }; cluster.size = function(x) { return arguments.length ? (nodeSize = false, dx = +x[0], dy = +x[1], cluster) : (nodeSize ? null : [dx, dy]); }; cluster.nodeSize = function(x) { return arguments.length ? (nodeSize = true, dx = +x[0], dy = +x[1], cluster) : (nodeSize ? [dx, dy] : null); }; return cluster; } function count(node) { var sum = 0, children = node.children, i = children && children.length; if (!i) sum = 1; else while (--i >= 0) sum += children[i].value; node.value = sum; } function node_count() { return this.eachAfter(count); } function node_each(callback, that) { let index = -1; for (const node of this) { callback.call(that, node, ++index, this); } return this; } function node_eachBefore(callback, that) { var node = this, nodes = [node], children, i, index = -1; while (node = nodes.pop()) { callback.call(that, node, ++index, this); if (children = node.children) { for (i = children.length - 1; i >= 0; --i) { nodes.push(children[i]); } } } return this; } function node_eachAfter(callback, that) { var node = this, nodes = [node], next = [], children, i, n, index = -1; while (node = nodes.pop()) { next.push(node); if (children = node.children) { for (i = 0, n = children.length; i < n; ++i) { nodes.push(children[i]); } } } while (node = next.pop()) { callback.call(that, node, ++index, this); } return this; } function node_find(callback, that) { let index = -1; for (const node of this) { if (callback.call(that, node, ++index, this)) { return node; } } } function node_sum(value) { return this.eachAfter(function(node) { var sum = +value(node.data) || 0, children = node.children, i = children && children.length; while (--i >= 0) sum += children[i].value; node.value = sum; }); } function node_sort(compare) { return this.eachBefore(function(node) { if (node.children) { node.children.sort(compare); } }); } function node_path(end) { var start = this, ancestor = leastCommonAncestor(start, end), nodes = [start]; while (start !== ancestor) { start = start.parent; nodes.push(start); } var k = nodes.length; while (end !== ancestor) { nodes.splice(k, 0, end); end = end.parent; } return nodes; } function leastCommonAncestor(a, b) { if (a === b) return a; var aNodes = a.ancestors(), bNodes = b.ancestors(), c = null; a = aNodes.pop(); b = bNodes.pop(); while (a === b) { c = a; a = aNodes.pop(); b = bNodes.pop(); } return c; } function node_ancestors() { var node = this, nodes = [node]; while (node = node.parent) { nodes.push(node); } return nodes; } function node_descendants() { return Array.from(this); } function node_leaves() { var leaves = []; this.eachBefore(function(node) { if (!node.children) { leaves.push(node); } }); return leaves; } function node_links() { var root = this, links = []; root.each(function(node) { if (node !== root) { // Don’t include the root’s parent, if any. links.push({source: node.parent, target: node}); } }); return links; } function* node_iterator() { var node = this, current, next = [node], children, i, n; do { current = next.reverse(), next = []; while (node = current.pop()) { yield node; if (children = node.children) { for (i = 0, n = children.length; i < n; ++i) { next.push(children[i]); } } } } while (next.length); } function hierarchy(data, children) { if (data instanceof Map) { data = [undefined, data]; if (children === undefined) children = mapChildren; } else if (children === undefined) { children = objectChildren; } var root = new Node$1(data), node, nodes = [root], child, childs, i, n; while (node = nodes.pop()) { if ((childs = children(node.data)) && (n = (childs = Array.from(childs)).length)) { node.children = childs; for (i = n - 1; i >= 0; --i) { nodes.push(child = childs[i] = new Node$1(childs[i])); child.parent = node; child.depth = node.depth + 1; } } } return root.eachBefore(computeHeight); } function node_copy() { return hierarchy(this).eachBefore(copyData); } function objectChildren(d) { return d.children; } function mapChildren(d) { return Array.isArray(d) ? d[1] : null; } function copyData(node) { if (node.data.value !== undefined) node.value = node.data.value; node.data = node.data.data; } function computeHeight(node) { var height = 0; do node.height = height; while ((node = node.parent) && (node.height < ++height)); } function Node$1(data) { this.data = data; this.depth = this.height = 0; this.parent = null; } Node$1.prototype = hierarchy.prototype = { constructor: Node$1, count: node_count, each: node_each, eachAfter: node_eachAfter, eachBefore: node_eachBefore, find: node_find, sum: node_sum, sort: node_sort, path: node_path, ancestors: node_ancestors, descendants: node_descendants, leaves: node_leaves, links: node_links, copy: node_copy, [Symbol.iterator]: node_iterator }; function optional(f) { return f == null ? null : required(f); } function required(f) { if (typeof f !== "function") throw new Error; return f; } function constantZero() { return 0; } function constant$2(x) { return function() { return x; }; } // https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use const a$1 = 1664525; const c$3 = 1013904223; const m = 4294967296; // 2^32 function lcg$1() { let s = 1; return () => (s = (a$1 * s + c$3) % m) / m; } function array$1(x) { return typeof x === "object" && "length" in x ? x // Array, TypedArray, NodeList, array-like : Array.from(x); // Map, Set, iterable, string, or anything else } function shuffle(array, random) { let m = array.length, t, i; while (m) { i = random() * m-- | 0; t = array[m]; array[m] = array[i]; array[i] = t; } return array; } function enclose(circles) { return packEncloseRandom(circles, lcg$1()); } function packEncloseRandom(circles, random) { var i = 0, n = (circles = shuffle(Array.from(circles), random)).length, B = [], p, e; while (i < n) { p = circles[i]; if (e && enclosesWeak(e, p)) ++i; else e = encloseBasis(B = extendBasis(B, p)), i = 0; } return e; } function extendBasis(B, p) { var i, j; if (enclosesWeakAll(p, B)) return [p]; // If we get here then B must have at least one element. for (i = 0; i < B.length; ++i) { if (enclosesNot(p, B[i]) && enclosesWeakAll(encloseBasis2(B[i], p), B)) { return [B[i], p]; } } // If we get here then B must have at least two elements. for (i = 0; i < B.length - 1; ++i) { for (j = i + 1; j < B.length; ++j) { if (enclosesNot(encloseBasis2(B[i], B[j]), p) && enclosesNot(encloseBasis2(B[i], p), B[j]) && enclosesNot(encloseBasis2(B[j], p), B[i]) && enclosesWeakAll(encloseBasis3(B[i], B[j], p), B)) { return [B[i], B[j], p]; } } } // If we get here then something is very wrong. throw new Error; } function enclosesNot(a, b) { var dr = a.r - b.r, dx = b.x - a.x, dy = b.y - a.y; return dr < 0 || dr * dr < dx * dx + dy * dy; } function enclosesWeak(a, b) { var dr = a.r - b.r + Math.max(a.r, b.r, 1) * 1e-9, dx = b.x - a.x, dy = b.y - a.y; return dr > 0 && dr * dr > dx * dx + dy * dy; } function enclosesWeakAll(a, B) { for (var i = 0; i < B.length; ++i) { if (!enclosesWeak(a, B[i])) { return false; } } return true; } function encloseBasis(B) { switch (B.length) { case 1: return encloseBasis1(B[0]); case 2: return encloseBasis2(B[0], B[1]); case 3: return encloseBasis3(B[0], B[1], B[2]); } } function encloseBasis1(a) { return { x: a.x, y: a.y, r: a.r }; } function encloseBasis2(a, b) { var x1 = a.x, y1 = a.y, r1 = a.r, x2 = b.x, y2 = b.y, r2 = b.r, x21 = x2 - x1, y21 = y2 - y1, r21 = r2 - r1, l = Math.sqrt(x21 * x21 + y21 * y21); return { x: (x1 + x2 + x21 / l * r21) / 2, y: (y1 + y2 + y21 / l * r21) / 2, r: (l + r1 + r2) / 2 }; } function encloseBasis3(a, b, c) { var x1 = a.x, y1 = a.y, r1 = a.r, x2 = b.x, y2 = b.y, r2 = b.r, x3 = c.x, y3 = c.y, r3 = c.r, a2 = x1 - x2, a3 = x1 - x3, b2 = y1 - y2, b3 = y1 - y3, c2 = r2 - r1, c3 = r3 - r1, d1 = x1 * x1 + y1 * y1 - r1 * r1, d2 = d1 - x2 * x2 - y2 * y2 + r2 * r2, d3 = d1 - x3 * x3 - y3 * y3 + r3 * r3, ab = a3 * b2 - a2 * b3, xa = (b2 * d3 - b3 * d2) / (ab * 2) - x1, xb = (b3 * c2 - b2 * c3) / ab, ya = (a3 * d2 - a2 * d3) / (ab * 2) - y1, yb = (a2 * c3 - a3 * c2) / ab, A = xb * xb + yb * yb - 1, B = 2 * (r1 + xa * xb + ya * yb), C = xa * xa + ya * ya - r1 * r1, r = -(Math.abs(A) > 1e-6 ? (B + Math.sqrt(B * B - 4 * A * C)) / (2 * A) : C / B); return { x: x1 + xa + xb * r, y: y1 + ya + yb * r, r: r }; } function place(b, a, c) { var dx = b.x - a.x, x, a2, dy = b.y - a.y, y, b2, d2 = dx * dx + dy * dy; if (d2) { a2 = a.r + c.r, a2 *= a2; b2 = b.r + c.r, b2 *= b2; if (a2 > b2) { x = (d2 + b2 - a2) / (2 * d2); y = Math.sqrt(Math.max(0, b2 / d2 - x * x)); c.x = b.x - x * dx - y * dy; c.y = b.y - x * dy + y * dx; } else { x = (d2 + a2 - b2) / (2 * d2); y = Math.sqrt(Math.max(0, a2 / d2 - x * x)); c.x = a.x + x * dx - y * dy; c.y = a.y + x * dy + y * dx; } } else { c.x = a.x + c.r; c.y = a.y; } } function intersects(a, b) { var dr = a.r + b.r - 1e-6, dx = b.x - a.x, dy = b.y - a.y; return dr > 0 && dr * dr > dx * dx + dy * dy; } function score(node) { var a = node._, b = node.next._, ab = a.r + b.r, dx = (a.x * b.r + b.x * a.r) / ab, dy = (a.y * b.r + b.y * a.r) / ab; return dx * dx + dy * dy; } function Node(circle) { this._ = circle; this.next = null; this.previous = null; } function packSiblingsRandom(circles, random) { if (!(n = (circles = array$1(circles)).length)) return 0; var a, b, c, n, aa, ca, i, j, k, sj, sk; // Place the first circle. a = circles[0], a.x = 0, a.y = 0; if (!(n > 1)) return a.r; // Place the second circle. b = circles[1], a.x = -b.r, b.x = a.r, b.y = 0; if (!(n > 2)) return a.r + b.r; // Place the third circle. place(b, a, c = circles[2]); // Initialize the front-chain using the first three circles a, b and c. a = new Node(a), b = new Node(b), c = new Node(c); a.next = c.previous = b; b.next = a.previous = c; c.next = b.previous = a; // Attempt to place each remaining circle… pack: for (i = 3; i < n; ++i) { place(a._, b._, c = circles[i]), c = new Node(c); // Find the closest intersecting circle on the front-chain, if any. // “Closeness” is determined by linear distance along the front-chain. // “Ahead” or “behind” is likewise determined by linear distance. j = b.next, k = a.previous, sj = b._.r, sk = a._.r; do { if (sj <= sk) { if (intersects(j._, c._)) { b = j, a.next = b, b.previous = a, --i; continue pack; } sj += j._.r, j = j.next; } else { if (intersects(k._, c._)) { a = k, a.next = b, b.previous = a, --i; continue pack; } sk += k._.r, k = k.previous; } } while (j !== k.next); // Success! Insert the new circle c between a and b. c.previous = a, c.next = b, a.next = b.previous = b = c; // Compute the new closest circle pair to the centroid. aa = score(a); while ((c = c.next) !== b) { if ((ca = score(c)) < aa) { a = c, aa = ca; } } b = a.next; } // Compute the enclosing circle of the front chain. a = [b._], c = b; while ((c = c.next) !== b) a.push(c._); c = packEncloseRandom(a, random); // Translate the circles to put the enclosing circle around the origin. for (i = 0; i < n; ++i) a = circles[i], a.x -= c.x, a.y -= c.y; return c.r; } function siblings(circles) { packSiblingsRandom(circles, lcg$1()); return circles; } function defaultRadius(d) { return Math.sqrt(d.value); } function index$1() { var radius = null, dx = 1, dy = 1, padding = constantZero; function pack(root) { const random = lcg$1(); root.x = dx / 2, root.y = dy / 2; if (radius) { root.eachBefore(radiusLeaf(radius)) .eachAfter(packChildrenRandom(padding, 0.5, random)) .eachBefore(translateChild(1)); } else { root.eachBefore(radiusLeaf(defaultRadius)) .eachAfter(packChildrenRandom(constantZero, 1, random)) .eachAfter(packChildrenRandom(padding, root.r / Math.min(dx, dy), random)) .eachBefore(translateChild(Math.min(dx, dy) / (2 * root.r))); } return root; } pack.radius = function(x) { return arguments.length ? (radius = optional(x), pack) : radius; }; pack.size = function(x) { return arguments.length ? (dx = +x[0], dy = +x[1], pack) : [dx, dy]; }; pack.padding = function(x) { return arguments.length ? (padding = typeof x === "function" ? x : constant$2(+x), pack) : padding; }; return pack; } function radiusLeaf(radius) { return function(node) { if (!node.children) { node.r = Math.max(0, +radius(node) || 0); } }; } function packChildrenRandom(padding, k, random) { return function(node) { if (children = node.children) { var children, i, n = children.length, r = padding(node) * k || 0, e; if (r) for (i = 0; i < n; ++i) children[i].r += r; e = packSiblingsRandom(children, random); if (r) for (i = 0; i < n; ++i) children[i].r -= r; node.r = e + r; } }; } function translateChild(k) { return function(node) { var parent = node.parent; node.r *= k; if (parent) { node.x = parent.x + k * node.x; node.y = parent.y + k * node.y; } }; } function roundNode(node) { node.x0 = Math.round(node.x0); node.y0 = Math.round(node.y0); node.x1 = Math.round(node.x1); node.y1 = Math.round(node.y1); } function treemapDice(parent, x0, y0, x1, y1) { var nodes = parent.children, node, i = -1, n = nodes.length, k = parent.value && (x1 - x0) / parent.value; while (++i < n) { node = nodes[i], node.y0 = y0, node.y1 = y1; node.x0 = x0, node.x1 = x0 += node.value * k; } } function partition() { var dx = 1, dy = 1, padding = 0, round = false; function partition(root) { var n = root.height + 1; root.x0 = root.y0 = padding; root.x1 = dx; root.y1 = dy / n; root.eachBefore(positionNode(dy, n)); if (round) root.eachBefore(roundNode); return root; } function positionNode(dy, n) { return function(node) { if (node.children) { treemapDice(node, node.x0, dy * (node.depth + 1) / n, node.x1, dy * (node.depth + 2) / n); } var x0 = node.x0, y0 = node.y0, x1 = node.x1 - padding, y1 = node.y1 - padding; if (x1 < x0) x0 = x1 = (x0 + x1) / 2; if (y1 < y0) y0 = y1 = (y0 + y1) / 2; node.x0 = x0; node.y0 = y0; node.x1 = x1; node.y1 = y1; }; } partition.round = function(x) { return arguments.length ? (round = !!x, partition) : round; }; partition.size = function(x) { return arguments.length ? (dx = +x[0], dy = +x[1], partition) : [dx, dy]; }; partition.padding = function(x) { return arguments.length ? (padding = +x, partition) : padding; }; return partition; } var preroot = {depth: -1}, ambiguous = {}, imputed = {}; function defaultId(d) { return d.id; } function defaultParentId(d) { return d.parentId; } function stratify() { var id = defaultId, parentId = defaultParentId, path; function stratify(data) { var nodes = Array.from(data), currentId = id, currentParentId = parentId, n, d, i, root, parent, node, nodeId, nodeKey, nodeByKey = new Map; if (path != null) { const I = nodes.map((d, i) => normalize$1(path(d, i, data))); const P = I.map(parentof); const S = new Set(I).add(""); for (const i of P) { if (!S.has(i)) { S.add(i); I.push(i); P.push(parentof(i)); nodes.push(imputed); } } currentId = (_, i) => I[i]; currentParentId = (_, i) => P[i]; } for (i = 0, n = nodes.length; i < n; ++i) { d = nodes[i], node = nodes[i] = new Node$1(d); if ((nodeId = currentId(d, i, data)) != null && (nodeId += "")) { nodeKey = node.id = nodeId; nodeByKey.set(nodeKey, nodeByKey.has(nodeKey) ? ambiguous : node); } if ((nodeId = currentParentId(d, i, data)) != null && (nodeId += "")) { node.parent = nodeId; } } for (i = 0; i < n; ++i) { node = nodes[i]; if (nodeId = node.parent) { parent = nodeByKey.get(nodeId); if (!parent) throw new Error("missing: " + nodeId); if (parent === ambiguous) throw new Error("ambiguous: " + nodeId); if (parent.children) parent.children.push(node); else parent.children = [node]; node.parent = parent; } else { if (root) throw new Error("multiple roots"); root = node; } } if (!root) throw new Error("no root"); // When imputing internal nodes, only introduce roots if needed. // Then replace the imputed marker data with null. if (path != null) { while (root.data === imputed && root.children.length === 1) { root = root.children[0], --n; } for (let i = nodes.length - 1; i >= 0; --i) { node = nodes[i]; if (node.data !== imputed) break; node.data = null; } } root.parent = preroot; root.eachBefore(function(node) { node.depth = node.parent.depth + 1; --n; }).eachBefore(computeHeight); root.parent = null; if (n > 0) throw new Error("cycle"); return root; } stratify.id = function(x) { return arguments.length ? (id = optional(x), stratify) : id; }; stratify.parentId = function(x) { return arguments.length ? (parentId = optional(x), stratify) : parentId; }; stratify.path = function(x) { return arguments.length ? (path = optional(x), stratify) : path; }; return stratify; } // To normalize a path, we coerce to a string, strip the trailing slash if any // (as long as the trailing slash is not immediately preceded by another slash), // and add leading slash if missing. function normalize$1(path) { path = `${path}`; let i = path.length; if (slash(path, i - 1) && !slash(path, i - 2)) path = path.slice(0, -1); return path[0] === "/" ? path : `/${path}`; } // Walk backwards to find the first slash that is not the leading slash, e.g.: // "/foo/bar" ⇥ "/foo", "/foo" ⇥ "/", "/" ↦ "". (The root is special-cased // because the id of the root must be a truthy value.) function parentof(path) { let i = path.length; if (i < 2) return ""; while (--i > 1) if (slash(path, i)) break; return path.slice(0, i); } // Slashes can be escaped; to determine whether a slash is a path delimiter, we // count the number of preceding backslashes escaping the forward slash: an odd // number indicates an escaped forward slash. function slash(path, i) { if (path[i] === "/") { let k = 0; while (i > 0 && path[--i] === "\\") ++k; if ((k & 1) === 0) return true; } return false; } function defaultSeparation(a, b) { return a.parent === b.parent ? 1 : 2; } // function radialSeparation(a, b) { // return (a.parent === b.parent ? 1 : 2) / a.depth; // } // This function is used to traverse the left contour of a subtree (or // subforest). It returns the successor of v on this contour. This successor is // either given by the leftmost child of v or by the thread of v. The function // returns null if and only if v is on the highest level of its subtree. function nextLeft(v) { var children = v.children; return children ? children[0] : v.t; } // This function works analogously to nextLeft. function nextRight(v) { var children = v.children; return children ? children[children.length - 1] : v.t; } // Shifts the current subtree rooted at w+. This is done by increasing // prelim(w+) and mod(w+) by shift. function moveSubtree(wm, wp, shift) { var change = shift / (wp.i - wm.i); wp.c -= change; wp.s += shift; wm.c += change; wp.z += shift; wp.m += shift; } // All other shifts, applied to the smaller subtrees between w- and w+, are // performed by this function. To prepare the shifts, we have to adjust // change(w+), shift(w+), and change(w-). function executeShifts(v) { var shift = 0, change = 0, children = v.children, i = children.length, w; while (--i >= 0) { w = children[i]; w.z += shift; w.m += shift; shift += w.s + (change += w.c); } } // If vi-’s ancestor is a sibling of v, returns vi-’s ancestor. Otherwise, // returns the specified (default) ancestor. function nextAncestor(vim, v, ancestor) { return vim.a.parent === v.parent ? vim.a : ancestor; } function TreeNode(node, i) { this._ = node; this.parent = null; this.children = null; this.A = null; // default ancestor this.a = this; // ancestor this.z = 0; // prelim this.m = 0; // mod this.c = 0; // change this.s = 0; // shift this.t = null; // thread this.i = i; // number } TreeNode.prototype = Object.create(Node$1.prototype); function treeRoot(root) { var tree = new TreeNode(root, 0), node, nodes = [tree], child, children, i, n; while (node = nodes.pop()) { if (children = node._.children) { node.children = new Array(n = children.length); for (i = n - 1; i >= 0; --i) { nodes.push(child = node.children[i] = new TreeNode(children[i], i)); child.parent = node; } } } (tree.parent = new TreeNode(null, 0)).children = [tree]; return tree; } // Node-link tree diagram using the Reingold-Tilford "tidy" algorithm function tree() { var separation = defaultSeparation, dx = 1, dy = 1, nodeSize = null; function tree(root) { var t = treeRoot(root); // Compute the layout using Buchheim et al.’s algorithm. t.eachAfter(firstWalk), t.parent.m = -t.z; t.eachBefore(secondWalk); // If a fixed node size is specified, scale x and y. if (nodeSize) root.eachBefore(sizeNode); // If a fixed tree size is specified, scale x and y based on the extent. // Compute the left-most, right-most, and depth-most nodes for extents. else { var left = root, right = root, bottom = root; root.eachBefore(function(node) { if (node.x < left.x) left = node; if (node.x > right.x) right = node; if (node.depth > bottom.depth) bottom = node; }); var s = left === right ? 1 : separation(left, right) / 2, tx = s - left.x, kx = dx / (right.x + s + tx), ky = dy / (bottom.depth || 1); root.eachBefore(function(node) { node.x = (node.x + tx) * kx; node.y = node.depth * ky; }); } return root; } // Computes a preliminary x-coordinate for v. Before that, FIRST WALK is // applied recursively to the children of v, as well as the function // APPORTION. After spacing out the children by calling EXECUTE SHIFTS, the // node v is placed to the midpoint of its outermost children. function firstWalk(v) { var children = v.children, siblings = v.parent.children, w = v.i ? siblings[v.i - 1] : null; if (children) { executeShifts(v); var midpoint = (children[0].z + children[children.length - 1].z) / 2; if (w) { v.z = w.z + separation(v._, w._); v.m = v.z - midpoint; } else { v.z = midpoint; } } else if (w) { v.z = w.z + separation(v._, w._); } v.parent.A = apportion(v, w, v.parent.A || siblings[0]); } // Computes all real x-coordinates by summing up the modifiers recursively. function secondWalk(v) { v._.x = v.z + v.parent.m; v.m += v.parent.m; } // The core of the algorithm. Here, a new subtree is combined with the // previous subtrees. Threads are used to traverse the inside and outside // contours of the left and right subtree up to the highest common level. The // vertices used for the traversals are vi+, vi-, vo-, and vo+, where the // superscript o means outside and i means inside, the subscript - means left // subtree and + means right subtree. For summing up the modifiers along the // contour, we use respective variables si+, si-, so-, and so+. Whenever two // nodes of the inside contours conflict, we compute the left one of the // greatest uncommon ancestors using the function ANCESTOR and call MOVE // SUBTREE to shift the subtree and prepare the shifts of smaller subtrees. // Finally, we add a new thread (if necessary). function apportion(v, w, ancestor) { if (w) { var vip = v, vop = v, vim = w, vom = vip.parent.children[0], sip = vip.m, sop = vop.m, sim = vim.m, som = vom.m, shift; while (vim = nextRight(vim), vip = nextLeft(vip), vim && vip) { vom = nextLeft(vom); vop = nextRight(vop); vop.a = v; shift = vim.z + sim - vip.z - sip + separation(vim._, vip._); if (shift > 0) { moveSubtree(nextAncestor(vim, v, ancestor), v, shift); sip += shift; sop += shift; } sim += vim.m; sip += vip.m; som += vom.m; sop += vop.m; } if (vim && !nextRight(vop)) { vop.t = vim; vop.m += sim - sop; } if (vip && !nextLeft(vom)) { vom.t = vip; vom.m += sip - som; ancestor = v; } } return ancestor; } function sizeNode(node) { node.x *= dx; node.y = node.depth * dy; } tree.separation = function(x) { return arguments.length ? (separation = x, tree) : separation; }; tree.size = function(x) { return arguments.length ? (nodeSize = false, dx = +x[0], dy = +x[1], tree) : (nodeSize ? null : [dx, dy]); }; tree.nodeSize = function(x) { return arguments.length ? (nodeSize = true, dx = +x[0], dy = +x[1], tree) : (nodeSize ? [dx, dy] : null); }; return tree; } function treemapSlice(parent, x0, y0, x1, y1) { var nodes = parent.children, node, i = -1, n = nodes.length, k = parent.value && (y1 - y0) / parent.value; while (++i < n) { node = nodes[i], node.x0 = x0, node.x1 = x1; node.y0 = y0, node.y1 = y0 += node.value * k; } } var phi = (1 + Math.sqrt(5)) / 2; function squarifyRatio(ratio, parent, x0, y0, x1, y1) { var rows = [], nodes = parent.children, row, nodeValue, i0 = 0, i1 = 0, n = nodes.length, dx, dy, value = parent.value, sumValue, minValue, maxValue, newRatio, minRatio, alpha, beta; while (i0 < n) { dx = x1 - x0, dy = y1 - y0; // Find the next non-empty node. do sumValue = nodes[i1++].value; while (!sumValue && i1 < n); minValue = maxValue = sumValue; alpha = Math.max(dy / dx, dx / dy) / (value * ratio); beta = sumValue * sumValue * alpha; minRatio = Math.max(maxValue / beta, beta / minValue); // Keep adding nodes while the aspect ratio maintains or improves. for (; i1 < n; ++i1) { sumValue += nodeValue = nodes[i1].value; if (nodeValue < minValue) minValue = nodeValue; if (nodeValue > maxValue) maxValue = nodeValue; beta = sumValue * sumValue * alpha; newRatio = Math.max(maxValue / beta, beta / minValue); if (newRatio > minRatio) { sumValue -= nodeValue; break; } minRatio = newRatio; } // Position and record the row orientation. rows.push(row = {value: sumValue, dice: dx < dy, children: nodes.slice(i0, i1)}); if (row.dice) treemapDice(row, x0, y0, x1, value ? y0 += dy * sumValue / value : y1); else treemapSlice(row, x0, y0, value ? x0 += dx * sumValue / value : x1, y1); value -= sumValue, i0 = i1; } return rows; } var squarify = (function custom(ratio) { function squarify(parent, x0, y0, x1, y1) { squarifyRatio(ratio, parent, x0, y0, x1, y1); } squarify.ratio = function(x) { return custom((x = +x) > 1 ? x : 1); }; return squarify; })(phi); function index() { var tile = squarify, round = false, dx = 1, dy = 1, paddingStack = [0], paddingInner = constantZero, paddingTop = constantZero, paddingRight = constantZero, paddingBottom = constantZero, paddingLeft = constantZero; function treemap(root) { root.x0 = root.y0 = 0; root.x1 = dx; root.y1 = dy; root.eachBefore(positionNode); paddingStack = [0]; if (round) root.eachBefore(roundNode); return root; } function positionNode(node) { var p = paddingStack[node.depth], x0 = node.x0 + p, y0 = node.y0 + p, x1 = node.x1 - p, y1 = node.y1 - p; if (x1 < x0) x0 = x1 = (x0 + x1) / 2; if (y1 < y0) y0 = y1 = (y0 + y1) / 2; node.x0 = x0; node.y0 = y0; node.x1 = x1; node.y1 = y1; if (node.children) { p = paddingStack[node.depth + 1] = paddingInner(node) / 2; x0 += paddingLeft(node) - p; y0 += paddingTop(node) - p; x1 -= paddingRight(node) - p; y1 -= paddingBottom(node) - p; if (x1 < x0) x0 = x1 = (x0 + x1) / 2; if (y1 < y0) y0 = y1 = (y0 + y1) / 2; tile(node, x0, y0, x1, y1); } } treemap.round = function(x) { return arguments.length ? (round = !!x, treemap) : round; }; treemap.size = function(x) { return arguments.length ? (dx = +x[0], dy = +x[1], treemap) : [dx, dy]; }; treemap.tile = function(x) { return arguments.length ? (tile = required(x), treemap) : tile; }; treemap.padding = function(x) { return arguments.length ? treemap.paddingInner(x).paddingOuter(x) : treemap.paddingInner(); }; treemap.paddingInner = function(x) { return arguments.length ? (paddingInner = typeof x === "function" ? x : constant$2(+x), treemap) : paddingInner; }; treemap.paddingOuter = function(x) { return arguments.length ? treemap.paddingTop(x).paddingRight(x).paddingBottom(x).paddingLeft(x) : treemap.paddingTop(); }; treemap.paddingTop = function(x) { return arguments.length ? (paddingTop = typeof x === "function" ? x : constant$2(+x), treemap) : paddingTop; }; treemap.paddingRight = function(x) { return arguments.length ? (paddingRight = typeof x === "function" ? x : constant$2(+x), treemap) : paddingRight; }; treemap.paddingBottom = function(x) { return arguments.length ? (paddingBottom = typeof x === "function" ? x : constant$2(+x), treemap) : paddingBottom; }; treemap.paddingLeft = function(x) { return arguments.length ? (paddingLeft = typeof x === "function" ? x : constant$2(+x), treemap) : paddingLeft; }; return treemap; } function binary(parent, x0, y0, x1, y1) { var nodes = parent.children, i, n = nodes.length, sum, sums = new Array(n + 1); for (sums[0] = sum = i = 0; i < n; ++i) { sums[i + 1] = sum += nodes[i].value; } partition(0, n, parent.value, x0, y0, x1, y1); function partition(i, j, value, x0, y0, x1, y1) { if (i >= j - 1) { var node = nodes[i]; node.x0 = x0, node.y0 = y0; node.x1 = x1, node.y1 = y1; return; } var valueOffset = sums[i], valueTarget = (value / 2) + valueOffset, k = i + 1, hi = j - 1; while (k < hi) { var mid = k + hi >>> 1; if (sums[mid] < valueTarget) k = mid + 1; else hi = mid; } if ((valueTarget - sums[k - 1]) < (sums[k] - valueTarget) && i + 1 < k) --k; var valueLeft = sums[k] - valueOffset, valueRight = value - valueLeft; if ((x1 - x0) > (y1 - y0)) { var xk = value ? (x0 * valueRight + x1 * valueLeft) / value : x1; partition(i, k, valueLeft, x0, y0, xk, y1); partition(k, j, valueRight, xk, y0, x1, y1); } else { var yk = value ? (y0 * valueRight + y1 * valueLeft) / value : y1; partition(i, k, valueLeft, x0, y0, x1, yk); partition(k, j, valueRight, x0, yk, x1, y1); } } } function sliceDice(parent, x0, y0, x1, y1) { (parent.depth & 1 ? treemapSlice : treemapDice)(parent, x0, y0, x1, y1); } var resquarify = (function custom(ratio) { function resquarify(parent, x0, y0, x1, y1) { if ((rows = parent._squarify) && (rows.ratio === ratio)) { var rows, row, nodes, i, j = -1, n, m = rows.length, value = parent.value; while (++j < m) { row = rows[j], nodes = row.children; for (i = row.value = 0, n = nodes.length; i < n; ++i) row.value += nodes[i].value; if (row.dice) treemapDice(row, x0, y0, x1, value ? y0 += (y1 - y0) * row.value / value : y1); else treemapSlice(row, x0, y0, value ? x0 += (x1 - x0) * row.value / value : x1, y1); value -= row.value; } } else { parent._squarify = rows = squarifyRatio(ratio, parent, x0, y0, x1, y1); rows.ratio = ratio; } } resquarify.ratio = function(x) { return custom((x = +x) > 1 ? x : 1); }; return resquarify; })(phi); function area$1(polygon) { var i = -1, n = polygon.length, a, b = polygon[n - 1], area = 0; while (++i < n) { a = b; b = polygon[i]; area += a[1] * b[0] - a[0] * b[1]; } return area / 2; } function centroid(polygon) { var i = -1, n = polygon.length, x = 0, y = 0, a, b = polygon[n - 1], c, k = 0; while (++i < n) { a = b; b = polygon[i]; k += c = a[0] * b[1] - b[0] * a[1]; x += (a[0] + b[0]) * c; y += (a[1] + b[1]) * c; } return k *= 3, [x / k, y / k]; } // Returns the 2D cross product of AB and AC vectors, i.e., the z-component of // the 3D cross product in a quadrant I Cartesian coordinate system (+x is // right, +y is up). Returns a positive value if ABC is counter-clockwise, // negative if clockwise, and zero if the points are collinear. function cross$1(a, b, c) { return (b[0] - a[0]) * (c[1] - a[1]) - (b[1] - a[1]) * (c[0] - a[0]); } function lexicographicOrder(a, b) { return a[0] - b[0] || a[1] - b[1]; } // Computes the upper convex hull per the monotone chain algorithm. // Assumes points.length >= 3, is sorted by x, unique in y. // Returns an array of indices into points in left-to-right order. function computeUpperHullIndexes(points) { const n = points.length, indexes = [0, 1]; let size = 2, i; for (i = 2; i < n; ++i) { while (size > 1 && cross$1(points[indexes[size - 2]], points[indexes[size - 1]], points[i]) <= 0) --size; indexes[size++] = i; } return indexes.slice(0, size); // remove popped points } function hull(points) { if ((n = points.length) < 3) return null; var i, n, sortedPoints = new Array(n), flippedPoints = new Array(n); for (i = 0; i < n; ++i) sortedPoints[i] = [+points[i][0], +points[i][1], i]; sortedPoints.sort(lexicographicOrder); for (i = 0; i < n; ++i) flippedPoints[i] = [sortedPoints[i][0], -sortedPoints[i][1]]; var upperIndexes = computeUpperHullIndexes(sortedPoints), lowerIndexes = computeUpperHullIndexes(flippedPoints); // Construct the hull polygon, removing possible duplicate endpoints. var skipLeft = lowerIndexes[0] === upperIndexes[0], skipRight = lowerIndexes[lowerIndexes.length - 1] === upperIndexes[upperIndexes.length - 1], hull = []; // Add upper hull in right-to-l order. // Then add lower hull in left-to-right order. for (i = upperIndexes.length - 1; i >= 0; --i) hull.push(points[sortedPoints[upperIndexes[i]][2]]); for (i = +skipLeft; i < lowerIndexes.length - skipRight; ++i) hull.push(points[sortedPoints[lowerIndexes[i]][2]]); return hull; } function contains(polygon, point) { var n = polygon.length, p = polygon[n - 1], x = point[0], y = point[1], x0 = p[0], y0 = p[1], x1, y1, inside = false; for (var i = 0; i < n; ++i) { p = polygon[i], x1 = p[0], y1 = p[1]; if (((y1 > y) !== (y0 > y)) && (x < (x0 - x1) * (y - y1) / (y0 - y1) + x1)) inside = !inside; x0 = x1, y0 = y1; } return inside; } function length(polygon) { var i = -1, n = polygon.length, b = polygon[n - 1], xa, ya, xb = b[0], yb = b[1], perimeter = 0; while (++i < n) { xa = xb; ya = yb; b = polygon[i]; xb = b[0]; yb = b[1]; xa -= xb; ya -= yb; perimeter += Math.hypot(xa, ya); } return perimeter; } var defaultSource = Math.random; var uniform = (function sourceRandomUniform(source) { function randomUniform(min, max) { min = min == null ? 0 : +min; max = max == null ? 1 : +max; if (arguments.length === 1) max = min, min = 0; else max -= min; return function() { return source() * max + min; }; } randomUniform.source = sourceRandomUniform; return randomUniform; })(defaultSource); var int = (function sourceRandomInt(source) { function randomInt(min, max) { if (arguments.length < 2) max = min, min = 0; min = Math.floor(min); max = Math.floor(max) - min; return function() { return Math.floor(source() * max + min); }; } randomInt.source = sourceRandomInt; return randomInt; })(defaultSource); var normal = (function sourceRandomNormal(source) { function randomNormal(mu, sigma) { var x, r; mu = mu == null ? 0 : +mu; sigma = sigma == null ? 1 : +sigma; return function() { var y; // If available, use the second previously-generated uniform random. if (x != null) y = x, x = null; // Otherwise, generate a new x and y. else do { x = source() * 2 - 1; y = source() * 2 - 1; r = x * x + y * y; } while (!r || r > 1); return mu + sigma * y * Math.sqrt(-2 * Math.log(r) / r); }; } randomNormal.source = sourceRandomNormal; return randomNormal; })(defaultSource); var logNormal = (function sourceRandomLogNormal(source) { var N = normal.source(source); function randomLogNormal() { var randomNormal = N.apply(this, arguments); return function() { return Math.exp(randomNormal()); }; } randomLogNormal.source = sourceRandomLogNormal; return randomLogNormal; })(defaultSource); var irwinHall = (function sourceRandomIrwinHall(source) { function randomIrwinHall(n) { if ((n = +n) <= 0) return () => 0; return function() { for (var sum = 0, i = n; i > 1; --i) sum += source(); return sum + i * source(); }; } randomIrwinHall.source = sourceRandomIrwinHall; return randomIrwinHall; })(defaultSource); var bates = (function sourceRandomBates(source) { var I = irwinHall.source(source); function randomBates(n) { // use limiting distribution at n === 0 if ((n = +n) === 0) return source; var randomIrwinHall = I(n); return function() { return randomIrwinHall() / n; }; } randomBates.source = sourceRandomBates; return randomBates; })(defaultSource); var exponential = (function sourceRandomExponential(source) { function randomExponential(lambda) { return function() { return -Math.log1p(-source()) / lambda; }; } randomExponential.source = sourceRandomExponential; return randomExponential; })(defaultSource); var pareto = (function sourceRandomPareto(source) { function randomPareto(alpha) { if ((alpha = +alpha) < 0) throw new RangeError("invalid alpha"); alpha = 1 / -alpha; return function() { return Math.pow(1 - source(), alpha); }; } randomPareto.source = sourceRandomPareto; return randomPareto; })(defaultSource); var bernoulli = (function sourceRandomBernoulli(source) { function randomBernoulli(p) { if ((p = +p) < 0 || p > 1) throw new RangeError("invalid p"); return function() { return Math.floor(source() + p); }; } randomBernoulli.source = sourceRandomBernoulli; return randomBernoulli; })(defaultSource); var geometric = (function sourceRandomGeometric(source) { function randomGeometric(p) { if ((p = +p) < 0 || p > 1) throw new RangeError("invalid p"); if (p === 0) return () => Infinity; if (p === 1) return () => 1; p = Math.log1p(-p); return function() { return 1 + Math.floor(Math.log1p(-source()) / p); }; } randomGeometric.source = sourceRandomGeometric; return randomGeometric; })(defaultSource); var gamma = (function sourceRandomGamma(source) { var randomNormal = normal.source(source)(); function randomGamma(k, theta) { if ((k = +k) < 0) throw new RangeError("invalid k"); // degenerate distribution if k === 0 if (k === 0) return () => 0; theta = theta == null ? 1 : +theta; // exponential distribution if k === 1 if (k === 1) return () => -Math.log1p(-source()) * theta; var d = (k < 1 ? k + 1 : k) - 1 / 3, c = 1 / (3 * Math.sqrt(d)), multiplier = k < 1 ? () => Math.pow(source(), 1 / k) : () => 1; return function() { do { do { var x = randomNormal(), v = 1 + c * x; } while (v <= 0); v *= v * v; var u = 1 - source(); } while (u >= 1 - 0.0331 * x * x * x * x && Math.log(u) >= 0.5 * x * x + d * (1 - v + Math.log(v))); return d * v * multiplier() * theta; }; } randomGamma.source = sourceRandomGamma; return randomGamma; })(defaultSource); var beta = (function sourceRandomBeta(source) { var G = gamma.source(source); function randomBeta(alpha, beta) { var X = G(alpha), Y = G(beta); return function() { var x = X(); return x === 0 ? 0 : x / (x + Y()); }; } randomBeta.source = sourceRandomBeta; return randomBeta; })(defaultSource); var binomial = (function sourceRandomBinomial(source) { var G = geometric.source(source), B = beta.source(source); function randomBinomial(n, p) { n = +n; if ((p = +p) >= 1) return () => n; if (p <= 0) return () => 0; return function() { var acc = 0, nn = n, pp = p; while (nn * pp > 16 && nn * (1 - pp) > 16) { var i = Math.floor((nn + 1) * pp), y = B(i, nn - i + 1)(); if (y <= pp) { acc += i; nn -= i; pp = (pp - y) / (1 - y); } else { nn = i - 1; pp /= y; } } var sign = pp < 0.5, pFinal = sign ? pp : 1 - pp, g = G(pFinal); for (var s = g(), k = 0; s <= nn; ++k) s += g(); return acc + (sign ? k : nn - k); }; } randomBinomial.source = sourceRandomBinomial; return randomBinomial; })(defaultSource); var weibull = (function sourceRandomWeibull(source) { function randomWeibull(k, a, b) { var outerFunc; if ((k = +k) === 0) { outerFunc = x => -Math.log(x); } else { k = 1 / k; outerFunc = x => Math.pow(x, k); } a = a == null ? 0 : +a; b = b == null ? 1 : +b; return function() { return a + b * outerFunc(-Math.log1p(-source())); }; } randomWeibull.source = sourceRandomWeibull; return randomWeibull; })(defaultSource); var cauchy = (function sourceRandomCauchy(source) { function randomCauchy(a, b) { a = a == null ? 0 : +a; b = b == null ? 1 : +b; return function() { return a + b * Math.tan(Math.PI * source()); }; } randomCauchy.source = sourceRandomCauchy; return randomCauchy; })(defaultSource); var logistic = (function sourceRandomLogistic(source) { function randomLogistic(a, b) { a = a == null ? 0 : +a; b = b == null ? 1 : +b; return function() { var u = source(); return a + b * Math.log(u / (1 - u)); }; } randomLogistic.source = sourceRandomLogistic; return randomLogistic; })(defaultSource); var poisson = (function sourceRandomPoisson(source) { var G = gamma.source(source), B = binomial.source(source); function randomPoisson(lambda) { return function() { var acc = 0, l = lambda; while (l > 16) { var n = Math.floor(0.875 * l), t = G(n)(); if (t > l) return acc + B(n - 1, l / t)(); acc += n; l -= t; } for (var s = -Math.log1p(-source()), k = 0; s <= l; ++k) s -= Math.log1p(-source()); return acc + k; }; } randomPoisson.source = sourceRandomPoisson; return randomPoisson; })(defaultSource); // https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use const mul = 0x19660D; const inc = 0x3C6EF35F; const eps = 1 / 0x100000000; function lcg(seed = Math.random()) { let state = (0 <= seed && seed < 1 ? seed / eps : Math.abs(seed)) | 0; return () => (state = mul * state + inc | 0, eps * (state >>> 0)); } function initRange(domain, range) { switch (arguments.length) { case 0: break; case 1: this.range(domain); break; default: this.range(range).domain(domain); break; } return this; } function initInterpolator(domain, interpolator) { switch (arguments.length) { case 0: break; case 1: { if (typeof domain === "function") this.interpolator(domain); else this.range(domain); break; } default: { this.domain(domain); if (typeof interpolator === "function") this.interpolator(interpolator); else this.range(interpolator); break; } } return this; } const implicit = Symbol("implicit"); function ordinal() { var index = new InternMap(), domain = [], range = [], unknown = implicit; function scale(d) { let i = index.get(d); if (i === undefined) { if (unknown !== implicit) return unknown; index.set(d, i = domain.push(d) - 1); } return range[i % range.length]; } scale.domain = function(_) { if (!arguments.length) return domain.slice(); domain = [], index = new InternMap(); for (const value of _) { if (index.has(value)) continue; index.set(value, domain.push(value) - 1); } return scale; }; scale.range = function(_) { return arguments.length ? (range = Array.from(_), scale) : range.slice(); }; scale.unknown = function(_) { return arguments.length ? (unknown = _, scale) : unknown; }; scale.copy = function() { return ordinal(domain, range).unknown(unknown); }; initRange.apply(scale, arguments); return scale; } function band() { var scale = ordinal().unknown(undefined), domain = scale.domain, ordinalRange = scale.range, r0 = 0, r1 = 1, step, bandwidth, round = false, paddingInner = 0, paddingOuter = 0, align = 0.5; delete scale.unknown; function rescale() { var n = domain().length, reverse = r1 < r0, start = reverse ? r1 : r0, stop = reverse ? r0 : r1; step = (stop - start) / Math.max(1, n - paddingInner + paddingOuter * 2); if (round) step = Math.floor(step); start += (stop - start - step * (n - paddingInner)) * align; bandwidth = step * (1 - paddingInner); if (round) start = Math.round(start), bandwidth = Math.round(bandwidth); var values = range$2(n).map(function(i) { return start + step * i; }); return ordinalRange(reverse ? values.reverse() : values); } scale.domain = function(_) { return arguments.length ? (domain(_), rescale()) : domain(); }; scale.range = function(_) { return arguments.length ? ([r0, r1] = _, r0 = +r0, r1 = +r1, rescale()) : [r0, r1]; }; scale.rangeRound = function(_) { return [r0, r1] = _, r0 = +r0, r1 = +r1, round = true, rescale(); }; scale.bandwidth = function() { return bandwidth; }; scale.step = function() { return step; }; scale.round = function(_) { return arguments.length ? (round = !!_, rescale()) : round; }; scale.padding = function(_) { return arguments.length ? (paddingInner = Math.min(1, paddingOuter = +_), rescale()) : paddingInner; }; scale.paddingInner = function(_) { return arguments.length ? (paddingInner = Math.min(1, _), rescale()) : paddingInner; }; scale.paddingOuter = function(_) { return arguments.length ? (paddingOuter = +_, rescale()) : paddingOuter; }; scale.align = function(_) { return arguments.length ? (align = Math.max(0, Math.min(1, _)), rescale()) : align; }; scale.copy = function() { return band(domain(), [r0, r1]) .round(round) .paddingInner(paddingInner) .paddingOuter(paddingOuter) .align(align); }; return initRange.apply(rescale(), arguments); } function pointish(scale) { var copy = scale.copy; scale.padding = scale.paddingOuter; delete scale.paddingInner; delete scale.paddingOuter; scale.copy = function() { return pointish(copy()); }; return scale; } function point$4() { return pointish(band.apply(null, arguments).paddingInner(1)); } function constants(x) { return function() { return x; }; } function number$1(x) { return +x; } var unit = [0, 1]; function identity$3(x) { return x; } function normalize(a, b) { return (b -= (a = +a)) ? function(x) { return (x - a) / b; } : constants(isNaN(b) ? NaN : 0.5); } function clamper(a, b) { var t; if (a > b) t = a, a = b, b = t; return function(x) { return Math.max(a, Math.min(b, x)); }; } // normalize(a, b)(x) takes a domain value x in [a,b] and returns the corresponding parameter t in [0,1]. // interpolate(a, b)(t) takes a parameter t in [0,1] and returns the corresponding range value x in [a,b]. function bimap(domain, range, interpolate) { var d0 = domain[0], d1 = domain[1], r0 = range[0], r1 = range[1]; if (d1 < d0) d0 = normalize(d1, d0), r0 = interpolate(r1, r0); else d0 = normalize(d0, d1), r0 = interpolate(r0, r1); return function(x) { return r0(d0(x)); }; } function polymap(domain, range, interpolate) { var j = Math.min(domain.length, range.length) - 1, d = new Array(j), r = new Array(j), i = -1; // Reverse descending domains. if (domain[j] < domain[0]) { domain = domain.slice().reverse(); range = range.slice().reverse(); } while (++i < j) { d[i] = normalize(domain[i], domain[i + 1]); r[i] = interpolate(range[i], range[i + 1]); } return function(x) { var i = bisect(domain, x, 1, j) - 1; return r[i](d[i](x)); }; } function copy$1(source, target) { return target .domain(source.domain()) .range(source.range()) .interpolate(source.interpolate()) .clamp(source.clamp()) .unknown(source.unknown()); } function transformer$2() { var domain = unit, range = unit, interpolate = interpolate$2, transform, untransform, unknown, clamp = identity$3, piecewise, output, input; function rescale() { var n = Math.min(domain.length, range.length); if (clamp !== identity$3) clamp = clamper(domain[0], domain[n - 1]); piecewise = n > 2 ? polymap : bimap; output = input = null; return scale; } function scale(x) { return x == null || isNaN(x = +x) ? unknown : (output || (output = piecewise(domain.map(transform), range, interpolate)))(transform(clamp(x))); } scale.invert = function(y) { return clamp(untransform((input || (input = piecewise(range, domain.map(transform), interpolateNumber)))(y))); }; scale.domain = function(_) { return arguments.length ? (domain = Array.from(_, number$1), rescale()) : domain.slice(); }; scale.range = function(_) { return arguments.length ? (range = Array.from(_), rescale()) : range.slice(); }; scale.rangeRound = function(_) { return range = Array.from(_), interpolate = interpolateRound, rescale(); }; scale.clamp = function(_) { return arguments.length ? (clamp = _ ? true : identity$3, rescale()) : clamp !== identity$3; }; scale.interpolate = function(_) { return arguments.length ? (interpolate = _, rescale()) : interpolate; }; scale.unknown = function(_) { return arguments.length ? (unknown = _, scale) : unknown; }; return function(t, u) { transform = t, untransform = u; return rescale(); }; } function continuous() { return transformer$2()(identity$3, identity$3); } function tickFormat(start, stop, count, specifier) { var step = tickStep(start, stop, count), precision; specifier = formatSpecifier(specifier == null ? ",f" : specifier); switch (specifier.type) { case "s": { var value = Math.max(Math.abs(start), Math.abs(stop)); if (specifier.precision == null && !isNaN(precision = precisionPrefix(step, value))) specifier.precision = precision; return exports.formatPrefix(specifier, value); } case "": case "e": case "g": case "p": case "r": { if (specifier.precision == null && !isNaN(precision = precisionRound(step, Math.max(Math.abs(start), Math.abs(stop))))) specifier.precision = precision - (specifier.type === "e"); break; } case "f": case "%": { if (specifier.precision == null && !isNaN(precision = precisionFixed(step))) specifier.precision = precision - (specifier.type === "%") * 2; break; } } return exports.format(specifier); } function linearish(scale) { var domain = scale.domain; scale.ticks = function(count) { var d = domain(); return ticks(d[0], d[d.length - 1], count == null ? 10 : count); }; scale.tickFormat = function(count, specifier) { var d = domain(); return tickFormat(d[0], d[d.length - 1], count == null ? 10 : count, specifier); }; scale.nice = function(count) { if (count == null) count = 10; var d = domain(); var i0 = 0; var i1 = d.length - 1; var start = d[i0]; var stop = d[i1]; var prestep; var step; var maxIter = 10; if (stop < start) { step = start, start = stop, stop = step; step = i0, i0 = i1, i1 = step; } while (maxIter-- > 0) { step = tickIncrement(start, stop, count); if (step === prestep) { d[i0] = start; d[i1] = stop; return domain(d); } else if (step > 0) { start = Math.floor(start / step) * step; stop = Math.ceil(stop / step) * step; } else if (step < 0) { start = Math.ceil(start * step) / step; stop = Math.floor(stop * step) / step; } else { break; } prestep = step; } return scale; }; return scale; } function linear() { var scale = continuous(); scale.copy = function() { return copy$1(scale, linear()); }; initRange.apply(scale, arguments); return linearish(scale); } function identity$2(domain) { var unknown; function scale(x) { return x == null || isNaN(x = +x) ? unknown : x; } scale.invert = scale; scale.domain = scale.range = function(_) { return arguments.length ? (domain = Array.from(_, number$1), scale) : domain.slice(); }; scale.unknown = function(_) { return arguments.length ? (unknown = _, scale) : unknown; }; scale.copy = function() { return identity$2(domain).unknown(unknown); }; domain = arguments.length ? Array.from(domain, number$1) : [0, 1]; return linearish(scale); } function nice(domain, interval) { domain = domain.slice(); var i0 = 0, i1 = domain.length - 1, x0 = domain[i0], x1 = domain[i1], t; if (x1 < x0) { t = i0, i0 = i1, i1 = t; t = x0, x0 = x1, x1 = t; } domain[i0] = interval.floor(x0); domain[i1] = interval.ceil(x1); return domain; } function transformLog(x) { return Math.log(x); } function transformExp(x) { return Math.exp(x); } function transformLogn(x) { return -Math.log(-x); } function transformExpn(x) { return -Math.exp(-x); } function pow10(x) { return isFinite(x) ? +("1e" + x) : x < 0 ? 