mirror of
https://github.com/wiire-a/pixiewps.git
synced 2025-07-26 23:35:03 +02:00
Removed boilerplate code from random_r.c
Removed all the code non relevant for the current implementation. This should make a noticeable difference in speed and possibly allow the compiler to optimize even more.
This commit is contained in:
parent
cb615a1a08
commit
d2e7ffaaa1
@ -100,7 +100,7 @@ static void *crack_thread(void *arg) {
|
|||||||
|
|
||||||
uint32_t seed = j->start;
|
uint32_t seed = j->start;
|
||||||
uint32_t limit = job_control.end;
|
uint32_t limit = job_control.end;
|
||||||
m_initstate_r(seed, rand_statebuf, 128, &buf);
|
m_initstate_r(seed, rand_statebuf, &buf);
|
||||||
int32_t res = 0;
|
int32_t res = 0;
|
||||||
|
|
||||||
while (!job_control.nonce_seed) {
|
while (!job_control.nonce_seed) {
|
||||||
@ -897,7 +897,7 @@ usage_err:
|
|||||||
|
|
||||||
struct m_random_data *buf = calloc(1, sizeof(struct m_random_data));
|
struct m_random_data *buf = calloc(1, sizeof(struct m_random_data));
|
||||||
char *rand_statebuf = calloc(1, 128);
|
char *rand_statebuf = calloc(1, 128);
|
||||||
m_initstate_r(nonce_seed, rand_statebuf, 128, buf);
|
m_initstate_r(nonce_seed, rand_statebuf, buf);
|
||||||
|
|
||||||
if (nonce_seed) { /* Seed found */
|
if (nonce_seed) { /* Seed found */
|
||||||
int32_t res;
|
int32_t res;
|
||||||
|
252
src/random_r.c
252
src/random_r.c
@ -30,7 +30,6 @@
|
|||||||
#include <stddef.h>
|
#include <stddef.h>
|
||||||
#include <stdlib.h>
|
#include <stdlib.h>
|
||||||
#include <unistd.h>
|
#include <unistd.h>
|
||||||
/* #include <errno.h> */
|
|
||||||
|
|
||||||
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
|
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
|
||||||
# include <sys/param.h>
|
# include <sys/param.h>
|
||||||
@ -47,100 +46,18 @@ struct m_random_data {
|
|||||||
int32_t *fptr; /* Front pointer */
|
int32_t *fptr; /* Front pointer */
|
||||||
int32_t *rptr; /* Rear pointer */
|
int32_t *rptr; /* Rear pointer */
|
||||||
int32_t *state; /* Array of state values */
|
int32_t *state; /* Array of state values */
|
||||||
int rand_type; /* Type of random number generator */
|
|
||||||
int rand_deg; /* Degree of random number generator */
|
|
||||||
int rand_sep; /* Distance between front and rear */
|
|
||||||
int32_t *end_ptr; /* Pointer behind state table */
|
int32_t *end_ptr; /* Pointer behind state table */
|
||||||
};
|
};
|
||||||
|
|
||||||
/* An improved random number generation package. In addition to the standard
|
|
||||||
rand()/srand() like interface, this package also has a special state info
|
|
||||||
interface. The initstate() routine is called with a seed, an array of
|
|
||||||
bytes, and a count of how many bytes are being passed in; this array is
|
|
||||||
then initialized to contain information for random number generation with
|
|
||||||
that much state information. Good sizes for the amount of state
|
|
||||||
information are 32, 64, 128, and 256 bytes. The state can be switched by
|
|
||||||
calling the setstate() function with the same array as was initialized
|
|
||||||
with initstate(). By default, the package runs with 128 bytes of state
|
|
||||||
information and generates far better random numbers than a linear
|
|
||||||
congruential generator. If the amount of state information is less than
|
|
||||||
32 bytes, a simple linear congruential R.N.G. is used. Internally, the
|
|
||||||
state information is treated as an array of longs; the zeroth element of
|
|
||||||
the array is the type of R.N.G. being used (small integer); the remainder
|
|
||||||
of the array is the state information for the R.N.G. Thus, 32 bytes of
|
|
||||||
state information will give 7 longs worth of state information, which will
|
|
||||||
allow a degree seven polynomial. (Note: The zeroth word of state
|
|
||||||
information also has some other information stored in it; see setstate
|
|
||||||
for details). The random number generation technique is a linear feedback
|
|
||||||
shift register approach, employing trinomials (since there are fewer terms
|
|
||||||
to sum up that way). In this approach, the least significant bit of all
|
|
||||||
the numbers in the state table will act as a linear feedback shift register,
|
|
||||||
and will have period 2^deg - 1 (where deg is the degree of the polynomial
|
|
||||||
being used, assuming that the polynomial is irreducible and primitive).
