* Portable across various operating systems; Snappy-java contains native libraries built for Window/Mac/Linux (64-bit). snappy-java loads one of these libraries according to your machine environment (It looks system properties, `os.name` and `os.arch`).
* Simple usage. Add the snappy-java-(version).jar file to your classpath. Then call compression/decompression methods in `org.xerial.snappy.Snappy`.
* Snappy's main target is very high-speed compression/decompression with reasonable compression size. So the compression ratio of snappy-java is modest and about the same as `LZF` (ranging 20%-100% according to the dataset).
* The benchmark result indicates snappy-java is the fastest compreesor/decompressor in Java: http://ning.github.com/jvm-compressor-benchmark/results/canterbury-roundtrip-2011-07-28/index.html
* The decompression speed is twice as fast as the others: http://ning.github.com/jvm-compressor-benchmark/results/canterbury-uncompress-2011-07-28/index.html
In addition, high-level methods (`Snappy.compress(String)`, `Snappy.compress(float[] ..)` etc. ) and low-level ones (e.g. `Snappy.rawCompress(.. )`, `Snappy.rawUncompress(..)`, etc.), which minimize memory copies, can be used.
Stream-based compressor/decompressor `SnappyOutputStream`/`SnappyInputStream` are also available for reading/writing large data sets. `SnappyFramedOutputStream`/`SnappyFramedInputStream` can be used for the [framing format](https://code.google.com/p/snappy/source/browse/trunk/framing_format.txt).
* See also [Javadoc API](https://oss.sonatype.org/service/local/repositories/releases/archive/org/xerial/snappy/snappy-java/1.1.2-RC1/snappy-java-1.1.2-RC1-javadoc.jar/!/index.html)
*`SnappyOutputStream` and `SnappyInputStream` use `[magic header:16 bytes]([block size:int32][compressed data:byte array])*` format. You can read the result of `Snappy.compress` with `SnappyInputStream`, but you cannot read the compressed data generated by `SnappyOutputStream` with `Snappy.uncompress`. Here is the compatibility matrix of data foramt:
See the [installation instruction](https://github.com/xerial/snappy-java/blob/develop/INSTALL). Building from the source code is an option when your OS platform and CPU architecture is not supported. To build snappy-java, you need Git, JDK (1.6 or higher), g++ compiler (mingw in Windows) etc.
snappy-java tries to static link libstdc++ to increase the availability for various Linux versions. However, standard distributions of 64-bit Linux OS rarely provide libstdc++ compiled with `-fPIC` option. I currently uses custom g++, compiled as follows:
The Makefile contains rules for cross-compiling the native library for other platforms so that the snappy-java JAR can support multiple platforms. For example, to build the native libraries for x86 Linux, x86 and x86-64 Windows, and soft- and hard-float ARM:
$ make linux32 win32 win64 linux-arm linux-armhf
If you append `snappy` to the line above, it will also build the native library for the current platform and then build the snappy-java JAR (containing all native libraries built so far).
Of course, you must first have the necessary cross-compilers and development libraries installed for each target CPU and OS. For example, on Ubuntu 12.04 for x86-64, install the following packages for each target:
Simply put the snappy-java's jar to WEB-INF/lib folder of your web application. Usual JNI-library specific problem no longer exists since snappy-java version 1.0.3 or higher can be loaded by multiple class loaders.