0 : x; } function powp(base) { return base === 10 ? pow10 : base === Math.E ? Math.exp : x => Math.pow(base, x); } function logp(base) { return base === Math.E ? Math.log : base === 10 && Math.log10 || base === 2 && Math.log2 || (base = Math.log(base), x => Math.log(x) / base); } function reflect(f) { return (x, k) => -f(-x, k); } function loggish(transform) { const scale = transform(transformLog, transformExp); const domain = scale.domain; let base = 10; let logs; let pows; function rescale() { logs = logp(base), pows = powp(base); if (domain()[0] < 0) { logs = reflect(logs), pows = reflect(pows); transform(transformLogn, transformExpn); } else { transform(transformLog, transformExp); } return scale; } scale.base = function(_) { return arguments.length ? (base = +_, rescale()) : base; }; scale.domain = function(_) { return arguments.length ? (domain(_), rescale()) : domain(); }; scale.ticks = count => { const d = domain(); let u = d[0]; let v = d[d.length - 1]; const r = v < u; if (r) ([u, v] = [v, u]); let i = logs(u); let j = logs(v); let k; let t; const n = count == null ? 10 : +count; let z = []; if (!(base % 1) && j - i < n) { i = Math.floor(i), j = Math.ceil(j); if (u > 0) for (; i <= j; ++i) { for (k = 1; k < base; ++k) { t = i < 0 ? k / pows(-i) : k * pows(i); if (t < u) continue; if (t > v) break; z.push(t); } } else for (; i <= j; ++i) { for (k = base - 1; k >= 1; --k) { t = i > 0 ? k / pows(-i) : k * pows(i); if (t < u) continue; if (t > v) break; z.push(t); } } if (z.length * 2 < n) z = ticks(u, v, n); } else { z = ticks(i, j, Math.min(j - i, n)).map(pows); } return r ? z.reverse() : z; }; scale.tickFormat = (count, specifier) => { if (count == null) count = 10; if (specifier == null) specifier = base === 10 ? "s" : ","; if (typeof specifier !== "function") { if (!(base % 1) && (specifier = formatSpecifier(specifier)).precision == null) specifier.trim = true; specifier = exports.format(specifier); } if (count === Infinity) return specifier; const k = Math.max(1, base * count / scale.ticks().length); // TODO fast estimate? return d => { let i = d / pows(Math.round(logs(d))); if (i * base < base - 0.5) i *= base; return i <= k ? specifier(d) : ""; }; }; scale.nice = () => { return domain(nice(domain(), { floor: x => pows(Math.floor(logs(x))), ceil: x => pows(Math.ceil(logs(x))) })); }; return scale; } function log() { const scale = loggish(transformer$2()).domain([1, 10]); scale.copy = () => copy$1(scale, log()).base(scale.base()); initRange.apply(scale, arguments); return scale; } function transformSymlog(c) { return function(x) { return Math.sign(x) * Math.log1p(Math.abs(x / c)); }; } function transformSymexp(c) { return function(x) { return Math.sign(x) * Math.expm1(Math.abs(x)) * c; }; } function symlogish(transform) { var c = 1, scale = transform(transformSymlog(c), transformSymexp(c)); scale.constant = function(_) { return arguments.length ? transform(transformSymlog(c = +_), transformSymexp(c)) : c; }; return linearish(scale); } function symlog() { var scale = symlogish(transformer$2()); scale.copy = function() { return copy$1(scale, symlog()).constant(scale.constant()); }; return initRange.apply(scale, arguments); } function transformPow(exponent) { return function(x) { return x < 0 ? -Math.pow(-x, exponent) : Math.pow(x, exponent); }; } function transformSqrt(x) { return x < 0 ? -Math.sqrt(-x) : Math.sqrt(x); } function transformSquare(x) { return x < 0 ? -x * x : x * x; } function powish(transform) { var scale = transform(identity$3, identity$3), exponent = 1; function rescale() { return exponent === 1 ? transform(identity$3, identity$3) : exponent === 0.5 ? transform(transformSqrt, transformSquare) : transform(transformPow(exponent), transformPow(1 / exponent)); } scale.exponent = function(_) { return arguments.length ? (exponent = +_, rescale()) : exponent; }; return linearish(scale); } function pow() { var scale = powish(transformer$2()); scale.copy = function() { return copy$1(scale, pow()).exponent(scale.exponent()); }; initRange.apply(scale, arguments); return scale; } function sqrt$1() { return pow.apply(null, arguments).exponent(0.5); } function square$1(x) { return Math.sign(x) * x * x; } function unsquare(x) { return Math.sign(x) * Math.sqrt(Math.abs(x)); } function radial() { var squared = continuous(), range = [0, 1], round = false, unknown; function scale(x) { var y = unsquare(squared(x)); return isNaN(y) ? unknown : round ? Math.round(y) : y; } scale.invert = function(y) { return squared.invert(square$1(y)); }; scale.domain = function(_) { return arguments.length ? (squared.domain(_), scale) : squared.domain(); }; scale.range = function(_) { return arguments.length ? (squared.range((range = Array.from(_, number$1)).map(square$1)), scale) : range.slice(); }; scale.rangeRound = function(_) { return scale.range(_).round(true); }; scale.round = function(_) { return arguments.length ? (round = !!_, scale) : round; }; scale.clamp = function(_) { return arguments.length ? (squared.clamp(_), scale) : squared.clamp(); }; scale.unknown = function(_) { return arguments.length ? (unknown = _, scale) : unknown; }; scale.copy = function() { return radial(squared.domain(), range) .round(round) .clamp(squared.clamp()) .unknown(unknown); }; initRange.apply(scale, arguments); return linearish(scale); } function quantile() { var domain = [], range = [], thresholds = [], unknown; function rescale() { var i = 0, n = Math.max(1, range.length); thresholds = new Array(n - 1); while (++i < n) thresholds[i - 1] = quantileSorted(domain, i / n); return scale; } function scale(x) { return x == null || isNaN(x = +x) ? unknown : range[bisect(thresholds, x)]; } scale.invertExtent = function(y) { var i = range.indexOf(y); return i < 0 ? [NaN, NaN] : [ i > 0 ? thresholds[i - 1] : domain[0], i < thresholds.length ? thresholds[i] : domain[domain.length - 1] ]; }; scale.domain = function(_) { if (!arguments.length) return domain.slice(); domain = []; for (let d of _) if (d != null && !isNaN(d = +d)) domain.push(d); domain.sort(ascending$3); return rescale(); }; scale.range = function(_) { return arguments.length ? (range = Array.from(_), rescale()) : range.slice(); }; scale.unknown = function(_) { return arguments.length ? (unknown = _, scale) : unknown; }; scale.quantiles = function() { return thresholds.slice(); }; scale.copy = function() { return quantile() .domain(domain) .range(range) .unknown(unknown); }; return initRange.apply(scale, arguments); } function quantize() { var x0 = 0, x1 = 1, n = 1, domain = [0.5], range = [0, 1], unknown; function scale(x) { return x != null && x <= x ? range[bisect(domain, x, 0, n)] : unknown; } function rescale() { var i = -1; domain = new Array(n); while (++i < n) domain[i] = ((i + 1) * x1 - (i - n) * x0) / (n + 1); return scale; } scale.domain = function(_) { return arguments.length ? ([x0, x1] = _, x0 = +x0, x1 = +x1, rescale()) : [x0, x1]; }; scale.range = function(_) { return arguments.length ? (n = (range = Array.from(_)).length - 1, rescale()) : range.slice(); }; scale.invertExtent = function(y) { var i = range.indexOf(y); return i < 0 ? [NaN, NaN] : i < 1 ? [x0, domain[0]] : i >= n ? [domain[n - 1], x1] : [domain[i - 1], domain[i]]; }; scale.unknown = function(_) { return arguments.length ? (unknown = _, scale) : scale; }; scale.thresholds = function() { return domain.slice(); }; scale.copy = function() { return quantize() .domain([x0, x1]) .range(range) .unknown(unknown); }; return initRange.apply(linearish(scale), arguments); } function threshold() { var domain = [0.5], range = [0, 1], unknown, n = 1; function scale(x) { return x != null && x <= x ? range[bisect(domain, x, 0, n)] : unknown; } scale.domain = function(_) { return arguments.length ? (domain = Array.from(_), n = Math.min(domain.length, range.length - 1), scale) : domain.slice(); }; scale.range = function(_) { return arguments.length ? (range = Array.from(_), n = Math.min(domain.length, range.length - 1), scale) : range.slice(); }; scale.invertExtent = function(y) { var i = range.indexOf(y); return [domain[i - 1], domain[i]]; }; scale.unknown = function(_) { return arguments.length ? (unknown = _, scale) : unknown; }; scale.copy = function() { return threshold() .domain(domain) .range(range) .unknown(unknown); }; return initRange.apply(scale, arguments); } const t0 = new Date, t1 = new Date; function timeInterval(floori, offseti, count, field) { function interval(date) { return floori(date = arguments.length === 0 ? new Date : new Date(+date)), date; } interval.floor = (date) => { return floori(date = new Date(+date)), date; }; interval.ceil = (date) => { return floori(date = new Date(date - 1)), offseti(date, 1), floori(date), date; }; interval.round = (date) => { const d0 = interval(date), d1 = interval.ceil(date); return date - d0 < d1 - date ? d0 : d1; }; interval.offset = (date, step) => { return offseti(date = new Date(+date), step == null ? 1 : Math.floor(step)), date; }; interval.range = (start, stop, step) => { const range = []; start = interval.ceil(start); step = step == null ? 1 : Math.floor(step); if (!(start < stop) || !(step > 0)) return range; // also handles Invalid Date let previous; do range.push(previous = new Date(+start)), offseti(start, step), floori(start); while (previous < start && start < stop); return range; }; interval.filter = (test) => { return timeInterval((date) => { if (date >= date) while (floori(date), !test(date)) date.setTime(date - 1); }, (date, step) => { if (date >= date) { if (step < 0) while (++step <= 0) { while (offseti(date, -1), !test(date)) {} // eslint-disable-line no-empty } else while (--step >= 0) { while (offseti(date, +1), !test(date)) {} // eslint-disable-line no-empty } } }); }; if (count) { interval.count = (start, end) => { t0.setTime(+start), t1.setTime(+end); floori(t0), floori(t1); return Math.floor(count(t0, t1)); }; interval.every = (step) => { step = Math.floor(step); return !isFinite(step) || !(step > 0) ? null : !(step > 1) ? interval : interval.filter(field ? (d) => field(d) % step === 0 : (d) => interval.count(0, d) % step === 0); }; } return interval; } const millisecond = timeInterval(() => { // noop }, (date, step) => { date.setTime(+date + step); }, (start, end) => { return end - start; }); // An optimized implementation for this simple case. millisecond.every = (k) => { k = Math.floor(k); if (!isFinite(k) || !(k > 0)) return null; if (!(k > 1)) return millisecond; return timeInterval((date) => { date.setTime(Math.floor(date / k) * k); }, (date, step) => { date.setTime(+date + step * k); }, (start, end) => { return (end - start) / k; }); }; const milliseconds = millisecond.range; const durationSecond = 1000; const durationMinute = durationSecond * 60; const durationHour = durationMinute * 60; const durationDay = durationHour * 24; const durationWeek = durationDay * 7; const durationMonth = durationDay * 30; const durationYear = durationDay * 365; const second = timeInterval((date) => { date.setTime(date - date.getMilliseconds()); }, (date, step) => { date.setTime(+date + step * durationSecond); }, (start, end) => { return (end - start) / durationSecond; }, (date) => { return date.getUTCSeconds(); }); const seconds = second.range; const timeMinute = timeInterval((date) => { date.setTime(date - date.getMilliseconds() - date.getSeconds() * durationSecond); }, (date, step) => { date.setTime(+date + step * durationMinute); }, (start, end) => { return (end - start) / durationMinute; }, (date) => { return date.getMinutes(); }); const timeMinutes = timeMinute.range; const utcMinute = timeInterval((date) => { date.setUTCSeconds(0, 0); }, (date, step) => { date.setTime(+date + step * durationMinute); }, (start, end) => { return (end - start) / durationMinute; }, (date) => { return date.getUTCMinutes(); }); const utcMinutes = utcMinute.range; const timeHour = timeInterval((date) => { date.setTime(date - date.getMilliseconds() - date.getSeconds() * durationSecond - date.getMinutes() * durationMinute); }, (date, step) => { date.setTime(+date + step * durationHour); }, (start, end) => { return (end - start) / durationHour; }, (date) => { return date.getHours(); }); const timeHours = timeHour.range; const utcHour = timeInterval((date) => { date.setUTCMinutes(0, 0, 0); }, (date, step) => { date.setTime(+date + step * durationHour); }, (start, end) => { return (end - start) / durationHour; }, (date) => { return date.getUTCHours(); }); const utcHours = utcHour.range; const timeDay = timeInterval( date => date.setHours(0, 0, 0, 0), (date, step) => date.setDate(date.getDate() + step), (start, end) => (end - start - (end.getTimezoneOffset() - start.getTimezoneOffset()) * durationMinute) / durationDay, date => date.getDate() - 1 ); const timeDays = timeDay.range; const utcDay = timeInterval((date) => { date.setUTCHours(0, 0, 0, 0); }, (date, step) => { date.setUTCDate(date.getUTCDate() + step); }, (start, end) => { return (end - start) / durationDay; }, (date) => { return date.getUTCDate() - 1; }); const utcDays = utcDay.range; const unixDay = timeInterval((date) => { date.setUTCHours(0, 0, 0, 0); }, (date, step) => { date.setUTCDate(date.getUTCDate() + step); }, (start, end) => { return (end - start) / durationDay; }, (date) => { return Math.floor(date / durationDay); }); const unixDays = unixDay.range; function timeWeekday(i) { return timeInterval((date) => { date.setDate(date.getDate() - (date.getDay() + 7 - i) % 7); date.setHours(0, 0, 0, 0); }, (date, step) => { date.setDate(date.getDate() + step * 7); }, (start, end) => { return (end - start - (end.getTimezoneOffset() - start.getTimezoneOffset()) * durationMinute) / durationWeek; }); } const timeSunday = timeWeekday(0); const timeMonday = timeWeekday(1); const timeTuesday = timeWeekday(2); const timeWednesday = timeWeekday(3); const timeThursday = timeWeekday(4); const timeFriday = timeWeekday(5); const timeSaturday = timeWeekday(6); const timeSundays = timeSunday.range; const timeMondays = timeMonday.range; const timeTuesdays = timeTuesday.range; const timeWednesdays = timeWednesday.range; const timeThursdays = timeThursday.range; const timeFridays = timeFriday.range; const timeSaturdays = timeSaturday.range; function utcWeekday(i) { return timeInterval((date) => { date.setUTCDate(date.getUTCDate() - (date.getUTCDay() + 7 - i) % 7); date.setUTCHours(0, 0, 0, 0); }, (date, step) => { date.setUTCDate(date.getUTCDate() + step * 7); }, (start, end) => { return (end - start) / durationWeek; }); } const utcSunday = utcWeekday(0); const utcMonday = utcWeekday(1); const utcTuesday = utcWeekday(2); const utcWednesday = utcWeekday(3); const utcThursday = utcWeekday(4); const utcFriday = utcWeekday(5); const utcSaturday = utcWeekday(6); const utcSundays = utcSunday.range; const utcMondays = utcMonday.range; const utcTuesdays = utcTuesday.range; const utcWednesdays = utcWednesday.range; const utcThursdays = utcThursday.range; const utcFridays = utcFriday.range; const utcSaturdays = utcSaturday.range; const timeMonth = timeInterval((date) => { date.setDate(1); date.setHours(0, 0, 0, 0); }, (date, step) => { date.setMonth(date.getMonth() + step); }, (start, end) => { return end.getMonth() - start.getMonth() + (end.getFullYear() - start.getFullYear()) * 12; }, (date) => { return date.getMonth(); }); const timeMonths = timeMonth.range; const utcMonth = timeInterval((date) => { date.setUTCDate(1); date.setUTCHours(0, 0, 0, 0); }, (date, step) => { date.setUTCMonth(date.getUTCMonth() + step); }, (start, end) => { return end.getUTCMonth() - start.getUTCMonth() + (end.getUTCFullYear() - start.getUTCFullYear()) * 12; }, (date) => { return date.getUTCMonth(); }); const utcMonths = utcMonth.range; const timeYear = timeInterval((date) => { date.setMonth(0, 1); date.setHours(0, 0, 0, 0); }, (date, step) => { date.setFullYear(date.getFullYear() + step); }, (start, end) => { return end.getFullYear() - start.getFullYear(); }, (date) => { return date.getFullYear(); }); // An optimized implementation for this simple case. timeYear.every = (k) => { return !isFinite(k = Math.floor(k)) || !(k > 0) ? null : timeInterval((date) => { date.setFullYear(Math.floor(date.getFullYear() / k) * k); date.setMonth(0, 1); date.setHours(0, 0, 0, 0); }, (date, step) => { date.setFullYear(date.getFullYear() + step * k); }); }; const timeYears = timeYear.range; const utcYear = timeInterval((date) => { date.setUTCMonth(0, 1); date.setUTCHours(0, 0, 0, 0); }, (date, step) => { date.setUTCFullYear(date.getUTCFullYear() + step); }, (start, end) => { return end.getUTCFullYear() - start.getUTCFullYear(); }, (date) => { return date.getUTCFullYear(); }); // An optimized implementation for this simple case. utcYear.every = (k) => { return !isFinite(k = Math.floor(k)) || !(k > 0) ? null : timeInterval((date) => { date.setUTCFullYear(Math.floor(date.getUTCFullYear() / k) * k); date.setUTCMonth(0, 1); date.setUTCHours(0, 0, 0, 0); }, (date, step) => { date.setUTCFullYear(date.getUTCFullYear() + step * k); }); }; const utcYears = utcYear.range; function ticker(year, month, week, day, hour, minute) { const tickIntervals = [ [second, 1, durationSecond], [second, 5, 5 * durationSecond], [second, 15, 15 * durationSecond], [second, 30, 30 * durationSecond], [minute, 1, durationMinute], [minute, 5, 5 * durationMinute], [minute, 15, 15 * durationMinute], [minute, 30, 30 * durationMinute], [ hour, 1, durationHour ], [ hour, 3, 3 * durationHour ], [ hour, 6, 6 * durationHour ], [ hour, 12, 12 * durationHour ], [ day, 1, durationDay ], [ day, 2, 2 * durationDay ], [ week, 1, durationWeek ], [ month, 1, durationMonth ], [ month, 3, 3 * durationMonth ], [ year, 1, durationYear ] ]; function ticks(start, stop, count) { const reverse = stop < start; if (reverse) [start, stop] = [stop, start]; const interval = count && typeof count.range === "function" ? count : tickInterval(start, stop, count); const ticks = interval ? interval.range(start, +stop + 1) : []; // inclusive stop return reverse ? ticks.reverse() : ticks; } function tickInterval(start, stop, count) { const target = Math.abs(stop - start) / count; const i = bisector(([,, step]) => step).right(tickIntervals, target); if (i === tickIntervals.length) return year.every(tickStep(start / durationYear, stop / durationYear, count)); if (i === 0) return millisecond.every(Math.max(tickStep(start, stop, count), 1)); const [t, step] = tickIntervals[target / tickIntervals[i - 1][2] < tickIntervals[i][2] / target ? i - 1 : i]; return t.every(step); } return [ticks, tickInterval]; } const [utcTicks, utcTickInterval] = ticker(utcYear, utcMonth, utcSunday, unixDay, utcHour, utcMinute); const [timeTicks, timeTickInterval] = ticker(timeYear, timeMonth, timeSunday, timeDay, timeHour, timeMinute); function localDate(d) { if (0 <= d.y && d.y < 100) { var date = new Date(-1, d.m, d.d, d.H, d.M, d.S, d.L); date.setFullYear(d.y); return date; } return new Date(d.y, d.m, d.d, d.H, d.M, d.S, d.L); } function utcDate(d) { if (0 <= d.y && d.y < 100) { var date = new Date(Date.UTC(-1, d.m, d.d, d.H, d.M, d.S, d.L)); date.setUTCFullYear(d.y); return date; } return new Date(Date.UTC(d.y, d.m, d.d, d.H, d.M, d.S, d.L)); } function newDate(y, m, d) { return {y: y, m: m, d: d, H: 0, M: 0, S: 0, L: 0}; } function formatLocale(locale) { var locale_dateTime = locale.dateTime, locale_date = locale.date, locale_time = locale.time, locale_periods = locale.periods, locale_weekdays = locale.days, locale_shortWeekdays = locale.shortDays, locale_months = locale.months, locale_shortMonths = locale.shortMonths; var periodRe = formatRe(locale_periods), periodLookup = formatLookup(locale_periods), weekdayRe = formatRe(locale_weekdays), weekdayLookup = formatLookup(locale_weekdays), shortWeekdayRe = formatRe(locale_shortWeekdays), shortWeekdayLookup = formatLookup(locale_shortWeekdays), monthRe = formatRe(locale_months), monthLookup = formatLookup(locale_months), shortMonthRe = formatRe(locale_shortMonths), shortMonthLookup = formatLookup(locale_shortMonths); var formats = { "a": formatShortWeekday, "A": formatWeekday, "b": formatShortMonth, "B": formatMonth, "c": null, "d": formatDayOfMonth, "e": formatDayOfMonth, "f": formatMicroseconds, "g": formatYearISO, "G": formatFullYearISO, "H": formatHour24, "I": formatHour12, "j": formatDayOfYear, "L": formatMilliseconds, "m": formatMonthNumber, "M": formatMinutes, "p": formatPeriod, "q": formatQuarter, "Q": formatUnixTimestamp, "s": formatUnixTimestampSeconds, "S": formatSeconds, "u": formatWeekdayNumberMonday, "U": formatWeekNumberSunday, "V": formatWeekNumberISO, "w": formatWeekdayNumberSunday, "W": formatWeekNumberMonday, "x": null, "X": null, "y": formatYear, "Y": formatFullYear, "Z": formatZone, "%": formatLiteralPercent }; var utcFormats = { "a": formatUTCShortWeekday, "A": formatUTCWeekday, "b": formatUTCShortMonth, "B": formatUTCMonth, "c": null, "d": formatUTCDayOfMonth, "e": formatUTCDayOfMonth, "f": formatUTCMicroseconds, "g": formatUTCYearISO, "G": formatUTCFullYearISO, "H": formatUTCHour24, "I": formatUTCHour12, "j": formatUTCDayOfYear, "L": formatUTCMilliseconds, "m": formatUTCMonthNumber, "M": formatUTCMinutes, "p": formatUTCPeriod, "q": formatUTCQuarter, "Q": formatUnixTimestamp, "s": formatUnixTimestampSeconds, "S": formatUTCSeconds, "u": formatUTCWeekdayNumberMonday, "U": formatUTCWeekNumberSunday, "V": formatUTCWeekNumberISO, "w": formatUTCWeekdayNumberSunday, "W": formatUTCWeekNumberMonday, "x": null, "X": null, "y": formatUTCYear, "Y": formatUTCFullYear, "Z": formatUTCZone, "%": formatLiteralPercent }; var parses = { "a": parseShortWeekday, "A": parseWeekday, "b": parseShortMonth, "B": parseMonth, "c": parseLocaleDateTime, "d": parseDayOfMonth, "e": parseDayOfMonth, "f": parseMicroseconds, "g": parseYear, "G": parseFullYear, "H": parseHour24, "I": parseHour24, "j": parseDayOfYear, "L": parseMilliseconds, "m": parseMonthNumber, "M": parseMinutes, "p": parsePeriod, "q": parseQuarter, "Q": parseUnixTimestamp, "s": parseUnixTimestampSeconds, "S": parseSeconds, "u": parseWeekdayNumberMonday, "U": parseWeekNumberSunday, "V": parseWeekNumberISO, "w": parseWeekdayNumberSunday, "W": parseWeekNumberMonday, "x": parseLocaleDate, "X": parseLocaleTime, "y": parseYear, "Y": parseFullYear, "Z": parseZone, "%": parseLiteralPercent }; // These recursive directive definitions must be deferred. formats.x = newFormat(locale_date, formats); formats.X = newFormat(locale_time, formats); formats.c = newFormat(locale_dateTime, formats); utcFormats.x = newFormat(locale_date, utcFormats); utcFormats.X = newFormat(locale_time, utcFormats); utcFormats.c = newFormat(locale_dateTime, utcFormats); function newFormat(specifier, formats) { return function(date) { var string = [], i = -1, j = 0, n = specifier.length, c, pad, format; if (!(date instanceof Date)) date = new Date(+date); while (++i < n) { if (specifier.charCodeAt(i) === 37) { string.push(specifier.slice(j, i)); if ((pad = pads[c = specifier.charAt(++i)]) != null) c = specifier.charAt(++i); else pad = c === "e" ? " " : "0"; if (format = formats[c]) c = format(date, pad); string.push(c); j = i + 1; } } string.push(specifier.slice(j, i)); return string.join(""); }; } function newParse(specifier, Z) { return function(string) { var d = newDate(1900, undefined, 1), i = parseSpecifier(d, specifier, string += "", 0), week, day; if (i != string.length) return null; // If a UNIX timestamp is specified, return it. if ("Q" in d) return new Date(d.Q); if ("s" in d) return new Date(d.s * 1000 + ("L" in d ? d.L : 0)); // If this is utcParse, never use the local timezone. if (Z && !("Z" in d)) d.Z = 0; // The am-pm flag is 0 for AM, and 1 for PM. if ("p" in d) d.H = d.H % 12 + d.p * 12; // If the month was not specified, inherit from the quarter. if (d.m === undefined) d.m = "q" in d ? d.q : 0; // Convert day-of-week and week-of-year to day-of-year. if ("V" in d) { if (d.V < 1 || d.V > 53) return null; if (!("w" in d)) d.w = 1; if ("Z" in d) { week = utcDate(newDate(d.y, 0, 1)), day = week.getUTCDay(); week = day > 4 || day === 0 ? utcMonday.ceil(week) : utcMonday(week); week = utcDay.offset(week, (d.V - 1) * 7); d.y = week.getUTCFullYear(); d.m = week.getUTCMonth(); d.d = week.getUTCDate() + (d.w + 6) % 7; } else { week = localDate(newDate(d.y, 0, 1)), day = week.getDay(); week = day > 4 || day === 0 ? timeMonday.ceil(week) : timeMonday(week); week = timeDay.offset(week, (d.V - 1) * 7); d.y = week.getFullYear(); d.m = week.getMonth(); d.d = week.getDate() + (d.w + 6) % 7; } } else if ("W" in d || "U" in d) { if (!("w" in d)) d.w = "u" in d ? d.u % 7 : "W" in d ? 