|
|
||||||
The higher order bits will have longer periods, since their values are
|
|
||||||
also influenced by pseudo-random carries out of the lower bits. The
|
|
||||||
total period of the generator is approximately deg*(2**deg - 1); thus
|
|
||||||
doubling the amount of state information has a vast influence on the
|
|
||||||
period of the generator. Note: The deg*(2**deg - 1) is an approximation
|
|
||||||
only good for large deg, when the period of the shift register is the
|
|
||||||
dominant factor. With deg equal to seven, the period is actually much
|
|
||||||
longer than the 7*(2**7 - 1) predicted by this formula. */
|
|
||||||
|
|
||||||
/* For each of the currently supported random number generators, we have a
|
|
||||||
break value on the amount of state information (you need at least this many
|
|
||||||
bytes of state info to support this random number generator), a degree for
|
|
||||||
the polynomial (actually a trinomial) that the R.N.G. is based on, and
|
|
||||||
separation between the two lower order coefficients of the trinomial. */
|
|
||||||
|
|
||||||
/* Linear congruential */
|
|
||||||
#define TYPE_0 0
|
|
||||||
#define BREAK_0 8
|
|
||||||
#define DEG_0 0
|
|
||||||
#define SEP_0 0
|
|
||||||
|
|
||||||
/* x**7 + x**3 + 1 */
|
|
||||||
#define TYPE_1 1
|
|
||||||
#define BREAK_1 32
|
|
||||||
#define DEG_1 7
|
|
||||||
#define SEP_1 3
|
|
||||||
|
|
||||||
/* x**15 + x + 1 */
|
|
||||||
#define TYPE_2 2
|
|
||||||
#define BREAK_2 64
|
|
||||||
#define DEG_2 15
|
|
||||||
#define SEP_2 1
|
|
||||||
|
|
||||||
/* x**31 + x**3 + 1 */
|
/* x**31 + x**3 + 1 */
|
||||||
#define TYPE_3 3
|
#define TYPE_3 3
|
||||||
#define BREAK_3 128
|
#define BREAK_3 128
|
||||||
#define DEG_3 31
|
#define DEG_3 31
|
||||||
#define SEP_3 3
|
#define SEP_3 3
|
||||||
|
|
||||||
/* x**63 + x + 1 */
|
#define MAX_TYPES 5 /* Max number of types */
|
||||||
#define TYPE_4 4
|
|
||||||
#define BREAK_4 256
|
|
||||||
#define DEG_4 63
|
|
||||||
#define SEP_4 1
|
|
||||||
|
|
||||||
/* Array versions of the above information to make code run faster.
|
/* We do our fancy trinomial stuff, which is the
|
||||||
Relies on fact that TYPE_i == i */
|
|
||||||
|
|
||||||
#define MAX_TYPES 5 /* Max number of types above */
|
|
||||||
|
|
||||||
struct m_random_poly_info {
|
|
||||||
/* smallint seps[MAX_TYPES]; */
|
|
||||||
/* smallint degrees[MAX_TYPES]; */
|
|
||||||
unsigned char seps[MAX_TYPES];
|
|
||||||
unsigned char degrees[MAX_TYPES];
|
|
||||||
};
|
|
||||||
|
|
||||||
static const struct m_random_poly_info random_poly_info = {
|
|
||||||
{SEP_0, SEP_1, SEP_2, SEP_3, SEP_4},
|
|
||||||
{DEG_0, DEG_1, DEG_2, DEG_3, DEG_4}
|
|
||||||
};
|
|
||||||
|
|
||||||
/* If we are using the trivial TYPE_0 R.N.G., just do the old linear
|
|
||||||
congruential bit. Otherwise, we do our fancy trinomial stuff, which is the
|
|
||||||
same in all the other cases due to all the global variables that have been
|
