217 lines
5.9 KiB
Python
Executable File
217 lines
5.9 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# vim:fileencoding=utf-8:noet
|
|
'''Gradients generator
|
|
'''
|
|
from __future__ import division, unicode_literals
|
|
import sys
|
|
import json
|
|
from powerline.colorscheme import cterm_to_hex
|
|
from itertools import groupby
|
|
import argparse
|
|
from colormath.color_objects import sRGBColor, LabColor
|
|
from colormath.color_conversions import convert_color
|
|
from colormath.color_diff import delta_e_cie2000
|
|
|
|
try:
|
|
from __builtin__ import unicode
|
|
except ImportError:
|
|
unicode = str # NOQA
|
|
|
|
|
|
def num2(s):
|
|
try:
|
|
return (True, [int(v) for v in s.partition(' ')[::2]])
|
|
except TypeError:
|
|
return (False, [float(v) for v in s.partition(' ')[::2]])
|
|
|
|
|
|
def rgbint_to_lab(rgbint):
|
|
rgb = sRGBColor(
|
|
(rgbint >> 16) & 0xFF, (rgbint >> 8) & 0xFF, rgbint & 0xFF,
|
|
is_upscaled=True
|
|
)
|
|
return convert_color(rgb, LabColor)
|
|
|
|
|
|
cterm_to_lab = tuple((rgbint_to_lab(v) for v in cterm_to_hex))
|
|
|
|
|
|
def color(s):
|
|
if len(s) <= 3:
|
|
return cterm_to_lab[int(s)]
|
|
else:
|
|
return rgbint_to_lab(int(s, 16))
|
|
|
|
|
|
def nums(s):
|
|
return [int(i) for i in s.split()]
|
|
|
|
|
|
def linear_gradient(start_value, stop_value, start_offset, stop_offset, offset):
|
|
return start_value + ((offset - start_offset) * (stop_value - start_value) / (stop_offset - start_offset))
|
|
|
|
|
|
def lab_gradient(slab, elab, soff, eoff, off):
|
|
svals = slab.get_value_tuple()
|
|
evals = elab.get_value_tuple()
|
|
return LabColor(*[
|
|
linear_gradient(start_value, end_value, soff, eoff, off)
|
|
for start_value, end_value in zip(svals, evals)
|
|
])
|
|
|
|
|
|
def generate_gradient_function(DATA):
|
|
def gradient_function(y):
|
|
initial_offset = 0
|
|
for offset, start, end in DATA:
|
|
if y <= offset:
|
|
return lab_gradient(start, end, initial_offset, offset, y)
|
|
initial_offset = offset
|
|
return gradient_function
|
|
|
|
|
|
def get_upscaled_values(rgb):
|
|
return [min(max(0, i), 255) for i in rgb.get_upscaled_value_tuple()]
|
|
|
|
|
|
def get_rgb(lab):
|
|
rgb = convert_color(lab, sRGBColor)
|
|
rgb = sRGBColor(*get_upscaled_values(rgb), is_upscaled=True)
|
|
return rgb.get_rgb_hex()[1:]
|
|
|
|
|
|
def find_color(ulab, colors, ctrans):
|
|
cur_distance = float('inf')
|
|
cur_color = None
|
|
i = 0
|
|
for clab in colors:
|
|
dist = delta_e_cie2000(ulab, clab)
|
|
if dist < cur_distance:
|
|
cur_distance = dist
|
|
cur_color = (ctrans(i), clab)
|
|
i += 1
|
|
return cur_color
|
|
|
|
|
|
def print_color(color):
|
|
if type(color) is int:
|
|
colstr = '5;' + str(color)
|
|
else:
|
|
rgb = convert_color(color, sRGBColor)
|
|
colstr = '2;' + ';'.join((str(i) for i in get_upscaled_values(rgb)))
|
|
sys.stdout.write('\033[48;' + colstr + 'm ')
|
|
|
|
|
|
def print_colors(colors, num):
|
|
for i in range(num):
|
|
color = colors[int(round(i * (len(colors) - 1) / num))]
|
|
print_color(color)
|
|
sys.stdout.write('\033[0m\n')
|
|
|
|
|
|
def dec_scale_generator(num):
|
|
j = 0
|
|
r = ''
|
|
while num:
|
|
r += '\033[{0}m'.format(j % 2)
|
|
for i in range(10):
|
|
r += str(i)
|
|
num -= 1
|
|
if not num:
|
|
break
|
|
j += 1
|
|
r += '\033[0m\n'
|
|
return r
|
|
|
|
|
|
def compute_steps(gradient, weights):
|
|
maxweight = len(gradient) - 1