1 : 0; day = "Z" in d ? utcDate(newDate(d.y, 0, 1)).getUTCDay() : localDate(newDate(d.y, 0, 1)).getDay(); d.m = 0; d.d = "W" in d ? (d.w + 6) % 7 + d.W * 7 - (day + 5) % 7 : d.w + d.U * 7 - (day + 6) % 7; } // If a time zone is specified, all fields are interpreted as UTC and then // offset according to the specified time zone. if ("Z" in d) { d.H += d.Z / 100 | 0; d.M += d.Z % 100; return utcDate(d); } // Otherwise, all fields are in local time. return localDate(d); }; } function parseSpecifier(d, specifier, string, j) { var i = 0, n = specifier.length, m = string.length, c, parse; while (i < n) { if (j >= m) return -1; c = specifier.charCodeAt(i++); if (c === 37) { c = specifier.charAt(i++); parse = parses[c in pads ? specifier.charAt(i++) : c]; if (!parse || ((j = parse(d, string, j)) < 0)) return -1; } else if (c != string.charCodeAt(j++)) { return -1; } } return j; } function parsePeriod(d, string, i) { var n = periodRe.exec(string.slice(i)); return n ? (d.p = periodLookup.get(n[0].toLowerCase()), i + n[0].length) : -1; } function parseShortWeekday(d, string, i) { var n = shortWeekdayRe.exec(string.slice(i)); return n ? (d.w = shortWeekdayLookup.get(n[0].toLowerCase()), i + n[0].length) : -1; } function parseWeekday(d, string, i) { var n = weekdayRe.exec(string.slice(i)); return n ? (d.w = weekdayLookup.get(n[0].toLowerCase()), i + n[0].length) : -1; } function parseShortMonth(d, string, i) { var n = shortMonthRe.exec(string.slice(i)); return n ? (d.m = shortMonthLookup.get(n[0].toLowerCase()), i + n[0].length) : -1; } function parseMonth(d, string, i) { var n = monthRe.exec(string.slice(i)); return n ? (d.m = monthLookup.get(n[0].toLowerCase()), i + n[0].length) : -1; } function parseLocaleDateTime(d, string, i) { return parseSpecifier(d, locale_dateTime, string, i); } function parseLocaleDate(d, string, i) { return parseSpecifier(d, locale_date, string, i); } function parseLocaleTime(d, string, i) { return parseSpecifier(d, locale_time, string, i); } function formatShortWeekday(d) { return locale_shortWeekdays[d.getDay()]; } function formatWeekday(d) { return locale_weekdays[d.getDay()]; } function formatShortMonth(d) { return locale_shortMonths[d.getMonth()]; } function formatMonth(d) { return locale_months[d.getMonth()]; } function formatPeriod(d) { return locale_periods[+(d.getHours() >= 12)]; } function formatQuarter(d) { return 1 + ~~(d.getMonth() / 3); } function formatUTCShortWeekday(d) { return locale_shortWeekdays[d.getUTCDay()]; } function formatUTCWeekday(d) { return locale_weekdays[d.getUTCDay()]; } function formatUTCShortMonth(d) { return locale_shortMonths[d.getUTCMonth()]; } function formatUTCMonth(d) { return locale_months[d.getUTCMonth()]; } function formatUTCPeriod(d) { return locale_periods[+(d.getUTCHours() >= 12)]; } function formatUTCQuarter(d) { return 1 + ~~(d.getUTCMonth() / 3); } return { format: function(specifier) { var f = newFormat(specifier += "", formats); f.toString = function() { return specifier; }; return f; }, parse: function(specifier) { var p = newParse(specifier += "", false); p.toString = function() { return specifier; }; return p; }, utcFormat: function(specifier) { var f = newFormat(specifier += "", utcFormats); f.toString = function() { return specifier; }; return f; }, utcParse: function(specifier) { var p = newParse(specifier += "", true); p.toString = function() { return specifier; }; return p; } }; } var pads = {"-": "", "_": " ", "0": "0"}, numberRe = /^\s*\d+/, // note: ignores next directive percentRe = /^%/, requoteRe = /[\\^$*+?|[\]().{}]/g; function pad(value, fill, width) { var sign = value < 0 ? "-" : "", string = (sign ? -value : value) + "", length = string.length; return sign + (length < width ? new Array(width - length + 1).join(fill) + string : string); } function requote(s) { return s.replace(requoteRe, "\\$&"); } function formatRe(names) { return new RegExp("^(?:" + names.map(requote).join("|") + ")", "i"); } function formatLookup(names) { return new Map(names.map((name, i) => [name.toLowerCase(), i])); } function parseWeekdayNumberSunday(d, string, i) { var n = numberRe.exec(string.slice(i, i + 1)); return n ? (d.w = +n[0], i + n[0].length) : -1; } function parseWeekdayNumberMonday(d, string, i) { var n = numberRe.exec(string.slice(i, i + 1)); return n ? (d.u = +n[0], i + n[0].length) : -1; } function parseWeekNumberSunday(d, string, i) { var n = numberRe.exec(string.slice(i, i + 2)); return n ? (d.U = +n[0], i + n[0].length) : -1; } function parseWeekNumberISO(d, string, i) { var n = numberRe.exec(string.slice(i, i + 2)); return n ? (d.V = +n[0], i + n[0].length) : -1; } function parseWeekNumberMonday(d, string, i) { var n = numberRe.exec(string.slice(i, i + 2)); return n ? (d.W = +n[0], i + n[0].length) : -1; } function parseFullYear(d, string, i) { var n = numberRe.exec(string.slice(i, i + 4)); return n ? (d.y = +n[0], i + n[0].length) : -1; } function parseYear(d, string, i) { var n = numberRe.exec(string.slice(i, i + 2)); return n ? (d.y = +n[0] + (+n[0] > 68 ? 1900 : 2000), i + n[0].length) : -1; } function parseZone(d, string, i) { var n = /^(Z)|([+-]\d\d)(?::?(\d\d))?/.exec(string.slice(i, i + 6)); return n ? (d.Z = n[1] ? 0 : -(n[2] + (n[3] || "00")), i + n[0].length) : -1; } function parseQuarter(d, string, i) { var n = numberRe.exec(string.slice(i, i + 1)); return n ? (d.q = n[0] * 3 - 3, i + n[0].length) : -1; } function parseMonthNumber(d, string, i) { var n = numberRe.exec(string.slice(i, i + 2)); return n ? (d.m = n[0] - 1, i + n[0].length) : -1; } function parseDayOfMonth(d, string, i) { var n = numberRe.exec(string.slice(i, i + 2)); return n ? (d.d = +n[0], i + n[0].length) : -1; } function parseDayOfYear(d, string, i) { var n = numberRe.exec(string.slice(i, i + 3)); return n ? (d.m = 0, d.d = +n[0], i + n[0].length) : -1; } function parseHour24(d, string, i) { var n = numberRe.exec(string.slice(i, i + 2)); return n ? (d.H = +n[0], i + n[0].length) : -1; } function parseMinutes(d, string, i) { var n = numberRe.exec(string.slice(i, i + 2)); return n ? (d.M = +n[0], i + n[0].length) : -1; } function parseSeconds(d, string, i) { var n = numberRe.exec(string.slice(i, i + 2)); return n ? (d.S = +n[0], i + n[0].length) : -1; } function parseMilliseconds(d, string, i) { var n = numberRe.exec(string.slice(i, i + 3)); return n ? (d.L = +n[0], i + n[0].length) : -1; } function parseMicroseconds(d, string, i) { var n = numberRe.exec(string.slice(i, i + 6)); return n ? (d.L = Math.floor(n[0] / 1000), i + n[0].length) : -1; } function parseLiteralPercent(d, string, i) { var n = percentRe.exec(string.slice(i, i + 1)); return n ? i + n[0].length : -1; } function parseUnixTimestamp(d, string, i) { var n = numberRe.exec(string.slice(i)); return n ? (d.Q = +n[0], i + n[0].length) : -1; } function parseUnixTimestampSeconds(d, string, i) { var n = numberRe.exec(string.slice(i)); return n ? (d.s = +n[0], i + n[0].length) : -1; } function formatDayOfMonth(d, p) { return pad(d.getDate(), p, 2); } function formatHour24(d, p) { return pad(d.getHours(), p, 2); } function formatHour12(d, p) { return pad(d.getHours() % 12 || 12, p, 2); } function formatDayOfYear(d, p) { return pad(1 + timeDay.count(timeYear(d), d), p, 3); } function formatMilliseconds(d, p) { return pad(d.getMilliseconds(), p, 3); } function formatMicroseconds(d, p) { return formatMilliseconds(d, p) + "000"; } function formatMonthNumber(d, p) { return pad(d.getMonth() + 1, p, 2); } function formatMinutes(d, p) { return pad(d.getMinutes(), p, 2); } function formatSeconds(d, p) { return pad(d.getSeconds(), p, 2); } function formatWeekdayNumberMonday(d) { var day = d.getDay(); return day === 0 ? 7 : day; } function formatWeekNumberSunday(d, p) { return pad(timeSunday.count(timeYear(d) - 1, d), p, 2); } function dISO(d) { var day = d.getDay(); return (day >= 4 || day === 0) ? timeThursday(d) : timeThursday.ceil(d); } function formatWeekNumberISO(d, p) { d = dISO(d); return pad(timeThursday.count(timeYear(d), d) + (timeYear(d).getDay() === 4), p, 2); } function formatWeekdayNumberSunday(d) { return d.getDay(); } function formatWeekNumberMonday(d, p) { return pad(timeMonday.count(timeYear(d) - 1, d), p, 2); } function formatYear(d, p) { return pad(d.getFullYear() % 100, p, 2); } function formatYearISO(d, p) { d = dISO(d); return pad(d.getFullYear() % 100, p, 2); } function formatFullYear(d, p) { return pad(d.getFullYear() % 10000, p, 4); } function formatFullYearISO(d, p) { var day = d.getDay(); d = (day >= 4 || day === 0) ? timeThursday(d) : timeThursday.ceil(d); return pad(d.getFullYear() % 10000, p, 4); } function formatZone(d) { var z = d.getTimezoneOffset(); return (z > 0 ? "-" : (z *= -1, "+")) + pad(z / 60 | 0, "0", 2) + pad(z % 60, "0", 2); } function formatUTCDayOfMonth(d, p) { return pad(d.getUTCDate(), p, 2); } function formatUTCHour24(d, p) { return pad(d.getUTCHours(), p, 2); } function formatUTCHour12(d, p) { return pad(d.getUTCHours() % 12 || 12, p, 2); } function formatUTCDayOfYear(d, p) { return pad(1 + utcDay.count(utcYear(d), d), p, 3); } function formatUTCMilliseconds(d, p) { return pad(d.getUTCMilliseconds(), p, 3); } function formatUTCMicroseconds(d, p) { return formatUTCMilliseconds(d, p) + "000"; } function formatUTCMonthNumber(d, p) { return pad(d.getUTCMonth() + 1, p, 2); } function formatUTCMinutes(d, p) { return pad(d.getUTCMinutes(), p, 2); } function formatUTCSeconds(d, p) { return pad(d.getUTCSeconds(), p, 2); } function formatUTCWeekdayNumberMonday(d) { var dow = d.getUTCDay(); return dow === 0 ? 7 : dow; } function formatUTCWeekNumberSunday(d, p) { return pad(utcSunday.count(utcYear(d) - 1, d), p, 2); } function UTCdISO(d) { var day = d.getUTCDay(); return (day >= 4 || day === 0) ? utcThursday(d) : utcThursday.ceil(d); } function formatUTCWeekNumberISO(d, p) { d = UTCdISO(d); return pad(utcThursday.count(utcYear(d), d) + (utcYear(d).getUTCDay() === 4), p, 2); } function formatUTCWeekdayNumberSunday(d) { return d.getUTCDay(); } function formatUTCWeekNumberMonday(d, p) { return pad(utcMonday.count(utcYear(d) - 1, d), p, 2); } function formatUTCYear(d, p) { return pad(d.getUTCFullYear() % 100, p, 2); } function formatUTCYearISO(d, p) { d = UTCdISO(d); return pad(d.getUTCFullYear() % 100, p, 2); } function formatUTCFullYear(d, p) { return pad(d.getUTCFullYear() % 10000, p, 4); } function formatUTCFullYearISO(d, p) { var day = d.getUTCDay(); d = (day >= 4 || day === 0) ? utcThursday(d) : utcThursday.ceil(d); return pad(d.getUTCFullYear() % 10000, p, 4); } function formatUTCZone() { return "+0000"; } function formatLiteralPercent() { return "%"; } function formatUnixTimestamp(d) { return +d; } function formatUnixTimestampSeconds(d) { return Math.floor(+d / 1000); } var locale; exports.timeFormat = void 0; exports.timeParse = void 0; exports.utcFormat = void 0; exports.utcParse = void 0; defaultLocale({ dateTime: "%x, %X", date: "%-m/%-d/%Y", time: "%-I:%M:%S %p", periods: ["AM", "PM"], days: ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"], shortDays: ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"], months: ["January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"], shortMonths: ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"] }); function defaultLocale(definition) { locale = formatLocale(definition); exports.timeFormat = locale.format; exports.timeParse = locale.parse; exports.utcFormat = locale.utcFormat; exports.utcParse = locale.utcParse; return locale; } var isoSpecifier = "%Y-%m-%dT%H:%M:%S.%LZ"; function formatIsoNative(date) { return date.toISOString(); } var formatIso = Date.prototype.toISOString ? formatIsoNative : exports.utcFormat(isoSpecifier); var formatIso$1 = formatIso; function parseIsoNative(string) { var date = new Date(string); return isNaN(date) ? null : date; } var parseIso = +new Date("2000-01-01T00:00:00.000Z") ? parseIsoNative : exports.utcParse(isoSpecifier); var parseIso$1 = parseIso; function date(t) { return new Date(t); } function number(t) { return t instanceof Date ? +t : +new Date(+t); } function calendar(ticks, tickInterval, year, month, week, day, hour, minute, second, format) { var scale = continuous(), invert = scale.invert, domain = scale.domain; var formatMillisecond = format(".%L"), formatSecond = format(":%S"), formatMinute = format("%I:%M"), formatHour = format("%I %p"), formatDay = format("%a %d"), formatWeek = format("%b %d"), formatMonth = format("%B"), formatYear = format("%Y"); function tickFormat(date) { return (second(date) < date ? formatMillisecond : minute(date) < date ? formatSecond : hour(date) < date ? formatMinute : day(date) < date ? formatHour : month(date) < date ? (week(date) < date ? formatDay : formatWeek) : year(date) < date ? formatMonth : formatYear)(date); } scale.invert = function(y) { return new Date(invert(y)); }; scale.domain = function(_) { return arguments.length ? domain(Array.from(_, number)) : domain().map(date); }; scale.ticks = function(interval) { var d = domain(); return ticks(d[0], d[d.length - 1], interval == null ? 10 : interval); }; scale.tickFormat = function(count, specifier) { return specifier == null ? tickFormat : format(specifier); }; scale.nice = function(interval) { var d = domain(); if (!interval || typeof interval.range !== "function") interval = tickInterval(d[0], d[d.length - 1], interval == null ? 10 : interval); return interval ? domain(nice(d, interval)) : scale; }; scale.copy = function() { return copy$1(scale, calendar(ticks, tickInterval, year, month, week, day, hour, minute, second, format)); }; return scale; } function time() { return initRange.apply(calendar(timeTicks, timeTickInterval, timeYear, timeMonth, timeSunday, timeDay, timeHour, timeMinute, second, exports.timeFormat).domain([new Date(2000, 0, 1), new Date(2000, 0, 2)]), arguments); } function utcTime() { return initRange.apply(calendar(utcTicks, utcTickInterval, utcYear, utcMonth, utcSunday, utcDay, utcHour, utcMinute, second, exports.utcFormat).domain([Date.UTC(2000, 0, 1), Date.UTC(2000, 0, 2)]), arguments); } function transformer$1() { var x0 = 0, x1 = 1, t0, t1, k10, transform, interpolator = identity$3, clamp = false, unknown; function scale(x) { return x == null || isNaN(x = +x) ? unknown : interpolator(k10 === 0 ? 0.5 : (x = (transform(x) - t0) * k10, clamp ? Math.max(0, Math.min(1, x)) : x)); } scale.domain = function(_) { return arguments.length ? ([x0, x1] = _, t0 = transform(x0 = +x0), t1 = transform(x1 = +x1), k10 = t0 === t1 ? 0 : 1 / (t1 - t0), scale) : [x0, x1]; }; scale.clamp = function(_) { return arguments.length ? (clamp = !!_, scale) : clamp; }; scale.interpolator = function(_) { return arguments.length ? (interpolator = _, scale) : interpolator; }; function range(interpolate) { return function(_) { var r0, r1; return arguments.length ? ([r0, r1] = _, interpolator = interpolate(r0, r1), scale) : [interpolator(0), interpolator(1)]; }; } scale.range = range(interpolate$2); scale.rangeRound = range(interpolateRound); scale.unknown = function(_) { return arguments.length ? (unknown = _, scale) : unknown; }; return function(t) { transform = t, t0 = t(x0), t1 = t(x1), k10 = t0 === t1 ? 0 : 1 / (t1 - t0); return scale; }; } function copy(source, target) { return target .domain(source.domain()) .interpolator(source.interpolator()) .clamp(source.clamp()) .unknown(source.unknown()); } function sequential() { var scale = linearish(transformer$1()(identity$3)); scale.copy = function() { return copy(scale, sequential()); }; return initInterpolator.apply(scale, arguments); } function sequentialLog() { var scale = loggish(transformer$1()).domain([1, 10]); scale.copy = function() { return copy(scale, sequentialLog()).base(scale.base()); }; return initInterpolator.apply(scale, arguments); } function sequentialSymlog() { var scale = symlogish(transformer$1()); scale.copy = function() { return copy(scale, sequentialSymlog()).constant(scale.constant()); }; return initInterpolator.apply(scale, arguments); } function sequentialPow() { var scale = powish(transformer$1()); scale.copy = function() { return copy(scale, sequentialPow()).exponent(scale.exponent()); }; return initInterpolator.apply(scale, arguments); } function sequentialSqrt() { return sequentialPow.apply(null, arguments).exponent(0.5); } function sequentialQuantile() { var domain = [], interpolator = identity$3; function scale(x) { if (x != null && !isNaN(x = +x)) return interpolator((bisect(domain, x, 1) - 1) / (domain.length - 1)); } scale.domain = function(_) { if (!arguments.length) return domain.slice(); domain = []; for (let d of _) if (d != null && !isNaN(d = +d)) domain.push(d); domain.sort(ascending$3); return scale; }; scale.interpolator = function(_) { return arguments.length ? (interpolator = _, scale) : interpolator; }; scale.range = function() { return domain.map((d, i) => interpolator(i / (domain.length - 1))); }; scale.quantiles = function(n) { return Array.from({length: n + 1}, (_, i) => quantile$1(domain, i / n)); }; scale.copy = function() { return sequentialQuantile(interpolator).domain(domain); }; return initInterpolator.apply(scale, arguments); } function transformer() { var x0 = 0, x1 = 0.5, x2 = 1, s = 1, t0, t1, t2, k10, k21, interpolator = identity$3, transform, clamp = false, unknown; function scale(x) { return isNaN(x = +x) ? unknown : (x = 0.5 + ((x = +transform(x)) - t1) * (s * x < s * t1 ? k10 : k21), interpolator(clamp ? Math.max(0, Math.min(1, x)) : x)); } scale.domain = function(_) { return arguments.length ? ([x0, x1, x2] = _, t0 = transform(x0 = +x0), t1 = transform(x1 = +x1), t2 = transform(x2 = +x2), k10 = t0 === t1 ? 0 : 0.5 / (t1 - t0), k21 = t1 === t2 ? 0 : 0.5 / (t2 - t1), s = t1 < t0 ? -1 : 1, scale) : [x0, x1, x2]; }; scale.clamp = function(_) { return arguments.length ? (clamp = !!_, scale) : clamp; }; scale.interpolator = function(_) { return arguments.length ? (interpolator = _, scale) : interpolator; }; function range(interpolate) { return function(_) { var r0, r1, r2; return arguments.length ? ([r0, r1, r2] = _, interpolator = piecewise(interpolate, [r0, r1, r2]), scale) : [interpolator(0), interpolator(0.5), interpolator(1)]; }; } scale.range = range(interpolate$2); scale.rangeRound = range(interpolateRound); scale.unknown = function(_) { return arguments.length ? (unknown = _, scale) : unknown; }; return function(t) { transform = t, t0 = t(x0), t1 = t(x1), t2 = t(x2), k10 = t0 === t1 ? 0 : 0.5 / (t1 - t0), k21 = t1 === t2 ? 0 : 0.5 / (t2 - t1), s = t1 < t0 ? -1 : 1; return scale; }; } function diverging$1() { var scale = linearish(transformer()(identity$3)); scale.copy = function() { return copy(scale, diverging$1()); }; return initInterpolator.apply(scale, arguments); } function divergingLog() { var scale = loggish(transformer()).domain([0.1, 1, 10]); scale.copy = function() { return copy(scale, divergingLog()).base(scale.base()); }; return initInterpolator.apply(scale, arguments); } function divergingSymlog() { var scale = symlogish(transformer()); scale.copy = function() { return copy(scale, divergingSymlog()).constant(scale.constant()); }; return initInterpolator.apply(scale, arguments); } function divergingPow() { var scale = powish(transformer()); scale.copy = function() { return copy(scale, divergingPow()).exponent(scale.exponent()); }; return initInterpolator.apply(scale, arguments); } function divergingSqrt() { return divergingPow.apply(null, arguments).exponent(0.5); } function colors(specifier) { var n = specifier.length / 6 | 0, colors = new Array(n), i = 0; while (i < n) colors[i] = "#" + specifier.slice(i * 6, ++i * 6); return colors; } var category10 = colors("1f77b4ff7f0e2ca02cd627289467bd8c564be377c27f7f7fbcbd2217becf"); var Accent = colors("7fc97fbeaed4fdc086ffff99386cb0f0027fbf5b17666666"); var Dark2 = colors("1b9e77d95f027570b3e7298a66a61ee6ab02a6761d666666"); var Paired = colors("a6cee31f78b4b2df8a33a02cfb9a99e31a1cfdbf6fff7f00cab2d66a3d9affff99b15928"); var Pastel1 = colors("fbb4aeb3cde3ccebc5decbe4fed9a6ffffcce5d8bdfddaecf2f2f2"); var Pastel2 = colors("b3e2cdfdcdaccbd5e8f4cae4e6f5c9fff2aef1e2cccccccc"); var Set1 = colors("e41a1c377eb84daf4a984ea3ff7f00ffff33a65628f781bf999999"); var Set2 = colors("66c2a5fc8d628da0cbe78ac3a6d854ffd92fe5c494b3b3b3"); var Set3 = colors("8dd3c7ffffb3bebadafb807280b1d3fdb462b3de69fccde5d9d9d9bc80bdccebc5ffed6f"); var Tableau10 = colors("4e79a7f28e2ce1575976b7b259a14fedc949af7aa1ff9da79c755fbab0ab"); var ramp$1 = scheme => rgbBasis(scheme[scheme.length - 1]); var scheme$q = new Array(3).concat( "d8b365f5f5f55ab4ac", "a6611adfc27d80cdc1018571", "a6611adfc27df5f5f580cdc1018571", "8c510ad8b365f6e8c3c7eae55ab4ac01665e", "8c510ad8b365f6e8c3f5f5f5c7eae55ab4ac01665e", "8c510abf812ddfc27df6e8c3c7eae580cdc135978f01665e", "8c510abf812ddfc27df6e8c3f5f5f5c7eae580cdc135978f01665e", "5430058c510abf812ddfc27df6e8c3c7eae580cdc135978f01665e003c30", "5430058c510abf812ddfc27df6e8c3f5f5f5c7eae580cdc135978f01665e003c30" ).map(colors); var BrBG = ramp$1(scheme$q); var scheme$p = new Array(3).concat( "af8dc3f7f7f77fbf7b", "7b3294c2a5cfa6dba0008837", "7b3294c2a5cff7f7f7a6dba0008837", "762a83af8dc3e7d4e8d9f0d37fbf7b1b7837", "762a83af8dc3e7d4e8f7f7f7d9f0d37fbf7b1b7837", "762a839970abc2a5cfe7d4e8d9f0d3a6dba05aae611b7837", "762a839970abc2a5cfe7d4e8f7f7f7d9f0d3a6dba05aae611b7837", "40004b762a839970abc2a5cfe7d4e8d9f0d3a6dba05aae611b783700441b", "40004b762a839970abc2a5cfe7d4e8f7f7f7d9f0d3a6dba05aae611b783700441b" ).map(colors); var PRGn = ramp$1(scheme$p); var scheme$o = new Array(3).concat( "e9a3c9f7f7f7a1d76a", "d01c8bf1b6dab8e1864dac26", "d01c8bf1b6daf7f7f7b8e1864dac26", "c51b7de9a3c9fde0efe6f5d0a1d76a4d9221", "c51b7de9a3c9fde0eff7f7f7e6f5d0a1d76a4d9221", "c51b7dde77aef1b6dafde0efe6f5d0b8e1867fbc414d9221", "c51b7dde77aef1b6dafde0eff7f7f7e6f5d0b8e1867fbc414d9221", "8e0152c51b7dde77aef1b6dafde0efe6f5d0b8e1867fbc414d9221276419", "8e0152c51b7dde77aef1b6dafde0eff7f7f7e6f5d0b8e1867fbc414d9221276419" ).map(colors); var PiYG = ramp$1(scheme$o); var scheme$n = new Array(3).concat( "998ec3f7f7f7f1a340", "5e3c99b2abd2fdb863e66101", "5e3c99b2abd2f7f7f7fdb863e66101", "542788998ec3d8daebfee0b6f1a340b35806", "542788998ec3d8daebf7f7f7fee0b6f1a340b35806", "5427888073acb2abd2d8daebfee0b6fdb863e08214b35806", "5427888073acb2abd2d8daebf7f7f7fee0b6fdb863e08214b35806", "2d004b5427888073acb2abd2d8daebfee0b6fdb863e08214b358067f3b08", "2d004b5427888073acb2abd2d8daebf7f7f7fee0b6fdb863e08214b358067f3b08" ).map(colors); var PuOr = ramp$1(scheme$n); var scheme$m = new Array(3).concat( "ef8a62f7f7f767a9cf", "ca0020f4a58292c5de0571b0", "ca0020f4a582f7f7f792c5de0571b0", "b2182bef8a62fddbc7d1e5f067a9cf2166ac", "b2182bef8a62fddbc7f7f7f7d1e5f067a9cf2166ac", "b2182bd6604df4a582fddbc7d1e5f092c5de4393c32166ac", "b2182bd6604df4a582fddbc7f7f7f7d1e5f092c5de4393c32166ac", "67001fb2182bd6604df4a582fddbc7d1e5f092c5de4393c32166ac053061", "67001fb2182bd6604df4a582fddbc7f7f7f7d1e5f092c5de4393c32166ac053061" ).map(colors); var RdBu = ramp$1(scheme$m); var scheme$l = new Array(3).concat( "ef8a62ffffff999999", "ca0020f4a582bababa404040", "ca0020f4a582ffffffbababa404040", "b2182bef8a62fddbc7e0e0e09999994d4d4d", "b2182bef8a62fddbc7ffffffe0e0e09999994d4d4d", "b2182bd6604df4a582fddbc7e0e0e0bababa8787874d4d4d", "b2182bd6604df4a582fddbc7ffffffe0e0e0bababa8787874d4d4d", "67001fb2182bd6604df4a582fddbc7e0e0e0bababa8787874d4d4d1a1a1a", "67001fb2182bd6604df4a582fddbc7ffffffe0e0e0bababa8787874d4d4d1a1a1a" ).map(colors); var RdGy = ramp$1(scheme$l); var scheme$k = new Array(3).concat( "fc8d59ffffbf91bfdb", "d7191cfdae61abd9e92c7bb6", "d7191cfdae61ffffbfabd9e92c7bb6", "d73027fc8d59fee090e0f3f891bfdb4575b4", "d73027fc8d59fee090ffffbfe0f3f891bfdb4575b4", "d73027f46d43fdae61fee090e0f3f8abd9e974add14575b4", "d73027f46d43fdae61fee090ffffbfe0f3f8abd9e974add14575b4", "a50026d73027f46d43fdae61fee090e0f3f8abd9e974add14575b4313695", "a50026d73027f46d43fdae61fee090ffffbfe0f3f8abd9e974add14575b4313695" ).map(colors); var RdYlBu = ramp$1(scheme$k); var scheme$j = new Array(3).concat( "fc8d59ffffbf91cf60", "d7191cfdae61a6d96a1a9641", "d7191cfdae61ffffbfa6d96a1a9641", "d73027fc8d59fee08bd9ef8b91cf601a9850", "d73027fc8d59fee08bffffbfd9ef8b91cf601a9850", "d73027f46d43fdae61fee08bd9ef8ba6d96a66bd631a9850", "d73027f46d43fdae61fee08bffffbfd9ef8ba6d96a66bd631a9850", "a50026d73027f46d43fdae61fee08bd9ef8ba6d96a66bd631a9850006837", "a50026d73027f46d43fdae61fee08bffffbfd9ef8ba6d96a66bd631a9850006837" ).map(colors); var RdYlGn = ramp$1(scheme$j); var scheme$i = new Array(3).concat( "fc8d59ffffbf99d594", "d7191cfdae61abdda42b83ba", "d7191cfdae61ffffbfabdda42b83ba", "d53e4ffc8d59fee08be6f59899d5943288bd", "d53e4ffc8d59fee08bffffbfe6f59899d5943288bd", "d53e4ff46d43fdae61fee08be6f598abdda466c2a53288bd", "d53e4ff46d43fdae61fee08bffffbfe6f598abdda466c2a53288bd", "9e0142d53e4ff46d43fdae61fee08be6f598abdda466c2a53288bd5e4fa2", "9e0142d53e4ff46d43fdae61fee08bffffbfe6f598abdda466c2a53288bd5e4fa2" ).map(colors); var Spectral = ramp$1(scheme$i); var scheme$h = new Array(3).concat( "e5f5f999d8c92ca25f", "edf8fbb2e2e266c2a4238b45", "edf8fbb2e2e266c2a42ca25f006d2c", "edf8fbccece699d8c966c2a42ca25f006d2c", "edf8fbccece699d8c966c2a441ae76238b45005824", "f7fcfde5f5f9ccece699d8c966c2a441ae76238b45005824", "f7fcfde5f5f9ccece699d8c966c2a441ae76238b45006d2c00441b" ).map(colors); var BuGn = ramp$1(scheme$h); var scheme$g = new Array(3).concat( "e0ecf49ebcda8856a7", "edf8fbb3cde38c96c688419d", "edf8fbb3cde38c96c68856a7810f7c", "edf8fbbfd3e69ebcda8c96c68856a7810f7c", "edf8fbbfd3e69ebcda8c96c68c6bb188419d6e016b", "f7fcfde0ecf4bfd3e69ebcda8c96c68c6bb188419d6e016b", "f7fcfde0ecf4bfd3e69ebcda8c96c68c6bb188419d810f7c4d004b" ).map(colors); var