same in all the other cases due to all the global variables that have been
|
||||||
set up. The basic operation is to add the number at the rear pointer into
|
set up. The basic operation is to add the number at the rear pointer into
|
||||||
the one at the front pointer. Then both pointers are advanced to the next
|
the one at the front pointer. Then both pointers are advanced to the next
|
||||||
@ -149,28 +66,13 @@ static const struct m_random_poly_info random_poly_info = {
|
|||||||
Note: The code takes advantage of the fact that both the front and
|
Note: The code takes advantage of the fact that both the front and
|
||||||
rear pointers can't wrap on the same call by not testing the rear
|
rear pointers can't wrap on the same call by not testing the rear
|
||||||
pointer if the front one has wrapped. Returns a 31-bit random number. */
|
pointer if the front one has wrapped. Returns a 31-bit random number. */
|
||||||
|
|
||||||
void m_random_r(struct m_random_data *buf, int32_t *result)
|
void m_random_r(struct m_random_data *buf, int32_t *result)
|
||||||
{
|
{
|
||||||
int32_t *state;
|
int32_t *state = buf->state;
|
||||||
|
|
||||||
/* if (buf == NULL || result == NULL) */
|
|
||||||
/* goto fail; */
|
|
||||||
|
|
||||||
state = buf->state;
|
|
||||||
|
|
||||||
if (buf->rand_type == TYPE_0) {
|
|
||||||
int32_t val = state[0];
|
|
||||||
val = ((state[0] * 1103515245) + 12345) & 0x7fffffff;
|
|
||||||
state[0] = val;
|
|
||||||
*result = val;
|
|
||||||
} else {
|
|
||||||
int32_t *fptr = buf->fptr;
|
int32_t *fptr = buf->fptr;
|
||||||
int32_t *rptr = buf->rptr;
|
int32_t *rptr = buf->rptr;
|
||||||
int32_t *end_ptr = buf->end_ptr;
|
int32_t *end_ptr = buf->end_ptr;
|
||||||
int32_t val;
|
int32_t val = *fptr += *rptr;
|
||||||
|
|
||||||
val = *fptr += *rptr;
|
|
||||||
|
|
||||||
/* Chucking least random bit. */
|
/* Chucking least random bit. */
|
||||||
*result = (val >> 1) & 0x7fffffff;
|
*result = (val >> 1) & 0x7fffffff;
|
||||||
@ -178,7 +80,8 @@ void m_random_r(struct m_random_data *buf, int32_t *result)
|
|||||||
if (fptr >= end_ptr) {
|
if (fptr >= end_ptr) {
|
||||||
fptr = state;
|
fptr = state;
|
||||||
++rptr;
|
++rptr;
|
||||||
} else {
|
}
|
||||||
|
else {
|
||||||
++rptr;
|
++rptr;
|
||||||
if (rptr >= end_ptr)
|
if (rptr >= end_ptr)
|
||||||
rptr = state;
|
rptr = state;
|
||||||
@ -186,55 +89,31 @@ void m_random_r(struct m_random_data *buf, int32_t *result)
|
|||||||
buf->fptr = fptr;
|
buf->fptr = fptr;
|
||||||
buf->rptr = rptr;
|
buf->rptr = rptr;
|
||||||
}
|
}
|
||||||
/* return 0; */
|
|
||||||
|
|
||||||
/* fail: */
|
/* Initializes state[] based on the given "seed" via a linear
|
||||||
/* __set_errno (EINVAL); */
|
|
||||||
/* return -1; */
|
|
||||||
}
|
|
||||||
/* libc_hidden_def(random_r) */
|
|
||||||
|
|
||||||
/* Initialize the random number generator based on the given seed. If the
|
|
||||||
type is the trivial no-state-information type, just remember the seed.
