pandorafms/extras/anytermd/libpbe/include/Line.hh

193 lines
6.1 KiB
C++

// include/Line.hh
// This file is part of libpbe; see http://svn.chezphil.org/libpbe/
// (C) 2007 Philip Endecott
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#ifndef libpbe_Line_hh
#define libpbe_Line_hh
#include "Point.hh"
#include "Vector.hh"
#include "Box.hh"
namespace pbe {
template <typename COORD_T>
struct Line {
typedef COORD_T coord_t;
typedef Point<coord_t> point_t;
point_t a;
point_t b;
Line() {}
Line(const Line& other):
a(other.a), b(other.b)
{}
Line(point_t a_, point_t b_):
a(a_), b(b_)
{}
bool operator==(const Line& other) const {
return (a==other.a && b==other.b);
}
bool operator!=(const Line& other) const {
return ! operator==(other);
}
};
template <typename COORD_T>
bool line_crosses_line(Line<COORD_T> u, Line<COORD_T> v, Point<COORD_T>& cross)
{
// Do lines u and v cross? If so, find the point where they cross.
// Precondition: the lines must not be points.
//
// Method:
// U = u.a + alpha(u.b-u.a)
// V = v.a + beta(v.b-v.a)
// Solve for U=V
// If 0<=alpha<=1 und 0<=beta<=1 then the lines cross.
//
// u.x = u.a.x + alpha(u.b.x-u.a.x)
// u.y = u.a.y + alpha(u.b.y-u.a.y)
// v.x = v.a.x + beta(v.b.x-v.a.x)
// v.y = v.a.y + beta(v.b.y-v.a.y)
//
// u.a.x + alpha(u.b.x-u.a.x) = v.a.x + beta(v.b.x-v.a.x)
// u.a.y + alpha(u.b.y-u.a.y) = v.a.y + beta(v.b.y-v.a.y)
//
// alpha = ( v.a.x + beta(v.b.x-v.a.x) - u.a.x ) / (u.b.x-u.a.x) provided u.b.x!=u.a.x
// alpha = ( v.a.y + beta(v.b.y-v.a.y) - u.a.y ) / (u.b.y-u.a.y) provided u.b.y!=u.a.y
// ( v.a.x + beta(v.b.x-v.a.x) - u.a.x ) / (u.b.x-u.a.x) = ( v.a.y + beta(v.b.y-v.a.y) - u.a.y ) / (u.b.y-u.a.y)
// ( v.a.x + beta(v.b.x-v.a.x) - u.a.x ) (u.b.y-u.a.y) = ( v.a.y + beta(v.b.y-v.a.y) - u.a.y ) (u.b.x-u.a.x)
// beta.(v.b.x-v.a.x).(u.b.y-u.a.y) + (v.a.x-u.a.x).(u.b.y-u.a.y) = beta.(v.b.y-v.a.y).(u.b.x-u.a.x) + (v.a.y-u.a.y).(u.b.x-u.a.x)
// beta.(v.b.x-v.a.x).(u.b.y-u.a.y) - beta.(v.b.y-v.a.y).(u.b.x-u.a.x) = (v.a.y-u.a.y).(u.b.x-u.a.x) - (v.a.x-u.a.x).(u.b.y-u.a.y)
// beta = ( (v.a.y-u.a.y).(u.b.x-u.a.x) - (v.a.x-u.a.x).(u.b.y-u.a.y) ) / ( (v.b.x-v.a.x).(u.b.y-u.a.y) - (v.b.y-v.a.y).(u.b.x-u.a.x) )
//
// beta = ( u.a.x + alpha(u.b.x-u.a.x) - v.a.x ) / (v.b.x-v.a.x)
// beta = ( u.a.y + alpha(u.b.y-u.a.y) - v.a.y ) / (v.b.y-v.a.y)
// ( u.a.x + alpha(u.b.x-u.a.x) - v.a.x ) / (v.b.x-v.a.x) = ( u.a.y + alpha(u.b.y-u.a.y) - v.a.y ) / (v.b.y-v.a.y)
// ( u.a.x + alpha(u.b.x-u.a.x) - v.a.x ) (v.b.y-v.a.y) = ( u.a.y + alpha(u.b.y-u.a.y) - v.a.y ) (v.b.x-v.a.x)
// alpha.(u.b.x-u.a.x).(v.b.y-v.a.y) + (u.a.x-v.a.x).(v.b.y-v.a.y) = alpha.(u.b.y-u.a.y).(v.b.x-v.a.x) + (u.a.y-v.a.y).(v.b.x-v.a.x)
// alpha.(u.b.x-u.a.x).(v.b.y-v.a.y) - alpha.(u.b.y-u.a.y).(v.b.x-v.a.x) = (u.a.y-v.a.y).(v.b.x-v.a.x) - (u.a.x-v.a.x).(v.b.y-v.a.y)
// alpha = ( (u.a.y-v.a.y).(v.b.x-v.a.x) - (u.a.x-v.a.x).(v.b.y-v.a.y) ) / ( (u.b.x-u.a.x).(v.b.y-v.a.y) - (u.b.y-u.a.y).(v.b.x-v.a.x) )
//
// Note that the denominators of the expressions for alpha and beta are almost the
// same, differing only in sign.