BuPu = ramp$1(scheme$g); var scheme$f = new Array(3).concat( "e0f3dba8ddb543a2ca", "f0f9e8bae4bc7bccc42b8cbe", "f0f9e8bae4bc7bccc443a2ca0868ac", "f0f9e8ccebc5a8ddb57bccc443a2ca0868ac", "f0f9e8ccebc5a8ddb57bccc44eb3d32b8cbe08589e", "f7fcf0e0f3dbccebc5a8ddb57bccc44eb3d32b8cbe08589e", "f7fcf0e0f3dbccebc5a8ddb57bccc44eb3d32b8cbe0868ac084081" ).map(colors); var GnBu = ramp$1(scheme$f); var scheme$e = new Array(3).concat( "fee8c8fdbb84e34a33", "fef0d9fdcc8afc8d59d7301f", "fef0d9fdcc8afc8d59e34a33b30000", "fef0d9fdd49efdbb84fc8d59e34a33b30000", "fef0d9fdd49efdbb84fc8d59ef6548d7301f990000", "fff7ecfee8c8fdd49efdbb84fc8d59ef6548d7301f990000", "fff7ecfee8c8fdd49efdbb84fc8d59ef6548d7301fb300007f0000" ).map(colors); var OrRd = ramp$1(scheme$e); var scheme$d = new Array(3).concat( "ece2f0a6bddb1c9099", "f6eff7bdc9e167a9cf02818a", "f6eff7bdc9e167a9cf1c9099016c59", "f6eff7d0d1e6a6bddb67a9cf1c9099016c59", "f6eff7d0d1e6a6bddb67a9cf3690c002818a016450", "fff7fbece2f0d0d1e6a6bddb67a9cf3690c002818a016450", "fff7fbece2f0d0d1e6a6bddb67a9cf3690c002818a016c59014636" ).map(colors); var PuBuGn = ramp$1(scheme$d); var scheme$c = new Array(3).concat( "ece7f2a6bddb2b8cbe", "f1eef6bdc9e174a9cf0570b0", "f1eef6bdc9e174a9cf2b8cbe045a8d", "f1eef6d0d1e6a6bddb74a9cf2b8cbe045a8d", "f1eef6d0d1e6a6bddb74a9cf3690c00570b0034e7b", "fff7fbece7f2d0d1e6a6bddb74a9cf3690c00570b0034e7b", "fff7fbece7f2d0d1e6a6bddb74a9cf3690c00570b0045a8d023858" ).map(colors); var PuBu = ramp$1(scheme$c); var scheme$b = new Array(3).concat( "e7e1efc994c7dd1c77", "f1eef6d7b5d8df65b0ce1256", "f1eef6d7b5d8df65b0dd1c77980043", "f1eef6d4b9dac994c7df65b0dd1c77980043", "f1eef6d4b9dac994c7df65b0e7298ace125691003f", "f7f4f9e7e1efd4b9dac994c7df65b0e7298ace125691003f", "f7f4f9e7e1efd4b9dac994c7df65b0e7298ace125698004367001f" ).map(colors); var PuRd = ramp$1(scheme$b); var scheme$a = new Array(3).concat( "fde0ddfa9fb5c51b8a", "feebe2fbb4b9f768a1ae017e", "feebe2fbb4b9f768a1c51b8a7a0177", "feebe2fcc5c0fa9fb5f768a1c51b8a7a0177", "feebe2fcc5c0fa9fb5f768a1dd3497ae017e7a0177", "fff7f3fde0ddfcc5c0fa9fb5f768a1dd3497ae017e7a0177", "fff7f3fde0ddfcc5c0fa9fb5f768a1dd3497ae017e7a017749006a" ).map(colors); var RdPu = ramp$1(scheme$a); var scheme$9 = new Array(3).concat( "edf8b17fcdbb2c7fb8", "ffffcca1dab441b6c4225ea8", "ffffcca1dab441b6c42c7fb8253494", "ffffccc7e9b47fcdbb41b6c42c7fb8253494", "ffffccc7e9b47fcdbb41b6c41d91c0225ea80c2c84", "ffffd9edf8b1c7e9b47fcdbb41b6c41d91c0225ea80c2c84", "ffffd9edf8b1c7e9b47fcdbb41b6c41d91c0225ea8253494081d58" ).map(colors); var YlGnBu = ramp$1(scheme$9); var scheme$8 = new Array(3).concat( "f7fcb9addd8e31a354", "ffffccc2e69978c679238443", "ffffccc2e69978c67931a354006837", "ffffccd9f0a3addd8e78c67931a354006837", "ffffccd9f0a3addd8e78c67941ab5d238443005a32", "ffffe5f7fcb9d9f0a3addd8e78c67941ab5d238443005a32", "ffffe5f7fcb9d9f0a3addd8e78c67941ab5d238443006837004529" ).map(colors); var YlGn = ramp$1(scheme$8); var scheme$7 = new Array(3).concat( "fff7bcfec44fd95f0e", "ffffd4fed98efe9929cc4c02", "ffffd4fed98efe9929d95f0e993404", "ffffd4fee391fec44ffe9929d95f0e993404", "ffffd4fee391fec44ffe9929ec7014cc4c028c2d04", "ffffe5fff7bcfee391fec44ffe9929ec7014cc4c028c2d04", "ffffe5fff7bcfee391fec44ffe9929ec7014cc4c02993404662506" ).map(colors); var YlOrBr = ramp$1(scheme$7); var scheme$6 = new Array(3).concat( "ffeda0feb24cf03b20", "ffffb2fecc5cfd8d3ce31a1c", "ffffb2fecc5cfd8d3cf03b20bd0026", "ffffb2fed976feb24cfd8d3cf03b20bd0026", "ffffb2fed976feb24cfd8d3cfc4e2ae31a1cb10026", "ffffccffeda0fed976feb24cfd8d3cfc4e2ae31a1cb10026", "ffffccffeda0fed976feb24cfd8d3cfc4e2ae31a1cbd0026800026" ).map(colors); var YlOrRd = ramp$1(scheme$6); var scheme$5 = new Array(3).concat( "deebf79ecae13182bd", "eff3ffbdd7e76baed62171b5", "eff3ffbdd7e76baed63182bd08519c", "eff3ffc6dbef9ecae16baed63182bd08519c", "eff3ffc6dbef9ecae16baed64292c62171b5084594", "f7fbffdeebf7c6dbef9ecae16baed64292c62171b5084594", "f7fbffdeebf7c6dbef9ecae16baed64292c62171b508519c08306b" ).map(colors); var Blues = ramp$1(scheme$5); var scheme$4 = new Array(3).concat( "e5f5e0a1d99b31a354", "edf8e9bae4b374c476238b45", "edf8e9bae4b374c47631a354006d2c", "edf8e9c7e9c0a1d99b74c47631a354006d2c", "edf8e9c7e9c0a1d99b74c47641ab5d238b45005a32", "f7fcf5e5f5e0c7e9c0a1d99b74c47641ab5d238b45005a32", "f7fcf5e5f5e0c7e9c0a1d99b74c47641ab5d238b45006d2c00441b" ).map(colors); var Greens = ramp$1(scheme$4); var scheme$3 = new Array(3).concat( "f0f0f0bdbdbd636363", "f7f7f7cccccc969696525252", "f7f7f7cccccc969696636363252525", "f7f7f7d9d9d9bdbdbd969696636363252525", "f7f7f7d9d9d9bdbdbd969696737373525252252525", "fffffff0f0f0d9d9d9bdbdbd969696737373525252252525", "fffffff0f0f0d9d9d9bdbdbd969696737373525252252525000000" ).map(colors); var Greys = ramp$1(scheme$3); var scheme$2 = new Array(3).concat( "efedf5bcbddc756bb1", "f2f0f7cbc9e29e9ac86a51a3", "f2f0f7cbc9e29e9ac8756bb154278f", "f2f0f7dadaebbcbddc9e9ac8756bb154278f", "f2f0f7dadaebbcbddc9e9ac8807dba6a51a34a1486", "fcfbfdefedf5dadaebbcbddc9e9ac8807dba6a51a34a1486", "fcfbfdefedf5dadaebbcbddc9e9ac8807dba6a51a354278f3f007d" ).map(colors); var Purples = ramp$1(scheme$2); var scheme$1 = new Array(3).concat( "fee0d2fc9272de2d26", "fee5d9fcae91fb6a4acb181d", "fee5d9fcae91fb6a4ade2d26a50f15", "fee5d9fcbba1fc9272fb6a4ade2d26a50f15", "fee5d9fcbba1fc9272fb6a4aef3b2ccb181d99000d", "fff5f0fee0d2fcbba1fc9272fb6a4aef3b2ccb181d99000d", "fff5f0fee0d2fcbba1fc9272fb6a4aef3b2ccb181da50f1567000d" ).map(colors); var Reds = ramp$1(scheme$1); var scheme = new Array(3).concat( "fee6cefdae6be6550d", "feeddefdbe85fd8d3cd94701", "feeddefdbe85fd8d3ce6550da63603", "feeddefdd0a2fdae6bfd8d3ce6550da63603", "feeddefdd0a2fdae6bfd8d3cf16913d948018c2d04", "fff5ebfee6cefdd0a2fdae6bfd8d3cf16913d948018c2d04", "fff5ebfee6cefdd0a2fdae6bfd8d3cf16913d94801a636037f2704" ).map(colors); var Oranges = ramp$1(scheme); function cividis(t) { t = Math.max(0, Math.min(1, t)); return "rgb(" + Math.max(0, Math.min(255, Math.round(-4.54 - t * (35.34 - t * (2381.73 - t * (6402.7 - t * (7024.72 - t * 2710.57))))))) + ", " + Math.max(0, Math.min(255, Math.round(32.49 + t * (170.73 + t * (52.82 - t * (131.46 - t * (176.58 - t * 67.37))))))) + ", " + Math.max(0, Math.min(255, Math.round(81.24 + t * (442.36 - t * (2482.43 - t * (6167.24 - t * (6614.94 - t * 2475.67))))))) + ")"; } var cubehelix = cubehelixLong(cubehelix$3(300, 0.5, 0.0), cubehelix$3(-240, 0.5, 1.0)); var warm = cubehelixLong(cubehelix$3(-100, 0.75, 0.35), cubehelix$3(80, 1.50, 0.8)); var cool = cubehelixLong(cubehelix$3(260, 0.75, 0.35), cubehelix$3(80, 1.50, 0.8)); var c$2 = cubehelix$3(); function rainbow(t) { if (t < 0 || t > 1) t -= Math.floor(t); var ts = Math.abs(t - 0.5); c$2.h = 360 * t - 100; c$2.s = 1.5 - 1.5 * ts; c$2.l = 0.8 - 0.9 * ts; return c$2 + ""; } var c$1 = rgb(), pi_1_3 = Math.PI / 3, pi_2_3 = Math.PI * 2 / 3; function sinebow(t) { var x; t = (0.5 - t) * Math.PI; c$1.r = 255 * (x = Math.sin(t)) * x; c$1.g = 255 * (x = Math.sin(t + pi_1_3)) * x; c$1.b = 255 * (x = Math.sin(t + pi_2_3)) * x; return c$1 + ""; } function turbo(t) { t = Math.max(0, Math.min(1, t)); return "rgb(" + Math.max(0, Math.min(255, Math.round(34.61 + t * (1172.33 - t * (10793.56 - t * (33300.12 - t * (38394.49 - t * 14825.05))))))) + ", " + Math.max(0, Math.min(255, Math.round(23.31 + t * (557.33 + t * (1225.33 - t * (3574.96 - t * (1073.77 + t * 707.56))))))) + ", " + Math.max(0, Math.min(255, Math.round(27.2 + t * (3211.1 - t * (15327.97 - t * (27814 - t * (22569.18 - t * 6838.66))))))) + ")"; } function ramp(range) { var n = range.length; return function(t) { return range[Math.max(0, Math.min(n - 1, Math.floor(t * n)))]; }; } var viridis = ramp(colors("44015444025645045745055946075a46085c460a5d460b5e470d60470e6147106347116447136548146748166848176948186a481a6c481b6d481c6e481d6f481f70482071482173482374482475482576482677482878482979472a7a472c7a472d7b472e7c472f7d46307e46327e46337f463480453581453781453882443983443a83443b84433d84433e85423f854240864241864142874144874045884046883f47883f48893e49893e4a893e4c8a3d4d8a3d4e8a3c4f8a3c508b3b518b3b528b3a538b3a548c39558c39568c38588c38598c375a8c375b8d365c8d365d8d355e8d355f8d34608d34618d33628d33638d32648e32658e31668e31678e31688e30698e306a8e2f6b8e2f6c8e2e6d8e2e6e8e2e6f8e2d708e2d718e2c718e2c728e2c738e2b748e2b758e2a768e2a778e2a788e29798e297a8e297b8e287c8e287d8e277e8e277f8e27808e26818e26828e26828e25838e25848e25858e24868e24878e23888e23898e238a8d228b8d228c8d228d8d218e8d218f8d21908d21918c20928c20928c20938c1f948c1f958b1f968b1f978b1f988b1f998a1f9a8a1e9b8a1e9c891e9d891f9e891f9f881fa0881fa1881fa1871fa28720a38620a48621a58521a68522a78522a88423a98324aa8325ab8225ac8226ad8127ad8128ae8029af7f2ab07f2cb17e2db27d2eb37c2fb47c31b57b32b67a34b67935b77937b87838b9773aba763bbb753dbc743fbc7340bd7242be7144bf7046c06f48c16e4ac16d4cc26c4ec36b50c46a52c56954c56856c66758c7655ac8645cc8635ec96260ca6063cb5f65cb5e67cc5c69cd5b6ccd5a6ece5870cf5773d05675d05477d1537ad1517cd2507fd34e81d34d84d44b86d54989d5488bd6468ed64590d74393d74195d84098d83e9bd93c9dd93ba0da39a2da37a5db36a8db34aadc32addc30b0dd2fb2dd2db5de2bb8de29bade28bddf26c0df25c2df23c5e021c8e020cae11fcde11dd0e11cd2e21bd5e21ad8e219dae319dde318dfe318e2e418e5e419e7e419eae51aece51befe51cf1e51df4e61ef6e620f8e621fbe723fde725")); var magma = ramp(colors("00000401000501010601010802010902020b02020d03030f03031204041405041606051806051a07061c08071e0907200a08220b09240c09260d0a290e0b2b100b2d110c2f120d31130d34140e36150e38160f3b180f3d19103f1a10421c10441d11471e114920114b21114e22115024125325125527125829115a2a115c2c115f2d11612f116331116533106734106936106b38106c390f6e3b0f703d0f713f0f72400f74420f75440f764510774710784910784a10794c117a4e117b4f127b51127c52137c54137d56147d57157e59157e5a167e5c167f5d177f5f187f601880621980641a80651a80671b80681c816a1c816b1d816d1d816e1e81701f81721f817320817521817621817822817922827b23827c23827e24828025828125818326818426818627818827818928818b29818c29818e2a81902a81912b81932b80942c80962c80982d80992d809b2e7f9c2e7f9e2f7fa02f7fa1307ea3307ea5317ea6317da8327daa337dab337cad347cae347bb0357bb2357bb3367ab5367ab73779b83779ba3878bc3978bd3977bf3a77c03a76c23b75c43c75c53c74c73d73c83e73ca3e72cc3f71cd4071cf4070d0416fd2426fd3436ed5446dd6456cd8456cd9466bdb476adc4869de4968df4a68e04c67e24d66e34e65e44f64e55064e75263e85362e95462ea5661eb5760ec5860ed5a5fee5b5eef5d5ef05f5ef1605df2625df2645cf3655cf4675cf4695cf56b5cf66c5cf66e5cf7705cf7725cf8745cf8765cf9785df9795df97b5dfa7d5efa7f5efa815ffb835ffb8560fb8761fc8961fc8a62fc8c63fc8e64fc9065fd9266fd9467fd9668fd9869fd9a6afd9b6bfe9d6cfe9f6dfea16efea36ffea571fea772fea973feaa74feac76feae77feb078feb27afeb47bfeb67cfeb77efeb97ffebb81febd82febf84fec185fec287fec488fec68afec88cfeca8dfecc8ffecd90fecf92fed194fed395fed597fed799fed89afdda9cfddc9efddea0fde0a1fde2a3fde3a5fde5a7fde7a9fde9aafdebacfcecaefceeb0fcf0b2fcf2b4fcf4b6fcf6b8fcf7b9fcf9bbfcfbbdfcfdbf")); var inferno = ramp(colors("00000401000501010601010802010a02020c02020e03021004031204031405041706041907051b08051d09061f0a07220b07240c08260d08290e092b10092d110a30120a32140b34150b37160b39180c3c190c3e1b0c411c0c431e0c451f0c48210c4a230c4c240c4f260c51280b53290b552b0b572d0b592f0a5b310a5c320a5e340a5f3609613809623909633b09643d09653e0966400a67420a68440a68450a69470b6a490b6a4a0c6b4c0c6b4d0d6c4f0d6c510e6c520e6d540f6d550f6d57106e59106e5a116e5c126e5d126e5f136e61136e62146e64156e65156e67166e69166e6a176e6c186e6d186e6f196e71196e721a6e741a6e751b6e771c6d781c6d7a1d6d7c1d6d7d1e6d7f1e6c801f6c82206c84206b85216b87216b88226a8a226a8c23698d23698f24699025689225689326679526679727669827669a28659b29649d29649f2a63a02a63a22b62a32c61a52c60a62d60a82e5fa92e5eab2f5ead305dae305cb0315bb1325ab3325ab43359b63458b73557b93556ba3655bc3754bd3853bf3952c03a51c13a50c33b4fc43c4ec63d4dc73e4cc83f4bca404acb4149cc4248ce4347cf4446d04545d24644d34743d44842d54a41d74b3fd84c3ed94d3dda4e3cdb503bdd513ade5238df5337e05536e15635e25734e35933e45a31e55c30e65d2fe75e2ee8602de9612bea632aeb6429eb6628ec6726ed6925ee6a24ef6c23ef6e21f06f20f1711ff1731df2741cf3761bf37819f47918f57b17f57d15f67e14f68013f78212f78410f8850ff8870ef8890cf98b0bf98c0af98e09fa9008fa9207fa9407fb9606fb9706fb9906fb9b06fb9d07fc9f07fca108fca309fca50afca60cfca80dfcaa0ffcac11fcae12fcb014fcb216fcb418fbb61afbb81dfbba1ffbbc21fbbe23fac026fac228fac42afac62df9c72ff9c932f9cb35f8cd37f8cf3af7d13df7d340f6d543f6d746f5d949f5db4cf4dd4ff4df53f4e156f3e35af3e55df2e661f2e865f2ea69f1ec6df1ed71f1ef75f1f179f2f27df2f482f3f586f3f68af4f88ef5f992f6fa96f8fb9af9fc9dfafda1fcffa4")); var plasma = ramp(colors("0d088710078813078916078a19068c1b068d1d068e20068f2206902406912605912805922a05932c05942e05952f059631059733059735049837049938049a3a049a3c049b3e049c3f049c41049d43039e44039e46039f48039f4903a04b03a14c02a14e02a25002a25102a35302a35502a45601a45801a45901a55b01a55c01a65e01a66001a66100a76300a76400a76600a76700a86900a86a00a86c00a86e00a86f00a87100a87201a87401a87501a87701a87801a87a02a87b02a87d03a87e03a88004a88104a78305a78405a78606a68707a68808a68a09a58b0aa58d0ba58e0ca48f0da4910ea3920fa39410a29511a19613a19814a099159f9a169f9c179e9d189d9e199da01a9ca11b9ba21d9aa31e9aa51f99a62098a72197a82296aa2395ab2494ac2694ad2793ae2892b02991b12a90b22b8fb32c8eb42e8db52f8cb6308bb7318ab83289ba3388bb3488bc3587bd3786be3885bf3984c03a83c13b82c23c81c33d80c43e7fc5407ec6417dc7427cc8437bc9447aca457acb4679cc4778cc4977cd4a76ce4b75cf4c74d04d73d14e72d24f71d35171d45270d5536fd5546ed6556dd7566cd8576bd9586ada5a6ada5b69db5c68dc5d67dd5e66de5f65de6164df6263e06363e16462e26561e26660e3685fe4695ee56a5de56b5de66c5ce76e5be76f5ae87059e97158e97257ea7457eb7556eb7655ec7754ed7953ed7a52ee7b51ef7c51ef7e50f07f4ff0804ef1814df1834cf2844bf3854bf3874af48849f48948f58b47f58c46f68d45f68f44f79044f79143f79342f89441f89540f9973ff9983ef99a3efa9b3dfa9c3cfa9e3bfb9f3afba139fba238fca338fca537fca636fca835fca934fdab33fdac33fdae32fdaf31fdb130fdb22ffdb42ffdb52efeb72dfeb82cfeba2cfebb2bfebd2afebe2afec029fdc229fdc328fdc527fdc627fdc827fdca26fdcb26fccd25fcce25fcd025fcd225fbd324fbd524fbd724fad824fada24f9dc24f9dd25f8df25f8e125f7e225f7e425f6e626f6e826f5e926f5eb27f4ed27f3ee27f3f027f2f227f1f426f1f525f0f724f0f921")); function constant$1(x) { return function constant() { return x; }; } const abs = Math.abs; const atan2 = Math.atan2; const cos = Math.cos; const max = Math.max; const min = Math.min; const sin = Math.sin; const sqrt = Math.sqrt; const epsilon = 1e-12; const pi = Math.PI; const halfPi = pi / 2; const tau = 2 * pi; function acos(x) { return x > 1 ? 0 : x < -1 ? pi : Math.acos(x); } function asin(x) { return x >= 1 ? halfPi : x <= -1 ? -halfPi : Math.asin(x); } function withPath(shape) { let digits = 3; shape.digits = function(_) { if (!arguments.length) return digits; if (_ == null) { digits = null; } else { const d = Math.floor(_); if (!(d >= 0)) throw new RangeError(`invalid digits: ${_}`); digits = d; } return shape; }; return () => new Path$1(digits); } function arcInnerRadius(d) { return d.innerRadius; } function arcOuterRadius(d) { return d.outerRadius; } function arcStartAngle(d) { return d.startAngle; } function arcEndAngle(d) { return d.endAngle; } function arcPadAngle(d) { return d && d.padAngle; // Note: optional! } function intersect(x0, y0, x1, y1, x2, y2, x3, y3) { var x10 = x1 - x0, y10 = y1 - y0, x32 = x3 - x2, y32 = y3 - y2, t = y32 * x10 - x32 * y10; if (t * t < epsilon) return; t = (x32 * (y0 - y2) - y32 * (x0 - x2)) / t; return [x0 + t * x10, y0 + t * y10]; } // Compute perpendicular offset line of length rc. // http://mathworld.wolfram.com/Circle-LineIntersection.html function cornerTangents(x0, y0, x1, y1, r1, rc, cw) { var x01 = x0 - x1, y01 = y0 - y1, lo = (cw ? rc : -rc) / sqrt(x01 * x01 + y01 * y01), ox = lo * y01, oy = -lo * x01, x11 = x0 + ox, y11 = y0 + oy, x10 = x1 + ox, y10 = y1 + oy, x00 = (x11 + x10) / 2, y00 = (y11 + y10) / 2, dx = x10 - x11, dy = y10 - y11, d2 = dx * dx + dy * dy, r = r1 - rc, D = x11 * y10 - x10 * y11, d = (dy < 0 ? -1 : 1) * sqrt(max(0, r * r * d2 - D * D)), cx0 = (D * dy - dx * d) / d2, cy0 = (-D * dx - dy * d) / d2, cx1 = (D * dy + dx * d) / d2, cy1 = (-D * dx + dy * d) / d2, dx0 = cx0 - x00, dy0 = cy0 - y00, dx1 = cx1 - x00, dy1 = cy1 - y00; // Pick the closer of the two intersection points. // TODO Is there a faster way to determine which intersection to use? if (dx0 * dx0 + dy0 * dy0 > dx1 * dx1 + dy1 * dy1) cx0 = cx1, cy0 = cy1; return { cx: cx0, cy: cy0, x01: -ox, y01: -oy, x11: cx0 * (r1 / r - 1), y11: cy0 * (r1 / r - 1) }; } function arc() { var innerRadius = arcInnerRadius, outerRadius = arcOuterRadius, cornerRadius = constant$1(0), padRadius = null, startAngle = arcStartAngle, endAngle = arcEndAngle, padAngle = arcPadAngle, context = null, path = withPath(arc); function arc() { var buffer, r, r0 = +innerRadius.apply(this, arguments), r1 = +outerRadius.apply(this, arguments), a0 = startAngle.apply(this, arguments) - halfPi, a1 = endAngle.apply(this, arguments) - halfPi, da = abs(a1 - a0), cw = a1 > a0; if (!context) context = buffer = path(); // Ensure that the outer radius is always larger than the inner radius. if (r1 < r0) r = r1, r1 = r0, r0 = r; // Is it a point? if (!(r1 > epsilon)) context.moveTo(0, 0); // Or is it a circle or annulus? else if (da > tau - epsilon) { context.moveTo(r1 * cos(a0), r1 * sin(a0)); context.arc(0, 0, r1, a0, a1, !cw); if (r0 > epsilon) { context.moveTo(r0 * cos(a1), r0 * sin(a1)); context.arc(0, 0, r0, a1, a0, cw); } } // Or is it a circular or annular sector? else { var a01 = a0, a11 = a1, a00 = a0, a10 = a1, da0 = da, da1 = da, ap = padAngle.apply(this, arguments) / 2, rp = (ap > epsilon) && (padRadius ? +padRadius.apply(this, arguments) : sqrt(r0 * r0 + r1 * r1)), rc = min(abs(r1 - r0) / 2, +cornerRadius.apply(this, arguments)), rc0 = rc, rc1 = rc, t0, t1; // Apply padding? Note that since r1 ≥ r0, da1 ≥ da0. if (rp > epsilon) { var p0 = asin(rp / r0 * sin(ap)), p1 = asin(rp / r1 * sin(ap)); if ((da0 -= p0 * 2) > epsilon) p0 *= (cw ? 1 : -1), a00 += p0, a10 -= p0; else da0 = 0, a00 = a10 = (a0 + a1) / 2; if ((da1 -= p1 * 2) > epsilon) p1 *= (cw ? 1 : -1), a01 += p1, a11 -= p1; else da1 = 0, a01 = a11 = (a0 + a1) / 2; } var x01 = r1 * cos(a01), y01 = r1 * sin(a01), x10 = r0 * cos(a10), y10 = r0 * sin(a10); // Apply rounded corners? if (rc > epsilon) { var x11 = r1 * cos(a11), y11 = r1 * sin(a11), x00 = r0 * cos(a00), y00 = r0 * sin(a00), oc; // Restrict the corner radius according to the sector angle. If this // intersection fails, it’s probably because the arc is too small, so // disable the corner radius entirely. if (da < pi) { if (oc = intersect(x01, y01, x00, y00, x11, y11, x10, y10)) { var ax = x01 - oc[0], ay = y01 - oc[1], bx = x11 - oc[0], by = y11 - oc[1], kc = 1 / sin(acos((ax * bx + ay * by) / (sqrt(ax * ax + ay * ay) * sqrt(bx * bx + by * by))) / 2), lc = sqrt(oc[0] * oc[0] + oc[1] * oc[1]); rc0 = min(rc, (r0 - lc) / (kc - 1)); rc1 = min(rc, (r1 - lc) / (kc + 1)); } else { rc0 = rc1 = 0; } } } // Is the sector collapsed to a line? if (!(da1 > epsilon)) context.moveTo(x01, y01); // Does the sector’s outer ring have rounded corners? else if (rc1 > epsilon) { t0 = cornerTangents(x00, y00, x01, y01, r1, rc1, cw); t1 = cornerTangents(x11, y11, x10, y10, r1, rc1, cw); context.moveTo(t0.cx + t0.x01, t0.cy + t0.y01); // Have the corners merged? if (rc1 < rc) context.arc(t0.cx, t0.cy, rc1, atan2(t0.y01, t0.x01), atan2(t1.y01, t1.x01), !cw); // Otherwise, draw the two corners and the ring. else { context.arc(t0.cx, t0.cy, rc1, atan2(t0.y01, t0.x01), atan2(t0.y11, t0.x11), !cw); context.arc(0, 0, r1, atan2(t0.cy + t0.y11, t0.cx + t0.x11), atan2(t1.cy + t1.y11, t1.cx + t1.x11), !cw); context.arc(t1.cx, t1.cy, rc1, atan2(t1.y11, t1.x11), atan2(t1.y01, t1.x01), !cw); } } // Or is the outer ring just a circular arc? else context.moveTo(x01, y01), context.arc(0, 0, r1, a01, a11, !cw); // Is there no inner ring, and it’s a circular sector? // Or perhaps it’s an annular sector collapsed due to padding? if (!(r0 > epsilon) || !(da0 > epsilon)) context.lineTo(x10, y10); // Does the sector’s inner ring (or point) have rounded corners? else if (rc0 > epsilon) { t0 = cornerTangents(x10, y10, x11, y11, r0, -rc0, cw); t1 = cornerTangents(x01, y01, x00, y00, r0, -rc0, cw); context.lineTo(t0.cx + t0.x01, t0.cy + t0.y01); // Have the corners merged? if (rc0 < rc) context.arc(t0.cx, t0.cy, rc0, atan2(t0.y01, t0.x01), atan2(t1.y01, t1.x01), !cw); // Otherwise, draw the two corners and the ring. else { context.arc(t0.cx, t0.cy, rc0, atan2(t0.y01, t0.x01), atan2(t0.y11, t0.x11), !cw); context.arc(0, 0, r0, atan2(t0.cy + t0.y11, t0.cx + t0.x11), atan2(t1.cy + t1.y11, t1.cx + t1.x11), cw); context.arc(t1.cx, t1.cy, rc0, atan2(t1.y11, t1.x11), atan2(t1.y01, t1.x01), !cw); } } // Or is the inner ring just a circular arc? else context.arc(0, 0, r0, a10, a00, cw); } context.closePath(); if (buffer) return context = null, buffer + "" || null; } arc.centroid = function() { var r = (+innerRadius.apply(this, arguments) + +outerRadius.apply(this, arguments)) / 2, a = (+startAngle.apply(this, arguments) + +endAngle.apply(this, arguments)) / 2 - pi / 2; return [cos(a) * r, sin(a) * r]; }; arc.innerRadius = function(_) { return arguments.length ? (innerRadius = typeof _ === "function" ? _ : constant$1(+_), arc) : innerRadius; }; arc.outerRadius = function(_) { return arguments.length ? (outerRadius = typeof _ === "function" ? _ : constant$1(+_), arc) : outerRadius; }; arc.cornerRadius = function(_) { return arguments.length ? (cornerRadius = typeof _ === "function" ? _ : constant$1(+_), arc) : cornerRadius; }; arc.padRadius = function(_) { return arguments.length ? (padRadius = _ == null ? null : typeof _ === "function" ? _ : constant$1(+_), arc) : padRadius; }; arc.startAngle = function(_) { return arguments.length ? (startAngle = typeof _ === "function" ? _ : constant$1(+_), arc) : startAngle; }; arc.endAngle = function(_) { return arguments.length ? (endAngle = typeof _ === "function" ? _ : constant$1(+_), arc) : endAngle; }; arc.padAngle = function(_) { return arguments.length ? (padAngle = typeof _ === "function" ? _ : constant$1(+_), arc) : padAngle; }; arc.context = function(_) { return arguments.length ? ((context = _ == null ? null : _), arc) : context; }; return arc; } var slice = Array.prototype.slice; function array(x) { return typeof x === "object" && "length" in x ? x // Array, TypedArray, NodeList, array-like : Array.from(x); // Map, Set, iterable, string, or anything else } function Linear(context) { this._context = context; } Linear.prototype = { areaStart: function() { this._line = 0; }, areaEnd: function() { this._line = NaN; }, lineStart: function() { this._point = 0; }, lineEnd: function() { if (this._line || (this._line !== 0 && this._point === 1)) this._context.closePath(); this._line = 1 - this._line; }, point: function(x, y) { x = +x, y = +y; switch (this._point) { case 0: this._point = 1; this._line ? this._context.lineTo(x, y) : this._context.moveTo(x, y); break; case 1: this._point = 2; // falls through default: this._context.lineTo(x, y); break; } } }; function curveLinear(context) { return new Linear(context); } function x(p) { return p[0]; } function y(p) { return p[1]; } function line(x$1, y$1) { var defined = constant$1(true), context = null, curve = curveLinear, output = null, path = withPath(line); x$1 = typeof x$1 === "function" ? x$1 : (x$1 === undefined) ? x : constant$1(x$1); y$1 = typeof y$1 === "function" ? y$1 : (y$1 === undefined) ? y : constant$1(y$1); function line(data) { var i, n = (data = array(data)).length, d, defined0 = false, buffer; if (context == null) output = curve(buffer = path()); for (i = 0; i <= n; ++i) { if (!(i < n && defined(d = data[i], i, data)) === defined0) { if (defined0 = !defined0) output.lineStart(); else output.lineEnd(); } if (defined0) output.point(+x$1(d, i, data), +y$1(d, i, data)); } if (buffer) return output = null, buffer + "" || null; } line.x = function(_) { return arguments.length ? (x$1 = typeof _ === "function" ? _ : constant$1(+_), line) : x$1; }; line.y = function(_) { return arguments.length ? (y$1 = typeof _ === "function" ? _ : constant$1(+_), line) : y$1; }; line.defined = function(_) { return arguments.length ? (defined = typeof _ === "function" ? _ : constant$1(!!_), line) : defined; }; line.curve = function(_) { return arguments.length ? (curve = _, context != null && (output = curve(context)), line) : curve; }; line.context = function(_) { return arguments.length ? (_ == null ? context = output = null : output = curve(context = _), line) : context; }; return line; } function area(x0, y0, y1) { var x1 = null, defined = constant$1(true), context = null, curve = curveLinear, output = null, path = withPath(area); x0 = typeof x0 === "function" ? x0 : (x0 === undefined) ? x : constant$1(+x0); y0 = typeof y0 === "function" ? y0 : (y0 === undefined) ? constant$1(0) : constant$1(+y0); y1 = typeof y1 === "function" ? y1 : (y1 === undefined) ? y : constant$1(+y1); function area(data) { var i, j, k, n = (data = array(data)).length, d, defined0 = false, buffer, x0z = new Array(n), y0z = new Array(n); if (context == null) output = curve(buffer = path()); for (i = 0; i <= n; ++i) { if (!