|
|
||||||
Otherwise, initializes state[] based on the given "seed" via a linear
|
|
||||||
congruential generator. Then, the pointers are set to known locations
|
congruential generator. Then, the pointers are set to known locations
|
||||||
that are exactly rand_sep places apart. Lastly, it cycles the state
|
that are exactly rand_sep places apart. Lastly, it cycles the state
|
||||||
information a given number of times to get rid of any initial dependencies
|
information a given number of times to get rid of any initial dependencies
|
||||||
introduced by the L.C.R.N.G. Note that the initialization of randtbl[]
|
introduced by the L.C.R.N.G. Note that the initialization of randtbl[]
|
||||||
for default usage relies on values produced by this routine. */
|
for default usage relies on values produced by this routine. */
|
||||||
int m_srandom_r(unsigned int seed, struct m_random_data *buf)
|
void m_srandom_r(unsigned int seed, struct m_random_data *buf)
|
||||||
{
|
{
|
||||||
int type;
|
|
||||||
int32_t *state;
|
|
||||||
long int i;
|
|
||||||
long int word;
|
long int word;
|
||||||
|
int i, kc;
|
||||||
int32_t *dst;
|
int32_t *dst;
|
||||||
int kc;
|
int32_t *state = buf->state;
|
||||||
|
|
||||||
if (buf == NULL)
|
|
||||||
goto fail;
|
|
||||||
|
|
||||||
type = buf->rand_type;
|
|
||||||
if ((unsigned int)type >= MAX_TYPES)
|
|
||||||
goto fail;
|
|
||||||
|
|
||||||
state = buf->state;
|
|
||||||
|
|
||||||
/* We must make sure the seed is not 0. Take arbitrarily 1 in this case. */
|
/* We must make sure the seed is not 0. Take arbitrarily 1 in this case. */
|
||||||
if (seed == 0)
|
if (seed == 0)
|
||||||
seed = 1;
|
seed = 1;
|
||||||
|
|
||||||
state[0] = seed;
|
state[0] = seed;
|
||||||
if (type == TYPE_0)
|
|
||||||
goto done;
|
|
||||||
|
|
||||||
dst = state;
|
dst = state;
|
||||||
word = seed;
|
word = seed;
|
||||||
kc = buf->rand_deg;
|
for (i = 1; i < DEG_3; ++i) {
|
||||||
for (i = 1; i < kc; ++i) {
|
|
||||||
/* This does:
|
/* This does:
|
||||||
state[i] = (16807 * state[i - 1]) % 2147483647;
|
state[i] = (16807 * state[i - 1]) % 2147483647;
|
||||||
but avoids overflowing 31 bits. */
|
but avoids overflowing 31 bits */
|
||||||
long int hi = word / 127773;
|
long int hi = word / 127773;
|
||||||
long int lo = word % 127773;
|
long int lo = word % 127773;
|
||||||
word = 16807 * lo - 2836 * hi;
|
word = 16807 * lo - 2836 * hi;
|
||||||
@ -243,21 +122,14 @@ int m_srandom_r(unsigned int seed, struct m_random_data *buf)
|
|||||||
*++dst = word;
|
*++dst = word;
|
||||||
}
|
}
|
||||||
|
|
||||||
buf->fptr = &state[buf->rand_sep];
|
buf->fptr = &state[SEP_3];
|
||||||
buf->rptr = &state[0];
|
buf->rptr = &state[0];
|
||||||
kc *= 10;
|
kc = DEG_3 * 10;
|
||||||
while (--kc >= 0) {
|
while (--kc >= 0) {
|
||||||
int32_t discard;
|
int32_t discard;
|
||||||
(void)m_random_r(buf, &discard);
|
(void)m_random_r(buf, &discard);
|
||||||
}
|
}
|
||||||
|
|
||||||
done:
|
|
||||||
return 0;
|
|
||||||
|
|
||||||
fail:
|
|
||||||
return -1;
|
|
||||||
}
|
}
|
||||||
/* libc_hidden_def(srandom_r) */
|
|
||||||
|
|
||||||
/* Initialize the state information in the given array of N bytes for
|
/* Initialize the state information in the given array of N bytes for
|
||||||
future random number generation. Based on the number of bytes we
|
future random number generation. Based on the number of bytes we
|
||||||
@ -270,104 +142,18 @@ fail:
|
|||||||
Note: The first thing we do is save the current state, if any, just like
|
Note: The first thing we do is save the current state, if any, just like
|
||||||
setstate so that it doesn't matter when initstate is called.
|
setstate so that it doesn't matter when initstate is called.