|
|
if weights:
|
|
weight_sum = sum(weights)
|
|
norm_weights = [100.0 * weight / weight_sum for weight in weights]
|
|
steps = [0]
|
|
for weight in norm_weights:
|
|
steps.append(steps[-1] + weight)
|
|
steps.pop(0)
|
|
steps.pop(0)
|
|
else:
|
|
step = m / maxweight
|
|
steps = [i * step for i in range(1, maxweight + 1)]
|
|
return steps
|
|
|
|
|
|
palettes = {
|
|
'16': (cterm_to_lab[:16], lambda c: c),
|
|
'256': (cterm_to_lab, lambda c: c),
|
|
None: (cterm_to_lab[16:], lambda c: c + 16),
|
|
}
|
|
|
|
|
|
def show_scale(rng, num_output):
|
|
if not rng and num_output >= 32 and (num_output - 1) // 10 >= 4 and (num_output - 1) % 10 == 0:
|
|
sys.stdout.write('0')
|
|
sys.stdout.write(''.join(('%*u' % (num_output // 10, i) for i in range(10, 101, 10))))
|
|
sys.stdout.write('\n')
|
|
else:
|
|
if rng:
|
|
vmin, vmax = rng[1]
|
|
isint = rng[0]
|
|
else:
|
|
isint = True
|
|
vmin = 0
|
|
vmax = 100
|
|
s = ''
|
|
lasts = ' ' + str(vmax)
|
|
while len(s) + len(lasts) < num_output:
|
|
curpc = len(s) + 1 if s else 0
|
|
curval = vmin + curpc * (vmax - vmin) / num_output
|
|
if isint:
|
|
curval = int(round(curval))
|
|
s += str(curval) + ' '
|
|
sys.stdout.write(s[:-1] + lasts + '\n')
|
|
sys.stdout.write(dec_scale_generator(num_output) + '\n')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
p = argparse.ArgumentParser(description=__doc__)
|
|
p.add_argument('gradient', nargs='*', metavar='COLOR', type=color, help='List of colors (either indexes from 8-bit palette or 24-bit RGB in hexadecimal notation)')
|
|
p.add_argument('-n', '--num_items', metavar='INT', type=int, help='Number of items in resulting list', default=101)
|
|
p.add_argument('-N', '--num_output', metavar='INT', type=int, help='Number of characters in sample', default=101)
|
|
p.add_argument('-r', '--range', metavar='V1 V2', type=num2, help='Use this range when outputting scale')
|
|
p.add_argument('-s', '--show', action='store_true', help='If present output gradient sample')
|
|
p.add_argument('-p', '--palette', choices=('16', '256'), help='Use this palette. Defaults to 240-color palette (256 colors without first 16)')
|
|
p.add_argument('-w', '--weights', metavar='INT INT ...', type=nums, help='Adjust weights of colors. Number of weights must be equal to number of colors')
|
|
p.add_argument('-C', '--omit-terminal', action='store_true', help='If present do not compute values for terminal')
|
|
|
|
args = p.parse_args()
|
|
|
|
m = args.num_items
|
|
|
|
steps = compute_steps(args.gradient, args.weights)
|
|
|
|
data = [
|
|
(weight, args.gradient[i - 1], args.gradient[i])
|
|
for weight, i in zip(steps, range(1, len(args.gradient)))
|
|
]
|
|
gr_func = generate_gradient_function(data)
|
|
gradient = [gr_func(y) for y in range(0, m)]
|
|
|
|
r = [get_rgb(lab) for lab in gradient]
|
|
if not args.omit_terminal:
|
|
r2 = [find_color(lab, *palettes[args.palette])[0] for lab in gradient]
|
|
r3 = [i[0] for i in groupby(r2)]
|
|
|
|
if not args.omit_terminal:
|
|
print(json.dumps(r3) + ',')
|
|
print(json.dumps(r2) + ',')
|
|
print(json.dumps(r))
|
|
|
|
if args.show:
|
|
print_colors(args.gradient, args.num_output)
|
|
if not args.omit_terminal:
|
|
print_colors(r3, args.num_output)
|
|
print_colors(r2, args.num_output)
|
|
print_colors(gradient, args.num_output)
|
|
|
|
show_scale(args.range, args.num_output)
|