package PandoraFMS::PredictionServer; ######################################################################## # Pandora FMS Prediction Server. # Pandora FMS. the Flexible Monitoring System. http://www.pandorafms.org ######################################################################## # Copyright (c) 2005-2009 Artica Soluciones Tecnologicas S.L # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public License # as published by the Free Software Foundation; version 2 # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ########################################################################## use strict; use warnings; use threads; use threads::shared; use Thread::Semaphore; use IO::Socket::INET; use Net::Ping; use POSIX qw(strftime); # Default lib dir for RPM and DEB packages use lib '/usr/lib/perl5'; use PandoraFMS::Tools; use PandoraFMS::DB; use PandoraFMS::Core; use PandoraFMS::ProducerConsumerServer; #For debug #use Data::Dumper; # Inherits from PandoraFMS::ProducerConsumerServer our @ISA = qw(PandoraFMS::ProducerConsumerServer); # Global variables my @TaskQueue :shared; my %PendingTasks :shared; my $Sem :shared; my $TaskSem :shared; ######################################################################## # Prediction Server class constructor. ######################################################################## sub new ($$;$) { my ($class, $config, $dbh) = @_; return undef unless $config->{'predictionserver'} == 1; # Initialize semaphores and queues @TaskQueue = (); %PendingTasks = (); $Sem = Thread::Semaphore->new; $TaskSem = Thread::Semaphore->new (0); # Call the constructor of the parent class my $self = $class->SUPER::new($config, PREDICTIONSERVER, \&PandoraFMS::PredictionServer::data_producer, \&PandoraFMS::PredictionServer::data_consumer, $dbh); bless $self, $class; return $self; } ######################################################################## # Run. ######################################################################## sub run ($) { my $self = shift; my $pa_config = $self->getConfig (); print_message ($pa_config, " [*] Starting Pandora FMS Prediction Server.", 1); $self->setNumThreads ($pa_config->{'prediction_threads'}); $self->SUPER::run (\@TaskQueue, \%PendingTasks, $Sem, $TaskSem); } ######################################################################## # Data producer. ######################################################################## sub data_producer ($) { my $self = shift; my ($pa_config, $dbh) = ($self->getConfig (), $self->getDBH ()); my @tasks; my @rows; if ($pa_config->{'pandora_master'} != 1) { @rows = get_db_rows ($dbh, 'SELECT tagente_modulo.id_agente_modulo, tagente_modulo.flag, last_execution_try FROM tagente, tagente_modulo, tagente_estado WHERE server_name = ? AND tagente_modulo.id_agente = tagente.id_agente AND tagente.disabled = 0 AND tagente_modulo.prediction_module != 0 AND tagente_modulo.disabled = 0 AND tagente_estado.id_agente_modulo = tagente_modulo.id_agente_modulo AND tagente_modulo.id_modulo = 5 AND (tagente_modulo.flag = 1 OR (tagente_estado.last_execution_try + tagente_estado.current_interval) < UNIX_TIMESTAMP()) ORDER BY last_execution_try ASC ', safe_input($pa_config->{'servername'})); } else { @rows = get_db_rows ($dbh, 'SELECT DISTINCT(tagente_modulo.id_agente_modulo), tagente_modulo.flag, last_execution_try FROM tagente, tagente_modulo, tagente_estado WHERE ((server_name = ?) OR (server_name = ANY(SELECT name FROM tserver WHERE status = 0 AND server_type = ?))) AND tagente_modulo.id_agente = tagente.id_agente AND tagente.disabled = 0 AND tagente_modulo.disabled = 0 AND tagente_modulo.prediction_module != 0 AND tagente_estado.id_agente_modulo = tagente_modulo.id_agente_modulo AND tagente_modulo.id_modulo = 5 AND (tagente_modulo.flag = 1 OR (tagente_estado.last_execution_try + tagente_estado.current_interval) < UNIX_TIMESTAMP()) ORDER BY last_execution_try ASC', safe_input($pa_config->{'servername'}), PREDICTIONSERVER); } foreach my $row (@rows) { # Reset forced execution flag if ($row->{'flag'} == 1) { db_do ($dbh, 'UPDATE tagente_modulo SET flag = 0 WHERE id_agente_modulo = ?', $row->{'id_agente_modulo'}); } push (@tasks, $row->{'id_agente_modulo'}); } return @tasks; } ######################################################################## # Data consumer. ######################################################################## sub data_consumer ($$) { my ($self, $task) = @_; exec_prediction_module ($self->getConfig (), $task, $self->getServerID (), $self->getDBH ()); } ######################################################################## # Execute prediction module. ######################################################################## sub exec_prediction_module ($$$$) { my ($pa_config, $id_am, $server_id, $dbh) = @_; # Get a full hash for agent_module record reference ($agent_module) my $agent_module = get_db_single_row ($dbh, 'SELECT * FROM tagente_modulo WHERE id_agente_modulo = ?', $id_am); return unless defined $agent_module; # Service modules if ($agent_module->{'prediction_module'} == 2) { if ($agent_module->{'custom_string_1'} eq 'SLA') { logger ($pa_config, "Executing service module SLA " . $agent_module->{'id_agente_modulo'} . " " . $agent_module->{'nombre'}, 5); enterprise_hook ('exec_service_module_sla', [$pa_config, $agent_module, $server_id, $dbh]); logger ($pa_config, "End execution", 5); } elsif ($agent_module->{'custom_string_1'} eq 