|
||||||
Returns a pointer to the old state. */
|
Returns a pointer to the old state. */
|
||||||
int m_initstate_r(unsigned int seed, char *arg_state, size_t n, struct m_random_data *buf)
|
void m_initstate_r(unsigned int seed, char *arg_state, struct m_random_data *buf)
|
||||||
{
|
{
|
||||||
int type;
|
int type;
|
||||||
int degree;
|
int degree;
|
||||||
int separation;
|
int separation;
|
||||||
int32_t *state;
|
int32_t *state = &((int32_t *)arg_state)[1]; /* First location */
|
||||||
|
|
||||||
if (buf == NULL)
|
/* Must set END_PTR before srandom */
|
||||||
goto fail;
|
buf->end_ptr = &state[DEG_3];
|
||||||
|
|
||||||
if (n >= BREAK_3)
|
|
||||||
type = n < BREAK_4 ? TYPE_3 : TYPE_4;
|
|
||||||
else if (n < BREAK_1) {
|
|
||||||
if (n < BREAK_0) {
|
|
||||||
/* __set_errno (EINVAL); */
|
|
||||||
goto fail;
|
|
||||||
}
|
|
||||||
type = TYPE_0;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
type = n < BREAK_2 ? TYPE_1 : TYPE_2;
|
|
||||||
|
|
||||||
degree = random_poly_info.degrees[type];
|
|
||||||
separation = random_poly_info.seps[type];
|
|
||||||
|
|
||||||
buf->rand_type = type;
|
|
||||||
|
|
||||||
buf->rand_sep = separation;
|
|
||||||
buf->rand_deg = degree;
|
|
||||||
state = &((int32_t *)arg_state)[1]; /* First location. */
|
|
||||||
|
|
||||||
/* Must set END_PTR before srandom. */
|
|
||||||
buf->end_ptr = &state[degree];
|
|
||||||
buf->state = state;
|
buf->state = state;
|
||||||
|
|
||||||
m_srandom_r(seed, buf);
|
m_srandom_r(seed, buf);
|
||||||
|
|
||||||
state[-1] = TYPE_0;
|
state[-1] = (buf->rptr - state) * MAX_TYPES + TYPE_3;
|
||||||
if (type != TYPE_0)
|
|
||||||
state[-1] = (buf->rptr - state) * MAX_TYPES + type;
|
|
||||||
|
|
||||||
return 0;
|
|
||||||
|
|
||||||
fail:
|
|
||||||
/* __set_errno (EINVAL); */
|
|
||||||
return -1;
|
|
||||||
}
|
}
|
||||||
/* libc_hidden_def(initstate_r) */
|
|
||||||
|
|
||||||
/* Restore the state from the given state array.
|
|
||||||
Note: It is important that we also remember the locations of the pointers
|
|
||||||
in the current state information, and restore the locations of the pointers
|
|
||||||
from the old state information. This is done by multiplexing the pointer
|
|
||||||
location into the zeroth word of the state information. Note that due
|
|
||||||
to the order in which things are done, it is OK to call setstate with the
|
|
||||||
same state as the current state
|
|
||||||
Returns a pointer to the old state information. */
|
|
||||||
int m_setstate_r(char *arg_state, struct m_random_data *buf)
|
|
||||||
{
|
|
||||||
int32_t *new_state = 1 + (int32_t *)arg_state;
|
|
||||||
int type;
|
|
||||||
int old_type;
|
|
||||||
int32_t *old_state;
|
|
||||||
int degree;
|
|
||||||
int separation;
|
|
||||||
|
|
||||||
if (arg_state == NULL || buf == NULL)
|
|
||||||
goto fail;
|
|
||||||
|
|
||||||
old_type = buf->rand_type;
|
|
||||||
old_state = buf->state;
|
|
||||||
if (old_type == TYPE_0)
|
|
||||||
old_state[-1] = TYPE_0;
|
|
||||||
else
|
|
||||||
old_state[-1] = (MAX_TYPES * (buf->rptr - old_state)) + old_type;
|
|
||||||
|
|
||||||
type = new_state[-1] % MAX_TYPES;
|
|
||||||
if (type < TYPE_0 || type > TYPE_4)
|
|
||||||
goto fail;
|
|
||||||
|
|
||||||
buf->rand_deg = degree = random_poly_info.degrees[type];
|
|
||||||
buf->rand_sep = separation = random_poly_info.seps[type];
|
|
||||||
buf->rand_type = type;
|
|
||||||
|
|
||||||
if (type != TYPE_0) {
|
|
||||||
int rear = new_state[-1] / MAX_TYPES;
|
|
||||||
buf->rptr = &new_state[rear];
|
|
||||||
buf->fptr = &new_state[(rear + separation) % degree];
|
|
||||||
}
|
|
||||||
buf->state = new_state;
|
|
||||||
|
|
||||||
/* Set end_ptr too. */
|
|
||||||
buf->end_ptr = &new_state[degree];
|
|
||||||
|
|
||||||
return 0;
|
|
||||||
|
|
||||||
fail:
|
|
||||||
/* __set_errno (EINVAL); */
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
/* libc_hidden_def(setstate_r) */
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user