// If this expression is zero it indicates that that lines do not cross because they
// are parallel, or that they are co-linear.
double alpha_denom = (u.b.x-u.a.x)*(v.b.y-v.a.y) - (u.b.y-u.a.y)*(v.b.x-v.a.x);
if (alpha_denom==0) {
// In the case of co-linear lines, do we consider them to cross if they overlap?
// It's simplest to say "no", and always return false here.
return false;
} else {
double alpha_num = (u.a.y-v.a.y)*(v.b.x-v.a.x) - (u.a.x-v.a.x)*(v.b.y-v.a.y);
double alpha = alpha_num / alpha_denom;
if (alpha<0 || alpha>1) {
return false;
}
double beta_denom = -alpha_denom;
double beta_num = (v.a.y-u.a.y)*(u.b.x-u.a.x) - (v.a.x-u.a.x)*(u.b.y-u.a.y);
double beta = beta_num / beta_denom;
if (beta<0 || beta>1) {
return false;
}
Vector<COORD_T> uvec = u.b-u.a;
cross = u.a + uvec * alpha;
return true;
}
}
template <typename COORD_T>
bool line_crosses_box(Box<COORD_T> b, Line<COORD_T>& l)
{
// Does box b contain any part of line l?
// If line l crosses the boundary of the box, it is modified in place to
// clip at the boundary.
if (b.contains(l.a) && b.contains(l.b)) {
// Both ends inside the box - easy.
return true;
}
if ( (l.a.x < b.x0 && l.b.x < b.x0)
|| (l.a.x > b.x1 && l.b.x > b.x1)
|| (l.a.y < b.y0 && l.b.y < b.y0)
|| (l.a.y > b.y1 && l.b.y > b.y1) ) {
// Line can't cross the box - easy.
return false;
}
// There's a chance that the line crosses the box, but at least one
// end is outside it and will need to be clipped.
Point<COORD_T> cross;
bool crosses_left = line_crosses_line(l,Line<COORD_T>(b.x0y0(),b.x0y1()),cross);
if (crosses_left) {
if (l.a.x<=b.x0) {
l.a = cross;
} else {
l.b = cross;
}
}
bool crosses_top = line_crosses_line(l,Line<COORD_T>(b.x0y1(),b.x1y1()),cross);
if (crosses_top) {
if (l.a.y>=b.y1) {
l.a = cross;
} else {
l.b = cross;
}
}
bool crosses_right = line_crosses_line(l,Line<COORD_T>(b.x1y1(),b.x1y0()),cross);
if (crosses_right) {
if (l.a.x>=b.x1) {
l.a = cross;
} else {
l.b = cross;
}
}
bool crosses_bottom = line_crosses_line(l,Line<COORD_T>(b.x1y0(),b.x0y0()),cross);
if (crosses_bottom) {
if (l.a.y<=b.y0) {
l.a = cross;
} else {
l.b = cross;
}
}
return crosses_left || crosses_top || crosses_right || crosses_bottom;
}
};
#endif