(i < n && defined(d = data[i], i, data)) === defined0) { if (defined0 = !defined0) { j = i; output.areaStart(); output.lineStart(); } else { output.lineEnd(); output.lineStart(); for (k = i - 1; k >= j; --k) { output.point(x0z[k], y0z[k]); } output.lineEnd(); output.areaEnd(); } } if (defined0) { x0z[i] = +x0(d, i, data), y0z[i] = +y0(d, i, data); output.point(x1 ? +x1(d, i, data) : x0z[i], y1 ? +y1(d, i, data) : y0z[i]); } } if (buffer) return output = null, buffer + "" || null; } function arealine() { return line().defined(defined).curve(curve).context(context); } area.x = function(_) { return arguments.length ? (x0 = typeof _ === "function" ? _ : constant$1(+_), x1 = null, area) : x0; }; area.x0 = function(_) { return arguments.length ? (x0 = typeof _ === "function" ? _ : constant$1(+_), area) : x0; }; area.x1 = function(_) { return arguments.length ? (x1 = _ == null ? null : typeof _ === "function" ? _ : constant$1(+_), area) : x1; }; area.y = function(_) { return arguments.length ? (y0 = typeof _ === "function" ? _ : constant$1(+_), y1 = null, area) : y0; }; area.y0 = function(_) { return arguments.length ? (y0 = typeof _ === "function" ? _ : constant$1(+_), area) : y0; }; area.y1 = function(_) { return arguments.length ? (y1 = _ == null ? null : typeof _ === "function" ? _ : constant$1(+_), area) : y1; }; area.lineX0 = area.lineY0 = function() { return arealine().x(x0).y(y0); }; area.lineY1 = function() { return arealine().x(x0).y(y1); }; area.lineX1 = function() { return arealine().x(x1).y(y0); }; area.defined = function(_) { return arguments.length ? (defined = typeof _ === "function" ? _ : constant$1(!!_), area) : defined; }; area.curve = function(_) { return arguments.length ? (curve = _, context != null && (output = curve(context)), area) : curve; }; area.context = function(_) { return arguments.length ? (_ == null ? context = output = null : output = curve(context = _), area) : context; }; return area; } function descending$1(a, b) { return b < a ? -1 : b > a ? 1 : b >= a ? 0 : NaN; } function identity$1(d) { return d; } function pie() { var value = identity$1, sortValues = descending$1, sort = null, startAngle = constant$1(0), endAngle = constant$1(tau), padAngle = constant$1(0); function pie(data) { var i, n = (data = array(data)).length, j, k, sum = 0, index = new Array(n), arcs = new Array(n), a0 = +startAngle.apply(this, arguments), da = Math.min(tau, Math.max(-tau, endAngle.apply(this, arguments) - a0)), a1, p = Math.min(Math.abs(da) / n, padAngle.apply(this, arguments)), pa = p * (da < 0 ? -1 : 1), v; for (i = 0; i < n; ++i) { if ((v = arcs[index[i] = i] = +value(data[i], i, data)) > 0) { sum += v; } } // Optionally sort the arcs by previously-computed values or by data. if (sortValues != null) index.sort(function(i, j) { return sortValues(arcs[i], arcs[j]); }); else if (sort != null) index.sort(function(i, j) { return sort(data[i], data[j]); }); // Compute the arcs! They are stored in the original data's order. for (i = 0, k = sum ? (da - n * pa) / sum : 0; i < n; ++i, a0 = a1) { j = index[i], v = arcs[j], a1 = a0 + (v > 0 ? v * k : 0) + pa, arcs[j] = { data: data[j], index: i, value: v, startAngle: a0, endAngle: a1, padAngle: p }; } return arcs; } pie.value = function(_) { return arguments.length ? (value = typeof _ === "function" ? _ : constant$1(+_), pie) : value; }; pie.sortValues = function(_) { return arguments.length ? (sortValues = _, sort = null, pie) : sortValues; }; pie.sort = function(_) { return arguments.length ? (sort = _, sortValues = null, pie) : sort; }; pie.startAngle = function(_) { return arguments.length ? (startAngle = typeof _ === "function" ? _ : constant$1(+_), pie) : startAngle; }; pie.endAngle = function(_) { return arguments.length ? (endAngle = typeof _ === "function" ? _ : constant$1(+_), pie) : endAngle; }; pie.padAngle = function(_) { return arguments.length ? (padAngle = typeof _ === "function" ? _ : constant$1(+_), pie) : padAngle; }; return pie; } var curveRadialLinear = curveRadial(curveLinear); function Radial(curve) { this._curve = curve; } Radial.prototype = { areaStart: function() { this._curve.areaStart(); }, areaEnd: function() { this._curve.areaEnd(); }, lineStart: function() { this._curve.lineStart(); }, lineEnd: function() { this._curve.lineEnd(); }, point: function(a, r) { this._curve.point(r * Math.sin(a), r * -Math.cos(a)); } }; function curveRadial(curve) { function radial(context) { return new Radial(curve(context)); } radial._curve = curve; return radial; } function lineRadial(l) { var c = l.curve; l.angle = l.x, delete l.x; l.radius = l.y, delete l.y; l.curve = function(_) { return arguments.length ? c(curveRadial(_)) : c()._curve; }; return l; } function lineRadial$1() { return lineRadial(line().curve(curveRadialLinear)); } function areaRadial() { var a = area().curve(curveRadialLinear), c = a.curve, x0 = a.lineX0, x1 = a.lineX1, y0 = a.lineY0, y1 = a.lineY1; a.angle = a.x, delete a.x; a.startAngle = a.x0, delete a.x0; a.endAngle = a.x1, delete a.x1; a.radius = a.y, delete a.y; a.innerRadius = a.y0, delete a.y0; a.outerRadius = a.y1, delete a.y1; a.lineStartAngle = function() { return lineRadial(x0()); }, delete a.lineX0; a.lineEndAngle = function() { return lineRadial(x1()); }, delete a.lineX1; a.lineInnerRadius = function() { return lineRadial(y0()); }, delete a.lineY0; a.lineOuterRadius = function() { return lineRadial(y1()); }, delete a.lineY1; a.curve = function(_) { return arguments.length ? c(curveRadial(_)) : c()._curve; }; return a; } function pointRadial(x, y) { return [(y = +y) * Math.cos(x -= Math.PI / 2), y * Math.sin(x)]; } class Bump { constructor(context, x) { this._context = context; this._x = x; } areaStart() { this._line = 0; } areaEnd() { this._line = NaN; } lineStart() { this._point = 0; } lineEnd() { if (this._line || (this._line !== 0 && this._point === 1)) this._context.closePath(); this._line = 1 - this._line; } point(x, y) { x = +x, y = +y; switch (this._point) { case 0: { this._point = 1; if (this._line) this._context.lineTo(x, y); else this._context.moveTo(x, y); break; } case 1: this._point = 2; // falls through default: { if (this._x) this._context.bezierCurveTo(this._x0 = (this._x0 + x) / 2, this._y0, this._x0, y, x, y); else this._context.bezierCurveTo(this._x0, this._y0 = (this._y0 + y) / 2, x, this._y0, x, y); break; } } this._x0 = x, this._y0 = y; } } class BumpRadial { constructor(context) { this._context = context; } lineStart() { this._point = 0; } lineEnd() {} point(x, y) { x = +x, y = +y; if (this._point === 0) { this._point = 1; } else { const p0 = pointRadial(this._x0, this._y0); const p1 = pointRadial(this._x0, this._y0 = (this._y0 + y) / 2); const p2 = pointRadial(x, this._y0); const p3 = pointRadial(x, y); this._context.moveTo(...p0); this._context.bezierCurveTo(...p1, ...p2, ...p3); } this._x0 = x, this._y0 = y; } } function bumpX(context) { return new Bump(context, true); } function bumpY(context) { return new Bump(context, false); } function bumpRadial(context) { return new BumpRadial(context); } function linkSource(d) { return d.source; } function linkTarget(d) { return d.target; } function link(curve) { let source = linkSource, target = linkTarget, x$1 = x, y$1 = y, context = null, output = null, path = withPath(link); function link() { let buffer; const argv = slice.call(arguments); const s = source.apply(this, argv); const t = target.apply(this, argv); if (context == null) output = curve(buffer = path()); output.lineStart(); argv[0] = s, output.point(+x$1.apply(this, argv), +y$1.apply(this, argv)); argv[0] = t, output.point(+x$1.apply(this, argv), +y$1.apply(this, argv)); output.lineEnd(); if (buffer) return output = null, buffer + "" || null; } link.source = function(_) { return arguments.length ? (source = _, link) : source; }; link.target = function(_) { return arguments.length ? (target = _, link) : target; }; link.x = function(_) { return arguments.length ? (x$1 = typeof _ === "function" ? _ : constant$1(+_), link) : x$1; }; link.y = function(_) { return arguments.length ? (y$1 = typeof _ === "function" ? _ : constant$1(+_), link) : y$1; }; link.context = function(_) { return arguments.length ? (_ == null ? context = output = null : output = curve(context = _), link) : context; }; return link; } function linkHorizontal() { return link(bumpX); } function linkVertical() { return link(bumpY); } function linkRadial() { const l = link(bumpRadial); l.angle = l.x, delete l.x; l.radius = l.y, delete l.y; return l; } const sqrt3$2 = sqrt(3); var asterisk = { draw(context, size) { const r = sqrt(size + min(size / 28, 0.75)) * 0.59436; const t = r / 2; const u = t * sqrt3$2; context.moveTo(0, r); context.lineTo(0, -r); context.moveTo(-u, -t); context.lineTo(u, t); context.moveTo(-u, t); context.lineTo(u, -t); } }; var circle = { draw(context, size) { const r = sqrt(size / pi); context.moveTo(r, 0); context.arc(0, 0, r, 0, tau); } }; var cross = { draw(context, size) { const r = sqrt(size / 5) / 2; context.moveTo(-3 * r, -r); context.lineTo(-r, -r); context.lineTo(-r, -3 * r); context.lineTo(r, -3 * r); context.lineTo(r, -r); context.lineTo(3 * r, -r); context.lineTo(3 * r, r); context.lineTo(r, r); context.lineTo(r, 3 * r); context.lineTo(-r, 3 * r); context.lineTo(-r, r); context.lineTo(-3 * r, r); context.closePath(); } }; const tan30 = sqrt(1 / 3); const tan30_2 = tan30 * 2; var diamond = { draw(context, size) { const y = sqrt(size / tan30_2); const x = y * tan30; context.moveTo(0, -y); context.lineTo(x, 0); context.lineTo(0, y); context.lineTo(-x, 0); context.closePath(); } }; var diamond2 = { draw(context, size) { const r = sqrt(size) * 0.62625; context.moveTo(0, -r); context.lineTo(r, 0); context.lineTo(0, r); context.lineTo(-r, 0); context.closePath(); } }; var plus = { draw(context, size) { const r = sqrt(size - min(size / 7, 2)) * 0.87559; context.moveTo(-r, 0); context.lineTo(r, 0); context.moveTo(0, r); context.lineTo(0, -r); } }; var square = { draw(context, size) { const w = sqrt(size); const x = -w / 2; context.rect(x, x, w, w); } }; var square2 = { draw(context, size) { const r = sqrt(size) * 0.4431; context.moveTo(r, r); context.lineTo(r, -r); context.lineTo(-r, -r); context.lineTo(-r, r); context.closePath(); } }; const ka = 0.89081309152928522810; const kr = sin(pi / 10) / sin(7 * pi / 10); const kx = sin(tau / 10) * kr; const ky = -cos(tau / 10) * kr; var star = { draw(context, size) { const r = sqrt(size * ka); const x = kx * r; const y = ky * r; context.moveTo(0, -r); context.lineTo(x, y); for (let i = 1; i < 5; ++i) { const a = tau * i / 5; const c = cos(a); const s = sin(a); context.lineTo(s * r, -c * r); context.lineTo(c * x - s * y, s * x + c * y); } context.closePath(); } }; const sqrt3$1 = sqrt(3); var triangle = { draw(context, size) { const y = -sqrt(size / (sqrt3$1 * 3)); context.moveTo(0, y * 2); context.lineTo(-sqrt3$1 * y, -y); context.lineTo(sqrt3$1 * y, -y); context.closePath(); } }; const sqrt3 = sqrt(3); var triangle2 = { draw(context, size) { const s = sqrt(size) * 0.6824; const t = s / 2; const u = (s * sqrt3) / 2; // cos(Math.PI / 6) context.moveTo(0, -s); context.lineTo(u, t); context.lineTo(-u, t); context.closePath(); } }; const c = -0.5; const s = sqrt(3) / 2; const k = 1 / sqrt(12); const a = (k / 2 + 1) * 3; var wye = { draw(context, size) { const r = sqrt(size / a); const x0 = r / 2, y0 = r * k; const x1 = x0, y1 = r * k + r; const x2 = -x1, y2 = y1; context.moveTo(x0, y0); context.lineTo(x1, y1); context.lineTo(x2, y2); context.lineTo(c * x0 - s * y0, s * x0 + c * y0); context.lineTo(c * x1 - s * y1, s * x1 + c * y1); context.lineTo(c * x2 - s * y2, s * x2 + c * y2); context.lineTo(c * x0 + s * y0, c * y0 - s * x0); context.lineTo(c * x1 + s * y1, c * y1 - s * x1); context.lineTo(c * x2 + s * y2, c * y2 - s * x2); context.closePath(); } }; var times = { draw(context, size) { const r = sqrt(size - min(size / 6, 1.7)) * 0.6189; context.moveTo(-r, -r); context.lineTo(r, r); context.moveTo(-r, r); context.lineTo(r, -r); } }; // These symbols are designed to be filled. const symbolsFill = [ circle, cross, diamond, square, star, triangle, wye ]; // These symbols are designed to be stroked (with a width of 1.5px and round caps). const symbolsStroke = [ circle, plus, times, triangle2, asterisk, square2, diamond2 ]; function Symbol$1(type, size) { let context = null, path = withPath(symbol); type = typeof type === "function" ? type : constant$1(type || circle); size = typeof size === "function" ? size : constant$1(size === undefined ? 64 : +size); function symbol() { let buffer; if (!context) context = buffer = path(); type.apply(this, arguments).draw(context, +size.apply(this, arguments)); if (buffer) return context = null, buffer + "" || null; } symbol.type = function(_) { return arguments.length ? (type = typeof _ === "function" ? _ : constant$1(_), symbol) : type; }; symbol.size = function(_) { return arguments.length ? (size = typeof _ === "function" ? _ : constant$1(+_), symbol) : size; }; symbol.context = function(_) { return arguments.length ? (context = _ == null ? null : _, symbol) : context; }; return symbol; } function noop() {} function point$3(that, x, y) { that._context.bezierCurveTo( (2 * that._x0 + that._x1) / 3, (2 * that._y0 + that._y1) / 3, (that._x0 + 2 * that._x1) / 3, (that._y0 + 2 * that._y1) / 3, (that._x0 + 4 * that._x1 + x) / 6, (that._y0 + 4 * that._y1 + y) / 6 ); } function Basis(context) { this._context = context; } Basis.prototype = { areaStart: function() { this._line = 0; }, areaEnd: function() { this._line = NaN; }, lineStart: function() { this._x0 = this._x1 = this._y0 = this._y1 = NaN; this._point = 0; }, lineEnd: function() { switch (this._point) { case 3: point$3(this, this._x1, this._y1); // falls through case 2: this._context.lineTo(this._x1, this._y1); break; } if (this._line || (this._line !== 0 && this._point === 1)) this._context.closePath(); this._line = 1 - this._line; }, point: function(x, y) { x = +x, y = +y; switch (this._point) { case 0: this._point = 1; this._line ? this._context.lineTo(x, y) : this._context.moveTo(x, y); break; case 1: this._point = 2; break; case 2: this._point = 3; this._context.lineTo((5 * this._x0 + this._x1) / 6, (5 * this._y0 + this._y1) / 6); // falls through default: point$3(this, x, y); break; } this._x0 = this._x1, this._x1 = x; this._y0 = this._y1, this._y1 = y; } }; function basis(context) { return new Basis(context); } function BasisClosed(context) { this._context = context; } BasisClosed.prototype = { areaStart: noop, areaEnd: noop, lineStart: function() { this._x0 = this._x1 = this._x2 = this._x3 = this._x4 = this._y0 = this._y1 = this._y2 = this._y3 = this._y4 = NaN; this._point = 0; }, lineEnd: function() { switch (this._point) { case 1: { this._context.moveTo(this._x2, this._y2); this._context.closePath(); break; } case 2: { this._context.moveTo((this._x2 + 2 * this._x3) / 3, (this._y2 + 2 * this._y3) / 3); this._context.lineTo((this._x3 + 2 * this._x2) / 3, (this._y3 + 2 * this._y2) / 3); this._context.closePath(); break; } case 3: { this.point(this._x2, this._y2); this.point(this._x3, this._y3); this.point(this._x4, this._y4); break; } } }, point: function(x, y) { x = +x, y = +y; switch (this._point) { case 0: this._point = 1; this._x2 = x, this._y2 = y; break; case 1: this._point = 2; this._x3 = x, this._y3 = y; break; case 2: this._point = 3; this._x4 = x, this._y4 = y; this._context.moveTo((this._x0 + 4 * this._x1 + x) / 6, (this._y0 + 4 * this._y1 + y) / 6); break; default: point$3(this, x, y); break; } this._x0 = this._x1, this._x1 = x; this._y0 = this._y1, this._y1 = y; } }; function basisClosed(context) { return new BasisClosed(context); } function BasisOpen(context) { this._context = context; } BasisOpen.prototype = { areaStart: function() { this._line = 0; }, areaEnd: function() { this._line = NaN; }, lineStart: function() { this._x0 = this._x1 = this._y0 = this._y1 = NaN; this._point = 0; }, lineEnd: function() { if (this._line || (this._line !== 0 && this._point === 3)) this._context.closePath(); this._line = 1 - this._line; }, point: function(x, y) { x = +x, y = +y; switch (this._point) { case 0: this._point = 1; break; case 1: this._point = 2; break; case 2: this._point = 3; var x0 = (this._x0 + 4 * this._x1 + x) / 6, y0 = (this._y0 + 4 * this._y1 + y) / 6; this._line ? this._context.lineTo(x0, y0) : this._context.moveTo(x0, y0); break; case 3: this._point = 4; // falls through default: point$3(this, x, y); break; } this._x0 = this._x1, this._x1 = x; this._y0 = this._y1, this._y1 = y; } }; function basisOpen(context) { return new BasisOpen(context); } function Bundle(context, beta) { this._basis = new Basis(context); this._beta = beta; } Bundle.prototype = { lineStart: function() { this._x = []; this._y = []; this._basis.lineStart(); }, lineEnd: function() { var x = this._x, y = this._y, j = x.length - 1; if (j > 0) { var x0 = x[0], y0 = y[0], dx = x[j] - x0, dy = y[j] - y0, i = -1, t; while (++i <= j) { t = i / j; this._basis.point( this._beta * x[i] + (1 - this._beta) * (x0 + t * dx), this._beta * y[i] + (1 - this._beta) * (y0 + t * dy) ); } } this._x = this._y = null; this._basis.lineEnd(); }, point: function(x, y) { this._x.push(+x); this._y.push(+y); } }; var bundle = (function custom(beta) { function bundle(context) { return beta === 1 ? new Basis(context) : new Bundle(context, beta); } bundle.beta = function(beta) { return custom(+beta); }; return bundle; })(0.85); function point$2(that, x, y) { that._context.bezierCurveTo( that._x1 + that._k * (that._x2 - that._x0), that._y1 + that._k * (that._y2 - that._y0), that._x2 + that._k * (that._x1 - x), that._y2 + that._k * (that._y1 - y), that._x2, that._y2 ); } function Cardinal(context, tension) { this._context = context; this._k = (1 - tension) / 6; } Cardinal.prototype = { areaStart: function() { this._line = 0; }, areaEnd: function() { this._line = NaN; }, lineStart: function() { this._x0 = this._x1 = this._x2 = this._y0 = this._y1 = this._y2 = NaN; this._point = 0; }, lineEnd: function() { switch (this._point) { case 2: this._context.lineTo(this._x2, this._y2); break; case 3: point$2(this, this._x1, this._y1); break; } if (this._line || (this._line !== 0 && this._point === 1)) this._context.closePath(); this._line = 1 - this._line; }, point: function(x, y) { x = +x, y = +y; switch (this._point) { case 0: this._point = 1; this._line ? this._context.lineTo(x, y) : this._context.moveTo(x, y); break; case 1: this._point = 2; this._x1 = x, this._y1 = y; break; case 2: this._point = 3; // falls through default: point$2(this, x, y); break; } this._x0 = this._x1, this._x1 = this._x2, this._x2 = x; this._y0 = this._y1, this._y1 = this._y2, this._y2 = y; } }; var cardinal = (function custom(tension) { function cardinal(context) { return new Cardinal(context, tension); } cardinal.tension = function(tension) { return custom(+tension); }; return cardinal; })(0); function CardinalClosed(context, tension) { this._context = context; this._k = (1 - tension) / 6; } CardinalClosed.prototype = { areaStart: noop, areaEnd: noop, lineStart: function() { this._x0 = this._x1 = this._x2 = this._x3 = this._x4 = this._x5 = this._y0 = this._y1 = this._y2 = this._y3 = this._y4 = this._y5 = NaN; this._point = 0; }, lineEnd: function() { switch (this._point) { case 1: { this._context.moveTo(this._x3, this._y3); this._context.closePath(); break; } case 2: { this._context.lineTo(this._x3, this._y3); this._context.closePath(); break; } case 3: { this.point(this._x3, this._y3); this.point(this._x4, this._y4); this.point(this._x5, this._y5); break; } } }, point: function(x, y) { x = +x, y = +y; switch (this._point) { case 0: this._point = 1; this._x3 = x, this._y3 = y; break; case 1: this._point = 2; this._context.moveTo(this._x4 = x, this._y4 = y); break; case 2: this._point = 3; this._x5 = x, this._y5 = y; break; default: point$2(this, x, y); break; } this._x0 = this._x1, this._x1 = this._x2, this._x2 = x; this._y0 = this._y1, this._y1 = this._y2, this._y2 = y; } }; var cardinalClosed = (function custom(tension) { function cardinal(context) { return new CardinalClosed(context, tension); } cardinal.tension = function(tension) { return custom(+tension); }; return cardinal; })(0); function CardinalOpen(context, tension) { this._context = context; this._k = (1 - tension) / 6; } CardinalOpen.prototype = { areaStart: function() { this._line = 0; }, areaEnd: function() { this._line = NaN; }, lineStart: function() { this._x0 = this._x1 = this._x2 = this._y0 = this._y1 = this._y2 = NaN; this._point = 0; }, lineEnd: function() { if (this._line || (this._line !== 0 && this._point === 3)) this._context.closePath(); this._line = 1 - this._line; }, point: function(x, y) { x = +x, y = +y; switch (this._point) { case 0: this._point = 1; break; case 1: this._point = 2; break; case 2: this._point = 3; this._line ? this._context.lineTo(this._x2, this._y2) : this._context.moveTo(this._x2, this._y2); break; case 3: this._point = 4; // falls through default: point$2(this, x, y); break; } this._x0 = this._x1, this._x1 = this._x2, this._x2 = x; this._y0 = this._y1, this._y1 = this._y2, this._y2 = y; } }; var cardinalOpen = (function custom(tension) { function cardinal(context) { return new CardinalOpen(context, tension); } cardinal.tension = function(tension) { return custom(+tension); }; return cardinal; })(0); function point$1(that, x, y) { var x1 = that._x1, y1 = that._y1, x2 = that._x2, y2 = that._y2; if (that._l01_a > epsilon) { var a = 2 * that._l01_2a + 3 * that._l01_a * that._l12_a + that._l12_2a, n = 3 * that._l01_a * (that._l01_a + that._l12_a); x1 = (x1 * a - that._x0 * that._l12_2a + that._x2 * that._l01_2a) / n; y1 = (y1 * a - that._y0 * that._l12_2a + that._y2 * that._l01_2a) / n; } if (that._l23_a > epsilon) { var b = 2 * that._l23_2a + 3 * that._l23_a * that._l12_a + that._l12_2a, m = 3 * that._l23_a * (that._l23_a + that._l12_a); x2 = (x2 * b + that._x1 * that._l23_2a - x * that._l12_2a) / m; y2 = (y2 * b + that._y1 * that._l23_2a - y * that._l12_2a) / m; } that._context.bezierCurveTo(x1, y1, x2, y2, that._x2, that._y2); } function CatmullRom(context, alpha) { this._context = context; this._alpha = alpha; } CatmullRom.prototype = { areaStart: function() { this._line = 0; }, areaEnd: function() { this._line = NaN; }, lineStart: function() { this._x0 = this._x1 = this._x2 = this._y0 = this._y1 = this._y2 = NaN; this._l01_a = this._l12_a = this._l23_a = this._l01_2a = this._l12_2a = this._l23_2a = this._point = 0; }, lineEnd: function() { switch (this._point) { case 2: this._context.lineTo(this._x2, this._y2); break; case 3: this.point(this._x2, this._y2); break; } if (this._line || (this._line !== 0 && this._point === 1)) this._context.closePath(); this._line = 1 - this._line; }, point: function(x, y) { x = +x, y = +y; if (this._point) { var x23 = this._x2 - x, y23 = this._y2 - y; this._l23_a = Math.sqrt(this._l23_2a = Math.pow(x23 * x23 + y23 * y23, this._alpha)); } switch (this._point) { case 0: this._point = 1; this._line ? this._context.lineTo(x, y) : this._context.moveTo(x, y); break; case 1: this._point = 2; break; case 2: this._point = 3; // falls through default: point$1(this, x, y); break; } this._l01_a = this._l12_a, this._l12_a = this._l23_a; this._l01_2a = this._l12_2a, this._l12_2a = this._l23_2a; this._x0 = this._x1, this._x1 = this._x2, this._x2 = x; this._y0 = this._y1, this._y1 = this._y2, this._y2 = y; } }; var catmullRom = (function custom(alpha) { function catmullRom(context) { return alpha ? new CatmullRom(context, alpha) : new Cardinal(context, 0); } catmullRom.alpha = function(alpha) { return custom(+alpha); }; return catmullRom; })(0.5); function CatmullRomClosed(context, alpha) { this._context = context; this._alpha = alpha; } CatmullRomClosed.prototype = { areaStart: noop, areaEnd: noop, lineStart: function() { this._x0 = this._x1 = this._x2 = this._x3 = this._x4 = this._x5 = this._y0 = this._y1 = this._y2 = this._y3 = this._y4 = this._y5 = NaN; this._l01_a = this._l12_a = this._l23_a = this._l01_2a = this._l12_2a = this._l23_2a = this._point = 0; }, lineEnd: function() { switch (this._point) { case 1: { this._context.moveTo(this._x3, this._y3); this._context.closePath(); break; } case 2: { this._context.lineTo(this._x3, this._y3); this._context.closePath(); break; } case 3: { this.point(this._x3, this._y3); this.point(this._x4, this._y4); this.point(this._x5, this._y5); break; } } }, point: function(x, y) { x = +x, y = +y; if (this._point) { var x23 = this._x2 - x, y23 = this._y2 - y; this._l23_a = Math.sqrt(this._l23_2a = Math.pow(x23 * x23 + y23 * y23, this._alpha)); } switch (this._point) { case 0: this._point = 1; this._x3 = x, this._y3 = y; break; case 1: this._point = 2; this._context.moveTo(this._x4 = x, this._y4 = y); break; case 2: this._point = 3; this._x5 = x, this._y5 = y; break; default: point$1(this, x, y); break; } this._l01_a = this._l12_a, this._l12_a = this._l23_a; this._l01_2a = this._l12_2a, this._l12_2a = this._l23_2a; this._x0 = this._x1, this._x1 = this._x2, this._x2 = x; this._y0 = this._y1, this._y1 = this._y2, this._y2 = y; } }; var catmullRomClosed = (function custom(alpha) { function catmullRom(context) { return alpha ? new CatmullRomClosed(context, alpha) : new CardinalClosed(context, 0); } catmullRom.alpha = function(alpha) { return custom(+alpha); }; return catmullRom; })(0.5); function CatmullRomOpen(context, alpha) { this._context = context; this._alpha = alpha; } CatmullRomOpen.prototype = { areaStart: function() { this._line = 0; }, areaEnd: function() { this._line = NaN; }, lineStart: function() { this._x0 = this._x1 = this._x2 = this._y0 = this._y1 = this._y2 = NaN; this._l01_a = this._l12_a = this._l23_a = this._l01_2a = this._l12_2a = this._l23_2a = this._point = 0; }, lineEnd: function() { if (this._line || (this._line !