#!/usr/bin/env python # vim:fileencoding=utf-8:noet '''Gradients generator ''' from __future__ import division import sys import json from powerline.colorscheme import cterm_to_hex from itertools import groupby import argparse from colormath.color_objects import sRGBColor, LabColor from colormath.color_conversions import convert_color from colormath.color_diff import delta_e_cie2000 try: from __builtin__ import unicode except ImportError: unicode = str # NOQA def num2(s): try: return (True, [int(v) for v in s.partition(' ')[::2]]) except TypeError: return (False, [float(v) for v in s.partition(' ')[::2]]) def rgbint_to_lab(rgbint): rgb = sRGBColor((rgbint >> 16) & 0xFF, (rgbint >> 8) & 0xFF, rgbint & 0xFF, is_upscaled=True) return convert_color(rgb, LabColor) cterm_to_lab = tuple((rgbint_to_lab(v) for v in cterm_to_hex)) def color(s): if len(s) <= 3: return cterm_to_lab[int(s)] else: return rgbint_to_lab(int(s, 16)) def nums(s): return [int(i) for i in s.split()] def linear_gradient(start_value, stop_value, start_offset, stop_offset, offset): return start_value + ((offset - start_offset) * (stop_value - start_value) / (stop_offset - start_offset)) def lab_gradient(slab, elab, soff, eoff, off): svals = slab.get_value_tuple() evals = elab.get_value_tuple() return LabColor(*[linear_gradient(start_value, end_value, soff, eoff, off) for start_value, end_value in zip(svals, evals)]) def generate_gradient_function(DATA): def gradient_function(y): initial_offset = 0 for offset, start, end in DATA: if y <= offset: return lab_gradient(start, end, initial_offset, offset, y) initial_offset = offset return gradient_function def get_upscaled_values(rgb): return [min(max(0, i), 255) for i in rgb.get_upscaled_value_tuple()] def get_rgb(lab): rgb = convert_color(lab, sRGBColor) rgb = sRGBColor(*get_upscaled_values(rgb), is_upscaled=True) return rgb.get_rgb_hex()[1:] def find_color(ulab, colors, ctrans): cur_distance = float('inf') cur_color = None i = 0 for clab in colors: dist = delta_e_cie2000(ulab, clab) if dist < cur_distance: cur_distance = dist cur_color = (ctrans(i), clab) i += 1 return cur_color def print_color(color): if type(color) is int: colstr = '5;' + str(color) else: rgb = convert_color(color, sRGBColor) colstr = '2;' + ';'.join((str(i) for i in get_upscaled_values(rgb))) sys.stdout.write('\033[48;' + colstr + 'm ') def print_colors(colors, num): for i in range(num): color = colors[int(round(i * (len(colors) - 1) / num))] print_color(color) sys.stdout.write('\033[0m\n') def dec_scale_generator(num): j = 0 r = '' while num: r += '\033[{0}m'.format(j % 2) for i in range(10): r += str(i) num -= 1 if not num: break j += 1 r += '\033[0m\n' return r def compute_steps(gradient, weights): maxweight = len(gradient) - 1 if weights: weight_sum = sum(weights) norm_weights = [100.0 * weight / weight_sum for weight in weights] steps = [0] for weight in norm_weights: steps.append(steps[-1] + weight) steps.pop(0) steps.pop(0) else: step = m / maxweight steps = [i * step for i in range(1, maxweight + 1)] return steps palettes = { '16': (cterm_to_lab[:16], lambda c: c), '256': (cterm_to_lab, lambda c: c), None: (cterm_to_lab[16:], lambda c: c + 16), } def show_scale(rng, num_output): if not rng and num_output >= 32 and (num_output - 1) // 10 >= 4 and (num_output - 1) % 10 == 0: sys.stdout.write('0') sys.stdout.write(''.join(('%*u' % (num_output // 10, i) for i in range(10, 101, 10)))) sys.stdout.write('\n') else: if rng: vmin, vmax = rng[1] isint = rng[0] else: isint = True vmin = 0 vmax = 100 s = '' lasts = ' ' + str(vmax) while len(s) + len(lasts) < num_output: curpc = len(s) + 1 if s else 0 curval = vmin + curpc * (vmax - vmin) / num_output if isint: curval = int(round(curval)) s += str(curval) + ' ' sys.stdout.write(s[:-1] + lasts + '\n') sys.stdout.write(dec_scale_generator(num_output) + '\n') if __name__ == '__main__': p = argparse.ArgumentParser(description=__doc__) p.add_argument('gradient', nargs='*', metavar='COLOR', type=color, help='List of colors (either indexes from 8-bit palette or 24-bit RGB in hexadecimal notation)') p.add_argument('-n', '--num_items', metavar='INT', type=int, help='Number of items in resulting list', default=101) p.add_argument('-N', '--num_output', metavar='INT', type=int, help='Number of characters in sample', default=101) p.add_argument('-r', '--range', metavar='V1 V2', type=num2, help='Use this range when outputting scale') p.add_argument('-s', '--show', action='store_true', help='If present output gradient sample') p.add_argument('-p', '--palette', choices=('16', '256'), help='Use this palette. Defaults to 240-color palette (256 colors without first 16)') p.add_argument('-w', '--weights', metavar='INT INT ...', type=nums, help='Adjust weights of colors. Number of weights must be equal to number of colors') p.add_argument('-C', '--omit-terminal', action='store_true', help='If present do not compute values for terminal') args = p.parse_args() m = args.num_items steps = compute_steps(args.gradient, args.weights) data = [(weight, args.gradient[i - 1], args.gradient[i]) for weight, i in zip(steps, range(1, len(args.gradient)))] gr_func = generate_gradient_function(data) gradient = [gr_func(y) for y in range(0, m)] r = [get_rgb(lab) for lab in gradient] if not args.omit_terminal: r2 = [find_color(lab, *palettes[args.palette])[0] for lab in gradient] r3 = [i[0] for i in groupby(r2)] print(json.dumps(r)) if not args.omit_terminal: print(json.dumps(r2)) print(json.dumps(r3)) if args.show: print_colors(args.gradient, args.num_output) print_colors(gradient, args.num_output) if not args.omit_terminal: print_colors(r2, args.num_output) print_colors(r3, args.num_output) show_scale(args.range, args.num_output)