'SLA_Value') { #Do none } else { logger ($pa_config, "Executing service module " . $agent_module->{'id_agente_modulo'} . " " . $agent_module->{'nombre'}, 5); enterprise_hook ('exec_service_module', [$pa_config, $agent_module, $server_id, $dbh]); logger ($pa_config, "End execution", 5); } return; } # Synthetic modules if ($agent_module->{'prediction_module'} == 3) { logger ($pa_config, "Executing synthetic module " . $agent_module->{'nombre'}, 10); enterprise_hook ('exec_synthetic_module', [$pa_config, $agent_module, $server_id, $dbh]); return; } # Netflow modules if ($agent_module->{'prediction_module'} == 4) { logger ($pa_config, "Executing netflow module " . $agent_module->{'nombre'}, 10); enterprise_hook ('exec_netflow_module', [$pa_config, $agent_module, $server_id, $dbh]); return; } # Get a full hash for target agent_module record reference ($target_module) my $target_module = get_db_single_row ($dbh, 'SELECT * FROM tagente_modulo WHERE id_agente_modulo = ?', $agent_module->{'custom_integer_1'}); return unless defined $target_module; # Prediction mode explanation # # 0 is for target type of generic_proc. It compares latest data with current data. Needs to get # data on a "middle" interval, so if interval is 300, get data to compare with 150 before # and 150 in the future. If current data is ABOVE or BELOW average +- typical_deviation # this is a BAD value (0), if not is ok (1) and written in target module as is. # more interval configured for this module, more "margin" has to compare data. # # 1 is for target type of generic_data. It get's data in the future, using the interval given in # module. It gets average from current timestamp to INTERVAL in the future and gets average # value. Typical deviation is not used here. # 0 proc, 1 data my $prediction_mode = ($agent_module->{'id_tipo_modulo'} == 2) ? 0 : 1; # Initialize another global sub variables. my $module_data = 0; # 0 data for default # Get current timestamp my $utimestamp = time (); my $timestamp = strftime ("%Y-%m-%d %H:%M:%S", localtime($utimestamp)); # Get different data from each week one month ago (4 values) # $agent_module->{'module_interval'} uses a margin of interval to get average data from the past my @week_data; my @week_utimestamp; for (my $i=0; $i<4; $i++) { $week_utimestamp[$i] = $utimestamp - (84600*7*($i+1)); # Adjust for proc prediction if ($prediction_mode == 0) { $week_utimestamp[$i] = $week_utimestamp[$i] - ($agent_module->{'module_interval'} / 2); } } # Let's calculate statistical average using past data # n = total of real data values my ($n, $average, $temp1) = (0, 0, 0); for (my $i=0; $i < 4; $i++) { my ($first_data, $last_data, $average_interval); my $sum_data = 0; $temp1 = $week_utimestamp[$i] + $agent_module->{'module_interval'}; # Get data for week $i in the past $average_interval = get_db_value ($dbh, 'SELECT AVG(datos) FROM tagente_datos WHERE id_agente_modulo = ? AND utimestamp > ? AND utimestamp < ?', $target_module->{'id_agente_modulo'}, $week_utimestamp[$i], $temp1); # Need to get data outside interval because no data. if (!(defined($average_interval)) || ($average_interval == 0)) { $last_data = get_db_value ($dbh, 'SELECT datos FROM tagente_datos WHERE id_agente_modulo = ? AND utimestamp > ? LIMIT 1', $target_module->{'id_agente_modulo'}, $week_utimestamp[$i]); next unless defined ($last_data); $first_data = get_db_value ($dbh, 'SELECT datos FROM tagente_datos WHERE id_agente_modulo = ? AND utimestamp < ? LIMIT 1', $target_module->{'id_agente_modulo'}, $temp1); next unless defined ($first_data); $sum_data++ if ($last_data != 0); $sum_data++ if ($first_data != 0); $week_data[$i] = ($sum_data > 0) ? (($last_data + $first_data) / $sum_data) : 0; } else { $week_data[$i] = $average_interval; } # It's possible that one of the week_data[i] values was not valid (NULL) # so recheck it and relay on n=0 for "no data" values set to 0 in result # Calculate total ammount of valida data for each data sample if ((is_numeric($week_data[$i])) && ($week_data[$i] > 0)) { $n++; # Average SUM $average = $average + $week_data[$i]; } } # Real average value $average = ($n > 0) ? ($average / $n) : 0; # (PROC) Compare with current data if ($prediction_mode == 0) { # Calculate typical deviation my $typical_deviation = 0; for (my $i=0; $i< $n; $i++) { if ((is_numeric($week_data[$i])) && ($week_data[$i] > 0)) { $typical_deviation = $typical_deviation + (($week_data[$i] - $average)**2); } } $typical_deviation = ($n > 1) ? sqrt ($typical_deviation / ($n-1)) : 0; my $current_value = get_db_value ($dbh, 'SELECT datos FROM tagente_estado WHERE id_agente_modulo = ?', $target_module->{'id_agente_modulo'}); if ( ($current_value > ($average - $typical_deviation)) && ($current_value < ($average + $typical_deviation)) ){ $module_data = 1; # OK !! } else { $module_data = 0; # Out of predictions } } else { # Prediction based on data $module_data = $average; } my %data = ("data" => $module_data); pandora_process_module ($pa_config, \%data, '', $agent_module, '', $timestamp, $utimestamp, $server_id, $dbh); my $agent_os_version = get_db_value ($dbh, 'SELECT os_version FROM tagente WHERE id_agente = ?', $agent_module->{'id_agente'}); if ($agent_os_version eq ''){ $agent_os_version = $pa_config->{'servername'}.'_Prediction'; } pandora_update_agent ($pa_config, $timestamp, $agent_module->{'id_agente'}, $agent_os_version, $pa_config->{'version'}, -1, $dbh); } 1; __END__