== 0 && this._point === 3)) this._context.closePath(); this._line = 1 - this._line; }, point: function(x, y) { x = +x, y = +y; if (this._point) { var x23 = this._x2 - x, y23 = this._y2 - y; this._l23_a = Math.sqrt(this._l23_2a = Math.pow(x23 * x23 + y23 * y23, this._alpha)); } switch (this._point) { case 0: this._point = 1; break; case 1: this._point = 2; break; case 2: this._point = 3; this._line ? this._context.lineTo(this._x2, this._y2) : this._context.moveTo(this._x2, this._y2); break; case 3: this._point = 4; // falls through default: point$1(this, x, y); break; } this._l01_a = this._l12_a, this._l12_a = this._l23_a; this._l01_2a = this._l12_2a, this._l12_2a = this._l23_2a; this._x0 = this._x1, this._x1 = this._x2, this._x2 = x; this._y0 = this._y1, this._y1 = this._y2, this._y2 = y; } }; var catmullRomOpen = (function custom(alpha) { function catmullRom(context) { return alpha ? new CatmullRomOpen(context, alpha) : new CardinalOpen(context, 0); } catmullRom.alpha = function(alpha) { return custom(+alpha); }; return catmullRom; })(0.5); function LinearClosed(context) { this._context = context; } LinearClosed.prototype = { areaStart: noop, areaEnd: noop, lineStart: function() { this._point = 0; }, lineEnd: function() { if (this._point) this._context.closePath(); }, point: function(x, y) { x = +x, y = +y; if (this._point) this._context.lineTo(x, y); else this._point = 1, this._context.moveTo(x, y); } }; function linearClosed(context) { return new LinearClosed(context); } function sign(x) { return x < 0 ? -1 : 1; } // Calculate the slopes of the tangents (Hermite-type interpolation) based on // the following paper: Steffen, M. 1990. A Simple Method for Monotonic // Interpolation in One Dimension. Astronomy and Astrophysics, Vol. 239, NO. // NOV(II), P. 443, 1990. function slope3(that, x2, y2) { var h0 = that._x1 - that._x0, h1 = x2 - that._x1, s0 = (that._y1 - that._y0) / (h0 || h1 < 0 && -0), s1 = (y2 - that._y1) / (h1 || h0 < 0 && -0), p = (s0 * h1 + s1 * h0) / (h0 + h1); return (sign(s0) + sign(s1)) * Math.min(Math.abs(s0), Math.abs(s1), 0.5 * Math.abs(p)) || 0; } // Calculate a one-sided slope. function slope2(that, t) { var h = that._x1 - that._x0; return h ? (3 * (that._y1 - that._y0) / h - t) / 2 : t; } // According to https://en.wikipedia.org/wiki/Cubic_Hermite_spline#Representations // "you can express cubic Hermite interpolation in terms of cubic Bézier curves // with respect to the four values p0, p0 + m0 / 3, p1 - m1 / 3, p1". function point(that, t0, t1) { var x0 = that._x0, y0 = that._y0, x1 = that._x1, y1 = that._y1, dx = (x1 - x0) / 3; that._context.bezierCurveTo(x0 + dx, y0 + dx * t0, x1 - dx, y1 - dx * t1, x1, y1); } function MonotoneX(context) { this._context = context; } MonotoneX.prototype = { areaStart: function() { this._line = 0; }, areaEnd: function() { this._line = NaN; }, lineStart: function() { this._x0 = this._x1 = this._y0 = this._y1 = this._t0 = NaN; this._point = 0; }, lineEnd: function() { switch (this._point) { case 2: this._context.lineTo(this._x1, this._y1); break; case 3: point(this, this._t0, slope2(this, this._t0)); break; } if (this._line || (this._line !== 0 && this._point === 1)) this._context.closePath(); this._line = 1 - this._line; }, point: function(x, y) { var t1 = NaN; x = +x, y = +y; if (x === this._x1 && y === this._y1) return; // Ignore coincident points. switch (this._point) { case 0: this._point = 1; this._line ? this._context.lineTo(x, y) : this._context.moveTo(x, y); break; case 1: this._point = 2; break; case 2: this._point = 3; point(this, slope2(this, t1 = slope3(this, x, y)), t1); break; default: point(this, this._t0, t1 = slope3(this, x, y)); break; } this._x0 = this._x1, this._x1 = x; this._y0 = this._y1, this._y1 = y; this._t0 = t1; } }; function MonotoneY(context) { this._context = new ReflectContext(context); } (MonotoneY.prototype = Object.create(MonotoneX.prototype)).point = function(x, y) { MonotoneX.prototype.point.call(this, y, x); }; function ReflectContext(context) { this._context = context; } ReflectContext.prototype = { moveTo: function(x, y) { this._context.moveTo(y, x); }, closePath: function() { this._context.closePath(); }, lineTo: function(x, y) { this._context.lineTo(y, x); }, bezierCurveTo: function(x1, y1, x2, y2, x, y) { this._context.bezierCurveTo(y1, x1, y2, x2, y, x); } }; function monotoneX(context) { return new MonotoneX(context); } function monotoneY(context) { return new MonotoneY(context); } function Natural(context) { this._context = context; } Natural.prototype = { areaStart: function() { this._line = 0; }, areaEnd: function() { this._line = NaN; }, lineStart: function() { this._x = []; this._y = []; }, lineEnd: function() { var x = this._x, y = this._y, n = x.length; if (n) { this._line ? this._context.lineTo(x[0], y[0]) : this._context.moveTo(x[0], y[0]); if (n === 2) { this._context.lineTo(x[1], y[1]); } else { var px = controlPoints(x), py = controlPoints(y); for (var i0 = 0, i1 = 1; i1 < n; ++i0, ++i1) { this._context.bezierCurveTo(px[0][i0], py[0][i0], px[1][i0], py[1][i0], x[i1], y[i1]); } } } if (this._line || (this._line !== 0 && n === 1)) this._context.closePath(); this._line = 1 - this._line; this._x = this._y = null; }, point: function(x, y) { this._x.push(+x); this._y.push(+y); } }; // See https://www.particleincell.com/2012/bezier-splines/ for derivation. function controlPoints(x) { var i, n = x.length - 1, m, a = new Array(n), b = new Array(n), r = new Array(n); a[0] = 0, b[0] = 2, r[0] = x[0] + 2 * x[1]; for (i = 1; i < n - 1; ++i) a[i] = 1, b[i] = 4, r[i] = 4 * x[i] + 2 * x[i + 1]; a[n - 1] = 2, b[n - 1] = 7, r[n - 1] = 8 * x[n - 1] + x[n]; for (i = 1; i < n; ++i) m = a[i] / b[i - 1], b[i] -= m, r[i] -= m * r[i - 1]; a[n - 1] = r[n - 1] / b[n - 1]; for (i = n - 2; i >= 0; --i) a[i] = (r[i] - a[i + 1]) / b[i]; b[n - 1] = (x[n] + a[n - 1]) / 2; for (i = 0; i < n - 1; ++i) b[i] = 2 * x[i + 1] - a[i + 1]; return [a, b]; } function natural(context) { return new Natural(context); } function Step(context, t) { this._context = context; this._t = t; } Step.prototype = { areaStart: function() { this._line = 0; }, areaEnd: function() { this._line = NaN; }, lineStart: function() { this._x = this._y = NaN; this._point = 0; }, lineEnd: function() { if (0 < this._t && this._t < 1 && this._point === 2) this._context.lineTo(this._x, this._y); if (this._line || (this._line !== 0 && this._point === 1)) this._context.closePath(); if (this._line >= 0) this._t = 1 - this._t, this._line = 1 - this._line; }, point: function(x, y) { x = +x, y = +y; switch (this._point) { case 0: this._point = 1; this._line ? this._context.lineTo(x, y) : this._context.moveTo(x, y); break; case 1: this._point = 2; // falls through default: { if (this._t <= 0) { this._context.lineTo(this._x, y); this._context.lineTo(x, y); } else { var x1 = this._x * (1 - this._t) + x * this._t; this._context.lineTo(x1, this._y); this._context.lineTo(x1, y); } break; } } this._x = x, this._y = y; } }; function step(context) { return new Step(context, 0.5); } function stepBefore(context) { return new Step(context, 0); } function stepAfter(context) { return new Step(context, 1); } function none$1(series, order) { if (!((n = series.length) > 1)) return; for (var i = 1, j, s0, s1 = series[order[0]], n, m = s1.length; i < n; ++i) { s0 = s1, s1 = series[order[i]]; for (j = 0; j < m; ++j) { s1[j][1] += s1[j][0] = isNaN(s0[j][1]) ? s0[j][0] : s0[j][1]; } } } function none(series) { var n = series.length, o = new Array(n); while (--n >= 0) o[n] = n; return o; } function stackValue(d, key) { return d[key]; } function stackSeries(key) { const series = []; series.key = key; return series; } function stack() { var keys = constant$1([]), order = none, offset = none$1, value = stackValue; function stack(data) { var sz = Array.from(keys.apply(this, arguments), stackSeries), i, n = sz.length, j = -1, oz; for (const d of data) { for (i = 0, ++j; i < n; ++i) { (sz[i][j] = [0, +value(d, sz[i].key, j, data)]).data = d; } } for (i = 0, oz = array(order(sz)); i < n; ++i) { sz[oz[i]].index = i; } offset(sz, oz); return sz; } stack.keys = function(_) { return arguments.length ? (keys = typeof _ === "function" ? _ : constant$1(Array.from(_)), stack) : keys; }; stack.value = function(_) { return arguments.length ? (value = typeof _ === "function" ? _ : constant$1(+_), stack) : value; }; stack.order = function(_) { return arguments.length ? (order = _ == null ? none : typeof _ === "function" ? _ : constant$1(Array.from(_)), stack) : order; }; stack.offset = function(_) { return arguments.length ? (offset = _ == null ? none$1 : _, stack) : offset; }; return stack; } function expand(series, order) { if (!((n = series.length) > 0)) return; for (var i, n, j = 0, m = series[0].length, y; j < m; ++j) { for (y = i = 0; i < n; ++i) y += series[i][j][1] || 0; if (y) for (i = 0; i < n; ++i) series[i][j][1] /= y; } none$1(series, order); } function diverging(series, order) { if (!((n = series.length) > 0)) return; for (var i, j = 0, d, dy, yp, yn, n, m = series[order[0]].length; j < m; ++j) { for (yp = yn = 0, i = 0; i < n; ++i) { if ((dy = (d = series[order[i]][j])[1] - d[0]) > 0) { d[0] = yp, d[1] = yp += dy; } else if (dy < 0) { d[1] = yn, d[0] = yn += dy; } else { d[0] = 0, d[1] = dy; } } } } function silhouette(series, order) { if (!((n = series.length) > 0)) return; for (var j = 0, s0 = series[order[0]], n, m = s0.length; j < m; ++j) { for (var i = 0, y = 0; i < n; ++i) y += series[i][j][1] || 0; s0[j][1] += s0[j][0] = -y / 2; } none$1(series, order); } function wiggle(series, order) { if (!((n = series.length) > 0) || !((m = (s0 = series[order[0]]).length) > 0)) return; for (var y = 0, j = 1, s0, m, n; j < m; ++j) { for (var i = 0, s1 = 0, s2 = 0; i < n; ++i) { var si = series[order[i]], sij0 = si[j][1] || 0, sij1 = si[j - 1][1] || 0, s3 = (sij0 - sij1) / 2; for (var k = 0; k < i; ++k) { var sk = series[order[k]], skj0 = sk[j][1] || 0, skj1 = sk[j - 1][1] || 0; s3 += skj0 - skj1; } s1 += sij0, s2 += s3 * sij0; } s0[j - 1][1] += s0[j - 1][0] = y; if (s1) y -= s2 / s1; } s0[j - 1][1] += s0[j - 1][0] = y; none$1(series, order); } function appearance(series) { var peaks = series.map(peak); return none(series).sort(function(a, b) { return peaks[a] - peaks[b]; }); } function peak(series) { var i = -1, j = 0, n = series.length, vi, vj = -Infinity; while (++i < n) if ((vi = +series[i][1]) > vj) vj = vi, j = i; return j; } function ascending(series) { var sums = series.map(sum); return none(series).sort(function(a, b) { return sums[a] - sums[b]; }); } function sum(series) { var s = 0, i = -1, n = series.length, v; while (++i < n) if (v = +series[i][1]) s += v; return s; } function descending(series) { return ascending(series).reverse(); } function insideOut(series) { var n = series.length, i, j, sums = series.map(sum), order = appearance(series), top = 0, bottom = 0, tops = [], bottoms = []; for (i = 0; i < n; ++i) { j = order[i]; if (top < bottom) { top += sums[j]; tops.push(j); } else { bottom += sums[j]; bottoms.push(j); } } return bottoms.reverse().concat(tops); } function reverse(series) { return none(series).reverse(); } var constant = x => () => x; function ZoomEvent(type, { sourceEvent, target, transform, dispatch }) { Object.defineProperties(this, { type: {value: type, enumerable: true, configurable: true}, sourceEvent: {value: sourceEvent, enumerable: true, configurable: true}, target: {value: target, enumerable: true, configurable: true}, transform: {value: transform, enumerable: true, configurable: true}, _: {value: dispatch} }); } function Transform(k, x, y) { this.k = k; this.x = x; this.y = y; } Transform.prototype = { constructor: Transform, scale: function(k) { return k === 1 ? this : new Transform(this.k * k, this.x, this.y); }, translate: function(x, y) { return x === 0 & y === 0 ? this : new Transform(this.k, this.x + this.k * x, this.y + this.k * y); }, apply: function(point) { return [point[0] * this.k + this.x, point[1] * this.k + this.y]; }, applyX: function(x) { return x * this.k + this.x; }, applyY: function(y) { return y * this.k + this.y; }, invert: function(location) { return [(location[0] - this.x) / this.k, (location[1] - this.y) / this.k]; }, invertX: function(x) { return (x - this.x) / this.k; }, invertY: function(y) { return (y - this.y) / this.k; }, rescaleX: function(x) { return x.copy().domain(x.range().map(this.invertX, this).map(x.invert, x)); }, rescaleY: function(y) { return y.copy().domain(y.range().map(this.invertY, this).map(y.invert, y)); }, toString: function() { return "translate(" + this.x + "," + this.y + ") scale(" + this.k + ")"; } }; var identity = new Transform(1, 0, 0); transform.prototype = Transform.prototype; function transform(node) { while (!node.__zoom) if (!(node = node.parentNode)) return identity; return node.__zoom; } function nopropagation(event) { event.stopImmediatePropagation(); } function noevent(event) { event.preventDefault(); event.stopImmediatePropagation(); } // Ignore right-click, since that should open the context menu. // except for pinch-to-zoom, which is sent as a wheel+ctrlKey event function defaultFilter(event) { return (!event.ctrlKey || event.type === 'wheel') && !event.button; } function defaultExtent() { var e = this; if (e instanceof SVGElement) { e = e.ownerSVGElement || e; if (e.hasAttribute("viewBox")) { e = e.viewBox.baseVal; return [[e.x, e.y], [e.x + e.width, e.y + e.height]]; } return [[0, 0], [e.width.baseVal.value, e.height.baseVal.value]]; } return [[0, 0], [e.clientWidth, e.clientHeight]]; } function defaultTransform() { return this.__zoom || identity; } function defaultWheelDelta(event) { return -event.deltaY * (event.deltaMode === 1 ? 0.05 : event.deltaMode ? 1 : 0.002) * (event.ctrlKey ? 10 : 1); } function defaultTouchable() { return navigator.maxTouchPoints || ("ontouchstart" in this); } function defaultConstrain(transform, extent, translateExtent) { var dx0 = transform.invertX(extent[0][0]) - translateExtent[0][0], dx1 = transform.invertX(extent[1][0]) - translateExtent[1][0], dy0 = transform.invertY(extent[0][1]) - translateExtent[0][1], dy1 = transform.invertY(extent[1][1]) - translateExtent[1][1]; return transform.translate( dx1 > dx0 ? (dx0 + dx1) / 2 : Math.min(0, dx0) || Math.max(0, dx1), dy1 > dy0 ? (dy0 + dy1) / 2 : Math.min(0, dy0) || Math.max(0, dy1) ); } function zoom() { var filter = defaultFilter, extent = defaultExtent, constrain = defaultConstrain, wheelDelta = defaultWheelDelta, touchable = defaultTouchable, scaleExtent = [0, Infinity], translateExtent = [[-Infinity, -Infinity], [Infinity, Infinity]], duration = 250, interpolate = interpolateZoom, listeners = dispatch("start", "zoom", "end"), touchstarting, touchfirst, touchending, touchDelay = 500, wheelDelay = 150, clickDistance2 = 0, tapDistance = 10; function zoom(selection) { selection .property("__zoom", defaultTransform) .on("wheel.zoom", wheeled, {passive: false}) .on("mousedown.zoom", mousedowned) .on("dblclick.zoom", dblclicked) .filter(touchable) .on("touchstart.zoom", touchstarted) .on("touchmove.zoom", touchmoved) .on("touchend.zoom touchcancel.zoom", touchended) .style("-webkit-tap-highlight-color", "rgba(0,0,0,0)"); } zoom.transform = function(collection, transform, point, event) { var selection = collection.selection ? collection.selection() : collection; selection.property("__zoom", defaultTransform); if (collection !== selection) { schedule(collection, transform, point, event); } else { selection.interrupt().each(function() { gesture(this, arguments) .event(event) .start() .zoom(null, typeof transform === "function" ? transform.apply(this, arguments) : transform) .end(); }); } }; zoom.scaleBy = function(selection, k, p, event) { zoom.scaleTo(selection, function() { var k0 = this.__zoom.k, k1 = typeof k === "function" ? k.apply(this, arguments) : k; return k0 * k1; }, p, event); }; zoom.scaleTo = function(selection, k, p, event) { zoom.transform(selection, function() { var e = extent.apply(this, arguments), t0 = this.__zoom, p0 = p == null ? centroid(e) : typeof p === "function" ? p.apply(this, arguments) : p, p1 = t0.invert(p0), k1 = typeof k === "function" ? k.apply(this, arguments) : k; return constrain(translate(scale(t0, k1), p0, p1), e, translateExtent); }, p, event); }; zoom.translateBy = function(selection, x, y, event) { zoom.transform(selection, function() { return constrain(this.__zoom.translate( typeof x === "function" ? x.apply(this, arguments) : x, typeof y === "function" ? y.apply(this, arguments) : y ), extent.apply(this, arguments), translateExtent); }, null, event); }; zoom.translateTo = function(selection, x, y, p, event) { zoom.transform(selection, function() { var e = extent.apply(this, arguments), t = this.__zoom, p0 = p == null ? centroid(e) : typeof p === "function" ? p.apply(this, arguments) : p; return constrain(identity.translate(p0[0], p0[1]).scale(t.k).translate( typeof x === "function" ? -x.apply(this, arguments) : -x, typeof y === "function" ? -y.apply(this, arguments) : -y ), e, translateExtent); }, p, event); }; function scale(transform, k) { k = Math.max(scaleExtent[0], Math.min(scaleExtent[1], k)); return k === transform.k ? transform : new Transform(k, transform.x, transform.y); } function translate(transform, p0, p1) { var x = p0[0] - p1[0] * transform.k, y = p0[1] - p1[1] * transform.k; return x === transform.x && y === transform.y ? transform : new Transform(transform.k, x, y); } function centroid(extent) { return [(+extent[0][0] + +extent[1][0]) / 2, (+extent[0][1] + +extent[1][1]) / 2]; } function schedule(transition, transform, point, event) { transition .on("start.zoom", function() { gesture(this, arguments).event(event).start(); }) .on("interrupt.zoom end.zoom", function() { gesture(this, arguments).event(event).end(); }) .tween("zoom", function() { var that = this, args = arguments, g = gesture(that, args).event(event), e = extent.apply(that, args), p = point == null ? centroid(e) : typeof point === "function" ? point.apply(that, args) : point, w = Math.max(e[1][0] - e[0][0], e[1][1] - e[0][1]), a = that.__zoom, b = typeof transform === "function" ? transform.apply(that, args) : transform, i = interpolate(a.invert(p).concat(w / a.k), b.invert(p).concat(w / b.k)); return function(t) { if (t === 1) t = b; // Avoid rounding error on end. else { var l = i(t), k = w / l[2]; t = new Transform(k, p[0] - l[0] * k, p[1] - l[1] * k); } g.zoom(null, t); }; }); } function gesture(that, args, clean) { return (!clean && that.__zooming) || new Gesture(that, args); } function Gesture(that, args) { this.that = that; this.args = args; this.active = 0; this.sourceEvent = null; this.extent = extent.apply(that, args); this.taps = 0; } Gesture.prototype = { event: function(event) { if (event) this.sourceEvent = event; return this; }, start: function() { if (++this.active === 1) { this.that.__zooming = this; this.emit("start"); } return this; }, zoom: function(key, transform) { if (this.mouse && key !== "mouse") this.mouse[1] = transform.invert(this.mouse[0]); if (this.touch0 && key !== "touch") this.touch0[1] = transform.invert(this.touch0[0]); if (this.touch1 && key !== "touch") this.touch1[1] = transform.invert(this.touch1[0]); this.that.__zoom = transform; this.emit("zoom"); return this; }, end: function() { if (--this.active === 0) { delete this.that.__zooming; this.emit("end"); } return this; }, emit: function(type) { var d = select(this.that).datum(); listeners.call( type, this.that, new ZoomEvent(type, { sourceEvent: this.sourceEvent, target: zoom, type, transform: this.that.__zoom, dispatch: listeners }), d ); } }; function wheeled(event, ...args) { if (!filter.apply(this, arguments)) return; var g = gesture(this, args).event(event), t = this.__zoom, k = Math.max(scaleExtent[0], Math.min(scaleExtent[1], t.k * Math.pow(2, wheelDelta.apply(this, arguments)))), p = pointer(event); // If the mouse is in the same location as before, reuse it. // If there were recent wheel events, reset the wheel idle timeout. if (g.wheel) { if (g.mouse[0][0] !== p[0] || g.mouse[0][1] !== p[1]) { g.mouse[1] = t.invert(g.mouse[0] = p); } clearTimeout(g.wheel); } // If this wheel event won’t trigger a transform change, ignore it. else if (t.k === k) return; // Otherwise, capture the mouse point and location at the start. else { g.mouse = [p, t.invert(p)]; interrupt(this); g.start(); } noevent(event); g.wheel = setTimeout(wheelidled, wheelDelay); g.zoom("mouse", constrain(translate(scale(t, k), g.mouse[0], g.mouse[1]), g.extent, translateExtent)); function wheelidled() { g.wheel = null; g.end(); } } function mousedowned(event, ...args) { if (touchending || !filter.apply(this, arguments)) return; var currentTarget = event.currentTarget, g = gesture(this, args, true).event(event), v = select(event.view).on("mousemove.zoom", mousemoved, true).on("mouseup.zoom", mouseupped, true), p = pointer(event, currentTarget), x0 = event.clientX, y0 = event.clientY; dragDisable(event.view); nopropagation(event); g.mouse = [p, this.__zoom.invert(p)]; interrupt(this); g.start(); function mousemoved(event) { noevent(event); if (!g.moved) { var dx = event.clientX - x0, dy = event.clientY - y0; g.moved = dx * dx + dy * dy > clickDistance2; } g.event(event) .zoom("mouse", constrain(translate(g.that.__zoom, g.mouse[0] = pointer(event, currentTarget), g.mouse[1]), g.extent, translateExtent)); } function mouseupped(event) { v.on("mousemove.zoom mouseup.zoom", null); yesdrag(event.view, g.moved); noevent(event); g.event(event).end(); } } function dblclicked(event, ...args) { if (!filter.apply(this, arguments)) return; var t0 = this.__zoom, p0 = pointer(event.changedTouches ? event.changedTouches[0] : event, this), p1 = t0.invert(p0), k1 = t0.k * (event.shiftKey ? 0.5 : 2), t1 = constrain(translate(scale(t0, k1), p0, p1), extent.apply(this, args), translateExtent); noevent(event); if (duration > 0) select(this).transition().duration(duration).call(schedule, t1, p0, event); else select(this).call(zoom.transform, t1, p0, event); } function touchstarted(event, ...args) { if (!filter.apply(this, arguments)) return; var touches = event.touches, n = touches.length, g = gesture(this, args, event.changedTouches.length === n).event(event), started, i, t, p; nopropagation(event); for (i = 0; i < n; ++i) { t = touches[i], p = pointer(t, this); p = [p, this.__zoom.invert(p), t.identifier]; if (!g.touch0) g.touch0 = p, started = true, g.taps = 1 + !!touchstarting; else if (!g.touch1 && g.touch0[2] !== p[2]) g.touch1 = p, g.taps = 0; } if (touchstarting) touchstarting = clearTimeout(touchstarting); if (started) { if (g.taps < 2) touchfirst = p[0], touchstarting = setTimeout(function() { touchstarting = null; }, touchDelay); interrupt(this); g.start(); } } function touchmoved(event, ...args) { if (!this.__zooming) return; var g = gesture(this, args).event(event), touches = event.changedTouches, n = touches.length, i, t, p, l; noevent(event); for (i = 0; i < n; ++i) { t = touches[i], p = pointer(t, this); if (g.touch0 && g.touch0[2] === t.identifier) g.touch0[0] = p; else if (g.touch1 && g.touch1[2] === t.identifier) g.touch1[0] = p; } t = g.that.__zoom; if (g.touch1) { var p0 = g.touch0[0], l0 = g.touch0[1], p1 = g.touch1[0], l1 = g.touch1[1], dp = (dp = p1[0] - p0[0]) * dp + (dp = p1[1] - p0[1]) * dp, dl = (dl = l1[0] - l0[0]) * dl + (dl = l1[1] - l0[1]) * dl; t = scale(t, Math.sqrt(dp / dl)); p = [(p0[0] + p1[0]) / 2, (p0[1] + p1[1]) / 2]; l = [(l0[0] + l1[0]) / 2, (l0[1] + l1[1]) / 2]; } else if (g.touch0) p = g.touch0[0], l = g.touch0[1]; else return; g.zoom("touch", constrain(translate(t, p, l), g.extent, translateExtent)); } function touchended(event, ...args) { if (!this.__zooming) return; var g = gesture(this, args).event(event), touches = event.changedTouches, n = touches.length, i, t; nopropagation(event); if (touchending) clearTimeout(touchending); touchending = setTimeout(function() { touchending = null; }, touchDelay); for (i = 0; i < n; ++i) { t = touches[i]; if (g.touch0 && g.touch0[2] === t.identifier) delete g.touch0; else if (g.touch1 && g.touch1[2] === t.identifier) delete g.touch1; } if (g.touch1 && !g.touch0) g.touch0 = g.touch1, delete g.touch1; if (g.touch0) g.touch0[1] = this.__zoom.invert(g.touch0[0]); else { g.end(); // If this was a dbltap, reroute to the (optional) dblclick.zoom handler. if (g.taps === 2) { t = pointer(t, this); if (Math.hypot(touchfirst[0] - t[0], touchfirst[1] - t[1]) < tapDistance) { var p = select(this).on("dblclick.zoom"); if (p) p.apply(this, arguments); } } } } zoom.wheelDelta = function(_) { return arguments.length ? (wheelDelta = typeof _ === "function" ? _ : constant(+_), zoom) : wheelDelta; }; zoom.filter = function(_) { return arguments.length ? (filter = typeof _ === "function" ? _ : constant(!!_), zoom) : filter; }; zoom.touchable = function(_) { return arguments.length ? (touchable = typeof _ === "function" ? _ : constant(!!_), zoom) : touchable; }; zoom.extent = function(_) { return arguments.length ? (extent = typeof _ === "function" ? _ : constant([[+_[0][0], +_[0][1]], [+_[1][0], +_[1][1]]]), zoom) : extent; }; zoom.scaleExtent = function(_) { return arguments.length ? (scaleExtent[0] = +_[0], scaleExtent[1] = +_[1], zoom) : [scaleExtent[0], scaleExtent[1]]; }; zoom.translateExtent = function(_) { return arguments.length ? (translateExtent[0][0] = +_[0][0], translateExtent[1][0] = +_[1][0], translateExtent[0][1] = +_[0][1], translateExtent[1][1] = +_[1][1], zoom) : [[translateExtent[0][0], translateExtent[0][1]], [translateExtent[1][0], translateExtent[1][1]]]; }; zoom.constrain = function(_) { return arguments.length ? (constrain = _, zoom) : constrain; }; zoom.duration = function(_) { return arguments.length ? (duration = +_, zoom) : duration; }; zoom.interpolate = function(_) { return arguments.length ? (interpolate = _, zoom) : interpolate; }; zoom.on = function() { var value = listeners.on.apply(listeners, arguments); return value === listeners ? zoom : value; }; zoom.clickDistance = function(_) { return arguments.length ? (clickDistance2 = (_ = +_) * _, zoom) : Math.sqrt(clickDistance2); }; zoom.tapDistance = function(_) { return arguments.length ? (tapDistance = +_, zoom) : tapDistance; }; return zoom; } exports.Adder = Adder; exports.Delaunay = Delaunay; exports.FormatSpecifier = FormatSpecifier; exports.InternMap = InternMap; exports.InternSet = InternSet; exports.Node = Node$1; exports.Path = Path$1; exports.Voronoi = Voronoi; exports.ZoomTransform = Transform; exports.active = active; exports.arc = arc; exports.area = area; exports.areaRadial = areaRadial; exports.ascending = ascending$3; exports.autoType = autoType; exports.axisBottom = axisBottom; exports.axisLeft = axisLeft; exports.axisRight = axisRight; exports.axisTop = axisTop; exports.bin = bin; exports.bisect = bisect; exports.bisectCenter = bisectCenter; exports.bisectLeft = bisectLeft; exports.bisectRight = bisectRight; exports.bisector = bisector; exports.blob = blob; exports.blur = blur; exports.blur2 = blur2; exports.blurImage = blurImage; exports.brush = brush; exports.brushSelection = brushSelection; exports.brushX = brushX; exports.brushY = brushY; exports.buffer = buffer; exports.chord = chord; exports.chordDirected = chordDirected; exports.chordTranspose = chordTranspose; exports.cluster = cluster; exports.color = color; exports.contourDensity = density; exports.contours = Contours; exports.count = count$1; exports.create = create$1; exports.creator = creator; exports.cross = cross$2; exports.csv = csv; exports.csvFormat = csvFormat; exports.csvFormatBody = csvFormatBody; exports.csvFormatRow = csvFormatRow; exports.csvFormatRows = csvFormatRows; exports.csvFormatValue = csvFormatValue; exports.csvParse = csvParse; exports.csvParseRows = csvParseRows; exports.cubehelix = cubehelix$3; exports.cumsum = cumsum; exports.curveBasis = basis; exports.curveBasisClosed = basisClosed; exports.curveBasisOpen = basisOpen; exports.curveBumpX = bumpX; exports.curveBumpY = bumpY; exports.curveBundle = bundle; exports.curveCardinal = cardinal; exports.curveCardinalClosed = cardinalClosed; exports.curveCardinalOpen = cardinalOpen; exports.curveCatmullRom = catmullRom; exports.curveCatmullRomClosed = catmullRomClosed; exports.curveCatmullRomOpen = catmullRomOpen; exports.curveLinear = curveLinear; exports.curveLinearClosed = linearClosed; exports.curveMonotoneX = monotoneX; exports.curveMonotoneY = monotoneY; exports.curveNatural = natural; exports.curveStep = step; exports.curveStepAfter = stepAfter; exports.curveStepBefore = stepBefore; exports.descending = descending$2; exports.deviation = deviation; exports.difference = difference; exports.disjoint = disjoint; exports.dispatch = dispatch; exports.drag = drag; exports.dragDisable = dragDisable; exports.dragEnable = yesdrag; exports.dsv = dsv; exports.dsvFormat = dsvFormat; exports.easeBack = backInOut; exports.easeBackIn = backIn; exports.easeBackInOut = backInOut; exports.easeBackOut = backOut; exports.easeBounce = bounceOut; exports.easeBounceIn = bounceIn; exports.easeBounceInOut = bounceInOut; exports.easeBounceOut = bounceOut; exports.easeCircle = circleInOut; exports.easeCircleIn = circleIn; exports.easeCircleInOut = circleInOut; exports.easeCircleOut = circleOut; exports.easeCubic = cubicInOut; exports.easeCubicIn = cubicIn; exports.easeCubicInOut = cubicInOut; exports.easeCubicOut = cubicOut; exports.easeElastic = elasticOut; exports.easeElasticIn = elasticIn; exports.easeElasticInOut = elasticInOut; exports.easeElasticOut = elasticOut; exports.easeExp = expInOut; exports.easeExpIn = expIn; exports.easeExpInOut = expInOut; exports.easeExpOut = expOut; exports.easeLinear = linear$1; exports.easePoly = polyInOut; exports.easePolyIn = polyIn; exports.easePolyInOut = polyInOut; exports.easePolyOut = polyOut; exports.easeQuad = quadInOut; exports.easeQuadIn = quadIn; exports.easeQuadInOut = quadInOut; exports.easeQuadOut = quadOut; exports.easeSin = sinInOut; exports.easeSinIn = sinIn; exports.easeSinInOut = sinInOut; exports.easeSinOut = sinOut; exports.every = every; exports.extent = extent$1; exports.fcumsum = fcumsum; exports.filter = filter$1; exports.flatGroup = flatGroup; exports.flatRollup = flatRollup; exports.forceCenter = center; exports.forceCollide = collide; exports.forceLink = link$2; exports.forceManyBody = manyBody; exports.forceRadial = radial$1; exports.forceSimulation = simulation; exports.forceX = x$1; exports.forceY = y$1; exports.formatDefaultLocale = defaultLocale$1; exports.formatLocale = formatLocale$1; exports.formatSpecifier = formatSpecifier; exports.fsum = fsum; exports.geoAlbers = albers; exports.geoAlbersUsa = albersUsa; exports.geoArea = area$2; exports.geoAzimuthalEqualArea = azimuthalEqualArea; exports.geoAzimuthalEqualAreaRaw = azimuthalEqualAreaRaw; exports.geoAzimuthalEquidistant = azimuthalEquidistant; exports.geoAzimuthalEquidistantRaw = azimuthalEquidistantRaw; exports.geoBounds = bounds; exports.geoCentroid = centroid$1; exports.geoCircle = circle$1; exports.geoClipAntimeridian = clipAntimeridian; exports.geoClipCircle = clipCircle; exports.geoClipExtent = extent; exports.geoClipRectangle = clipRectangle; exports.geoConicConformal = conicConformal; exports.geoConicConformalRaw = conicConformalRaw; exports.geoConicEqualArea = conicEqualArea; exports.geoConicEqualAreaRaw = conicEqualAreaRaw; exports.geoConicEquidistant = conicEquidistant; exports.geoConicEquidistantRaw = conicEquidistantRaw; exports.geoContains = contains$1; exports.geoDistance = distance; exports.geoEqualEarth = equalEarth; exports.geoEqualEarthRaw = equalEarthRaw; exports.geoEquirectangular = equirectangular; exports.geoEquirectangularRaw = equirectangularRaw; exports.geoGnomonic = gnomonic; exports.geoGnomonicRaw = gnomonicRaw; exports.geoGraticule = graticule; exports.geoGraticule10 = graticule10; exports.geoIdentity = identity$4; exports.geoInterpolate = interpolate; exports.geoLength = length$1; exports.geoMercator = mercator; exports.geoMercatorRaw = mercatorRaw; exports.geoNaturalEarth1 = naturalEarth1; exports.geoNaturalEarth1Raw = naturalEarth1Raw; exports.geoOrthographic = orthographic; exports.geoOrthographicRaw = orthographicRaw; exports.geoPath = index$2; exports.geoProjection = projection; exports.geoProjectionMutator = projectionMutator; exports.geoRotation = rotation; exports.geoStereographic = stereographic; exports.geoStereographicRaw = stereographicRaw; exports.geoStream = geoStream; exports.geoTransform = transform$1; exports.geoTransverseMercator = transverseMercator; exports.geoTransverseMercatorRaw = transverseMercatorRaw; exports.gray = gray; exports.greatest = greatest; exports.greatestIndex = greatestIndex; exports.group = group; exports.groupSort = groupSort; exports.groups = groups; exports.hcl = hcl$2; exports.hierarchy = hierarchy; exports.histogram = bin; exports.hsl = hsl$2; exports.html = html; exports.image = image; exports.index = index$4; exports.indexes = indexes; exports.interpolate = interpolate$2; exports.interpolateArray = array$3; exports.interpolateBasis = basis$2; exports.interpolateBasisClosed = basisClosed$1; exports.interpolateBlues = Blues; exports.interpolateBrBG = BrBG; exports.interpolateBuGn = BuGn; exports.interpolateBuPu = BuPu; exports.interpolateCividis = cividis; exports.interpolateCool = cool; exports.interpolateCubehelix = cubehelix$2; exports.interpolateCubehelixDefault = cubehelix; exports.interpolateCubehelixLong = cubehelixLong; exports.interpolateDate = date$1; exports.interpolateDiscrete = discrete; exports.interpolateGnBu = GnBu; exports.interpolateGreens = Greens; exports.interpolateGreys = Greys; exports.interpolateHcl = hcl$1; exports.interpolateHclLong = hclLong; exports.interpolateHsl = hsl$1; exports.interpolateHslLong = hslLong; exports.interpolateHue = hue; exports.interpolateInferno = inferno; exports.interpolateLab = lab; exports.interpolateMagma = magma; exports.interpolateNumber = interpolateNumber; exports.interpolateNumberArray = numberArray; exports.interpolateObject = object$1; exports.interpolateOrRd = OrRd; exports.interpolateOranges = Oranges; exports.interpolatePRGn = PRGn; exports.interpolatePiYG = PiYG; exports.interpolatePlasma = plasma; exports.interpolatePuBu = PuBu; exports.interpolatePuBuGn = PuBuGn; exports.interpolatePuOr = PuOr; exports.interpolatePuRd = PuRd; exports.interpolatePurples = Purples; exports.interpolateRainbow = rainbow; exports.interpolateRdBu = RdBu; exports.interpolateRdGy = RdGy; exports.interpolateRdPu = RdPu; exports.interpolateRdYlBu = RdYlBu; exports.interpolateRdYlGn = RdYlGn; exports.interpolateReds = Reds; exports.interpolateRgb = interpolateRgb; exports.interpolateRgbBasis = rgbBasis; exports.interpolateRgbBasisClosed = rgbBasisClosed; exports.interpolateRound = interpolateRound; exports.interpolateSinebow = sinebow; exports.interpolateSpectral = Spectral; exports.interpolateString = interpolateString; exports.interpolateTransformCss = interpolateTransformCss; exports.interpolateTransformSvg = interpolateTransformSvg; exports.interpolateTurbo = turbo; exports.interpolateViridis = viridis; exports.interpolateWarm = warm; exports.interpolateYlGn = YlGn; exports.interpolateYlGnBu = YlGnBu; exports.interpolateYlOrBr = YlOrBr; exports.interpolateYlOrRd = YlOrRd; exports.interpolateZoom = interpolateZoom; exports.interrupt = interrupt; exports.intersection = intersection; exports.interval = interval; exports.isoFormat = formatIso$1; exports.isoParse = parseIso$1; exports.json = json; exports.lab = lab$1; exports.lch = lch; exports.least = least; exports.leastIndex = leastIndex; exports.line = line; exports.lineRadial = lineRadial$1; exports.link = link; exports.linkHorizontal = linkHorizontal; exports.linkRadial = linkRadial; exports.linkVertical = linkVertical; exports.local = local$1; exports.map = map$1; exports.matcher = matcher; exports.max = max$3; exports.maxIndex = maxIndex; exports.mean = mean; exports.median = median; exports.medianIndex = medianIndex; exports.merge = merge; exports.min = min$2; exports.minIndex = minIndex; exports.mode = mode; exports.namespace = namespace; exports.namespaces = namespaces; exports.nice = nice$1; exports.now = now; exports.pack = index$1; exports.packEnclose = enclose; exports.packSiblings = siblings; exports.pairs = pairs; exports.partition = partition; exports.path = path; exports.pathRound = pathRound; exports.permute = permute; exports.pie = pie; exports.piecewise = piecewise; exports.pointRadial = pointRadial; exports.pointer = pointer; exports.pointers = pointers; exports.polygonArea = area$1; exports.polygonCentroid = centroid; exports.polygonContains = contains; exports.polygonHull = hull; exports.polygonLength = length; exports.precisionFixed = precisionFixed; exports.precisionPrefix = precisionPrefix; exports.precisionRound = precisionRound; exports.quadtree = quadtree; exports.quantile = quantile$1; exports.quantileIndex = quantileIndex; exports.quantileSorted = quantileSorted; exports.quantize = quantize$1; exports.quickselect = quickselect; exports.radialArea = areaRadial; exports.radialLine = lineRadial$1; exports.randomBates = bates; exports.randomBernoulli = bernoulli; exports.randomBeta = beta; exports.randomBinomial = binomial; exports.randomCauchy = cauchy; exports.randomExponential = exponential; exports.randomGamma = gamma; exports.randomGeometric = geometric; exports.randomInt = int; exports.randomIrwinHall = irwinHall; exports.randomLcg = lcg; exports.randomLogNormal = logNormal; exports.randomLogistic = logistic; exports.randomNormal = normal; exports.randomPareto = pareto; exports.randomPoisson = poisson; exports.randomUniform = uniform; exports.randomWeibull = weibull; exports.range = range$2; exports.rank = rank; exports.reduce = reduce; exports.reverse = reverse$1; exports.rgb = rgb; exports.ribbon = ribbon$1; exports.ribbonArrow = ribbonArrow; exports.rollup = rollup; exports.rollups = rollups; exports.scaleBand = band; exports.scaleDiverging = diverging$1; exports.scaleDivergingLog = divergingLog; exports.scaleDivergingPow = divergingPow; exports.scaleDivergingSqrt = divergingSqrt; exports.scaleDivergingSymlog = divergingSymlog; exports.scaleIdentity = identity$2; exports.scaleImplicit = implicit; exports.scaleLinear = linear; exports.scaleLog = log; exports.scaleOrdinal = ordinal; exports.scalePoint = point$4; exports.scalePow = pow; exports.scaleQuantile = quantile; exports.scaleQuantize = quantize; exports.scaleRadial = radial; exports.scaleSequential = sequential; exports.scaleSequentialLog = sequentialLog; exports.scaleSequentialPow = sequentialPow; exports.scaleSequentialQuantile = sequentialQuantile; exports.scaleSequentialSqrt = sequentialSqrt; exports.scaleSequentialSymlog = sequentialSymlog; exports.scaleSqrt = sqrt$1; exports.scaleSymlog = symlog; exports.scaleThreshold = threshold; exports.scaleTime = time; exports.scaleUtc = utcTime; exports.scan = scan; exports.schemeAccent = Accent; exports.schemeBlues = scheme$5; exports.schemeBrBG = scheme$q; exports.schemeBuGn = scheme$h; exports.schemeBuPu = scheme$g; exports.schemeCategory10 = category10; exports.schemeDark2 = Dark2; exports.schemeGnBu = scheme$f; exports.schemeGreens = scheme$4; exports.schemeGreys = scheme$3; exports.schemeOrRd = scheme$e; exports.schemeOranges = scheme; exports.schemePRGn = scheme$p; exports.schemePaired = Paired; exports.schemePastel1 = Pastel1; exports.schemePastel2 = Pastel2; exports.schemePiYG = scheme$o; exports.schemePuBu = scheme$c; exports.schemePuBuGn = scheme$d; exports.schemePuOr = scheme$n; exports.schemePuRd = scheme$b; exports.schemePurples = scheme$2; exports.schemeRdBu = scheme$m; exports.schemeRdGy = scheme$l; exports.schemeRdPu = scheme$a; exports.schemeRdYlBu = scheme$k; exports.schemeRdYlGn = scheme$j; exports.schemeReds = scheme$1; exports.schemeSet1 = Set1; exports.schemeSet2 = Set2; exports.schemeSet3 = Set3; exports.schemeSpectral = scheme$i; exports.schemeTableau10 = Tableau10; exports.schemeYlGn = scheme$8; exports.schemeYlGnBu = scheme$9; exports.schemeYlOrBr = scheme$7; exports.schemeYlOrRd = scheme$6; exports.select = select; exports.selectAll = selectAll; exports.selection = selection; exports.selector = selector; exports.selectorAll = selectorAll; exports.shuffle = shuffle$1; exports.shuffler = shuffler; exports.some = some; exports.sort = sort; exports.stack = stack; exports.stackOffsetDiverging = diverging; exports.stackOffsetExpand = expand; exports.stackOffsetNone = none$1; exports.stackOffsetSilhouette = silhouette; exports.stackOffsetWiggle = wiggle; exports.stackOrderAppearance = appearance; exports.stackOrderAscending = ascending; exports.stackOrderDescending = descending; exports.stackOrderInsideOut = insideOut; exports.stackOrderNone = none; exports.stackOrderReverse = reverse; exports.stratify = stratify; exports.style = styleValue; exports.subset = subset; exports.sum = sum$2; exports.superset = superset; exports.svg = svg; exports.symbol = Symbol$1; exports.symbolAsterisk = asterisk; exports.symbolCircle = circle; exports.symbolCross = cross; exports.symbolDiamond = diamond; exports.symbolDiamond2 = diamond2; exports.symbolPlus = plus; exports.symbolSquare = square; exports.symbolSquare2 = square2; exports.symbolStar = star; exports.symbolTimes = times; exports.symbolTriangle = triangle; exports.symbolTriangle2 = triangle2; exports.symbolWye = wye; exports.symbolX = times; exports.symbols = symbolsFill; exports.symbolsFill = symbolsFill; exports.symbolsStroke = symbolsStroke; exports.text = text; exports.thresholdFreedmanDiaconis = thresholdFreedmanDiaconis; exports.thresholdScott = thresholdScott; exports.thresholdSturges = thresholdSturges; exports.tickFormat = tickFormat; exports.tickIncrement = tickIncrement; exports.tickStep = tickStep; exports.ticks = ticks; exports.timeDay = timeDay; exports.timeDays = timeDays; exports.timeFormatDefaultLocale = defaultLocale; exports.timeFormatLocale = formatLocale; exports.timeFriday = timeFriday; exports.timeFridays = timeFridays; exports.timeHour = timeHour; exports.timeHours = timeHours; exports.timeInterval = timeInterval; exports.timeMillisecond = millisecond; exports.timeMilliseconds = milliseconds; exports.timeMinute = timeMinute; exports.timeMinutes = timeMinutes; exports.timeMonday = timeMonday; exports.timeMondays = timeMondays; exports.timeMonth = timeMonth; exports.timeMonths = timeMonths; exports.timeSaturday = timeSaturday; exports.timeSaturdays = timeSaturdays; exports.timeSecond = second; exports.timeSeconds = seconds; exports.timeSunday = timeSunday; exports.timeSundays = timeSundays; exports.timeThursday = timeThursday; exports.timeThursdays = timeThursdays; exports.timeTickInterval = timeTickInterval; exports.timeTicks = timeTicks; exports.timeTuesday = timeTuesday; exports.timeTuesdays = timeTuesdays; exports.timeWednesday = timeWednesday; exports.timeWednesdays = timeWednesdays; exports.timeWeek = timeSunday; exports.timeWeeks = timeSundays; exports.timeYear = timeYear; exports.timeYears = timeYears; exports.timeout = timeout; exports.timer = timer; exports.timerFlush = timerFlush; exports.transition = transition; exports.transpose = transpose; exports.tree = tree; exports.treemap = index; exports.treemapBinary = binary; exports.treemapDice = treemapDice; exports.treemapResquarify = resquarify; exports.treemapSlice = treemapSlice; exports.treemapSliceDice = sliceDice; exports.treemapSquarify = squarify; exports.tsv = tsv; exports.tsvFormat = tsvFormat; exports.tsvFormatBody = tsvFormatBody; exports.tsvFormatRow = tsvFormatRow; exports.tsvFormatRows = tsvFormatRows; exports.tsvFormatValue = tsvFormatValue; exports.tsvParse = tsvParse; exports.tsvParseRows = tsvParseRows; exports.union = union; exports.unixDay = unixDay; exports.unixDays = unixDays; exports.utcDay = utcDay; exports.utcDays = utcDays; exports.utcFriday = utcFriday; exports.utcFridays = utcFridays; exports.utcHour = utcHour; exports.utcHours = utcHours; exports.utcMillisecond = millisecond; exports.utcMilliseconds = milliseconds; exports.utcMinute = utcMinute; exports.utcMinutes = utcMinutes; exports.utcMonday = utcMonday; exports.utcMondays = utcMondays; exports.utcMonth = utcMonth; exports.utcMonths = utcMonths; exports.utcSaturday = utcSaturday; exports.utcSaturdays = utcSaturdays; exports.utcSecond = second; exports.utcSeconds = seconds; exports.utcSunday = utcSunday; exports.utcSundays = utcSundays; exports.utcThursday = utcThursday; exports.utcThursdays = utcThursdays; exports.utcTickInterval = utcTickInterval; exports.utcTicks = utcTicks; exports.utcTuesday = utcTuesday; exports.utcTuesdays = utcTuesdays; exports.utcWednesday = utcWednesday; exports.utcWednesdays = utcWednesdays; exports.utcWeek = utcSunday; exports.utcWeeks = utcSundays; exports.utcYear = utcYear; exports.utcYears = utcYears; exports.variance = variance; exports.version = version; exports.window = defaultView; exports.xml = xml; exports.zip = zip; exports.zoom = zoom; exports.zoomIdentity = identity; exports.zoomTransform = transform; })); function TreeHorizontal( data, { // data is either tabular (array of objects) or hierarchy (nested objects) path, // as an alternative to id and parentId, returns an array identifier, imputing internal nodes id = Array.isArray(data) ? d => d.id : null, // if tabular data, given a d in data, returns a unique identifier (string) parentId = Array.isArray(data) ? d => d.parentId : null, // if tabular data, given a node d, returns its parent’s identifier children, // if hierarchical data, given a d in data, returns its children tree = d3.tree, // layout algorithm (typically d3.tree or d3.cluster) sort, // how to sort nodes prior to layout (e.g., (a, b) => d3.descending(a.height, b.height)) label, // given a node d, returns the display name title, // given a node d, returns its hover text link, // given a node d, its link (if any) linkTarget = "_blank", // the target attribute for links (if any) width = 640, // outer width, in pixels height, // outer height, in pixels r = 3, // radius of nodes padding = 1, // horizontal padding for first and last column fill = "#999", // fill for nodes fillOpacity, // fill opacity for nodes stroke = "#555", // stroke for links strokeWidth = 1.5, // stroke width for links strokeOpacity = 0.4, // stroke opacity for links strokeLinejoin, // stroke line join for links strokeLinecap, // stroke line cap for links halo = "#fff", // color of label halo haloWidth = 3, // padding around the labels curve = d3.curveBumpX, // curve for the link leftalign = false, // left align svg } = {} ) { // If id and parentId options are specified, or the path option, use d3.stratify // to convert tabular data to a hierarchy; otherwise we assume that the data is // specified as an object {children} with nested objects (a.k.a. the “flare.json” // format), and use d3.hierarchy. const root = path != null ? d3.stratify().path(path)(data) : id != null || parentId != null ? d3.stratify().id(id).parentId(parentId)(data) : d3.hierarchy(data, children); // Sort the nodes. if (sort != null) root.sort(sort); // Compute labels and titles. const descendants = root.descendants(); const L = label == null ? null : descendants.map(d => label(d.data, d)); // Compute the layout. const dx = 30; const dy = width / (root.height + padding); tree().nodeSize([dx, dy])(root); // Center the tree. let x0 = Infinity; let x1 = -x0; root.each(d => { if (d.x > x1) x1 = d.x; if (d.x < x0) x0 = d.x; }); // Compute the default height. if (height === undefined) height = x1 - x0 + dx * 2; // Use the required curve if (typeof curve !== "function") throw new Error(`Unsupported curve`); if (leftalign == false ) { leftalign = -dy * padding / 2 } const svg = d3.create("svg") .attr("viewBox", [leftalign, x0 - dx, width, height]) .attr("width", width) .attr("height", height) .attr("style", "max-width: 100%; height: auto; height: intrinsic;") .attr("font-family", "sans-serif") .attr("font-size", 10); svg.append("g") .attr("fill", "none") .attr("stroke", stroke) .attr("stroke-opacity", strokeOpacity) .attr("stroke-linecap", strokeLinecap) .attr("stroke-linejoin", strokeLinejoin) .attr("stroke-width", strokeWidth) .selectAll("path") .data(root.links()) .join("path") .attr("d", d3.link(curve) .x(d => d.y) .y(d => d.x)); const node = svg.append("g") .selectAll("a") .data(root.descendants()) .join("a") .attr("xlink:href", link == null ? null : d => link(d.data, d)) .attr("target", link == null ? null : linkTarget) .attr("transform", d => `translate(${d.y},${d.x})`); node.append("circle") .attr("r", r) .attr("fill", d => fill(d.data, d)); if (title != null) node.append("title") .text(d => title(d.data, d)); if (L) node.append("text") .attr("dy", "0.32em") .attr("x", d => d.children ? -6 : 6) .attr("text-anchor", d => d.children ? "end" : "start") .attr("paint-order", "stroke") .attr("stroke", halo) .attr("stroke-width", haloWidth) .text((d, i) => L[i]); return svg.node(); }