mirror of https://github.com/tc39/test262.git
905 lines
26 KiB
JavaScript
905 lines
26 KiB
JavaScript
|
//@ skip if $memoryLimited
|
||
|
//@ skip if $architecture == "x86"
|
||
|
//@ runNoisyTestDefault
|
||
|
//@ runNoisyTestNoCJIT
|
||
|
|
||
|
// Copyright 2013 the V8 project authors. All rights reserved.
|
||
|
// Copyright (C) 2015 Apple Inc. All rights reserved.
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are
|
||
|
// met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above
|
||
|
// copyright notice, this list of conditions and the following
|
||
|
// disclaimer in the documentation and/or other materials provided
|
||
|
// with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its
|
||
|
// contributors may be used to endorse or promote products derived
|
||
|
// from this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
|
||
|
// Performance.now is used in latency benchmarks, the fallback is Date.now.
|
||
|
var performance = performance || {};
|
||
|
performance.now = (function() {
|
||
|
return performance.now ||
|
||
|
performance.mozNow ||
|
||
|
performance.msNow ||
|
||
|
performance.oNow ||
|
||
|
performance.webkitNow ||
|
||
|
Date.now;
|
||
|
})();
|
||
|
|
||
|
// Simple framework for running the benchmark suites and
|
||
|
// computing a score based on the timing measurements.
|
||
|
|
||
|
|
||
|
// A benchmark has a name (string) and a function that will be run to
|
||
|
// do the performance measurement. The optional setup and tearDown
|
||
|
// arguments are functions that will be invoked before and after
|
||
|
// running the benchmark, but the running time of these functions will
|
||
|
// not be accounted for in the benchmark score.
|
||
|
function Benchmark(name, doWarmup, doDeterministic, run, setup, tearDown, latencyResult, minIterations) {
|
||
|
this.name = name;
|
||
|
this.doWarmup = doWarmup;
|
||
|
this.doDeterministic = doDeterministic;
|
||
|
this.run = run;
|
||
|
this.Setup = setup ? setup : function() { };
|
||
|
this.TearDown = tearDown ? tearDown : function() { };
|
||
|
this.latencyResult = latencyResult ? latencyResult : null;
|
||
|
this.minIterations = minIterations ? minIterations : 32;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Benchmark results hold the benchmark and the measured time used to
|
||
|
// run the benchmark. The benchmark score is computed later once a
|
||
|
// full benchmark suite has run to completion. If latency is set to 0
|
||
|
// then there is no latency score for this benchmark.
|
||
|
function BenchmarkResult(benchmark, time, latency) {
|
||
|
this.benchmark = benchmark;
|
||
|
this.time = time;
|
||
|
this.latency = latency;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Automatically convert results to numbers. Used by the geometric
|
||
|
// mean computation.
|
||
|
BenchmarkResult.prototype.valueOf = function() {
|
||
|
return this.time;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Suites of benchmarks consist of a name and the set of benchmarks in
|
||
|
// addition to the reference timing that the final score will be based
|
||
|
// on. This way, all scores are relative to a reference run and higher
|
||
|
// scores implies better performance.
|
||
|
function BenchmarkSuite(name, reference, benchmarks) {
|
||
|
this.name = name;
|
||
|
this.reference = reference;
|
||
|
this.benchmarks = benchmarks;
|
||
|
BenchmarkSuite.suites.push(this);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Keep track of all declared benchmark suites.
|
||
|
BenchmarkSuite.suites = [];
|
||
|
|
||
|
// Scores are not comparable across versions. Bump the version if
|
||
|
// you're making changes that will affect that scores, e.g. if you add
|
||
|
// a new benchmark or change an existing one.
|
||
|
BenchmarkSuite.version = '9';
|
||
|
|
||
|
// Override the alert function to throw an exception instead.
|
||
|
alert = function(s) {
|
||
|
throw "Alert called with argument: " + s;
|
||
|
};
|
||
|
|
||
|
|
||
|
// To make the benchmark results predictable, we replace Math.random
|
||
|
// with a 100% deterministic alternative.
|
||
|
BenchmarkSuite.ResetRNG = function() {
|
||
|
Math.random = (function() {
|
||
|
var seed = 49734321;
|
||
|
return function() {
|
||
|
// Robert Jenkins' 32 bit integer hash function.
|
||
|
seed = ((seed + 0x7ed55d16) + (seed << 12)) & 0xffffffff;
|
||
|
seed = ((seed ^ 0xc761c23c) ^ (seed >>> 19)) & 0xffffffff;
|
||
|
seed = ((seed + 0x165667b1) + (seed << 5)) & 0xffffffff;
|
||
|
seed = ((seed + 0xd3a2646c) ^ (seed << 9)) & 0xffffffff;
|
||
|
seed = ((seed + 0xfd7046c5) + (seed << 3)) & 0xffffffff;
|
||
|
seed = ((seed ^ 0xb55a4f09) ^ (seed >>> 16)) & 0xffffffff;
|
||
|
return (seed & 0xfffffff) / 0x10000000;
|
||
|
};
|
||
|
})();
|
||
|
}
|
||
|
|
||
|
|
||
|
// Runs all registered benchmark suites and optionally yields between
|
||
|
// each individual benchmark to avoid running for too long in the
|
||
|
// context of browsers. Once done, the final score is reported to the
|
||
|
// runner.
|
||
|
BenchmarkSuite.RunSuites = function(runner) {
|
||
|
var continuation = null;
|
||
|
var suites = BenchmarkSuite.suites;
|
||
|
var length = suites.length;
|
||
|
BenchmarkSuite.scores = [];
|
||
|
var index = 0;
|
||
|
function RunStep() {
|
||
|
while (continuation || index < length) {
|
||
|
if (continuation) {
|
||
|
continuation = continuation();
|
||
|
} else {
|
||
|
var suite = suites[index++];
|
||
|
if (runner.NotifyStart) runner.NotifyStart(suite.name);
|
||
|
continuation = suite.RunStep(runner);
|
||
|
}
|
||
|
if (continuation && typeof window != 'undefined' && window.setTimeout) {
|
||
|
window.setTimeout(RunStep, 25);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// show final result
|
||
|
if (runner.NotifyScore) {
|
||
|
var score = BenchmarkSuite.GeometricMean(BenchmarkSuite.scores);
|
||
|
var formatted = BenchmarkSuite.FormatScore(100 * score);
|
||
|
runner.NotifyScore(formatted);
|
||
|
}
|
||
|
}
|
||
|
RunStep();
|
||
|
}
|
||
|
|
||
|
|
||
|
// Counts the total number of registered benchmarks. Useful for
|
||
|
// showing progress as a percentage.
|
||
|
BenchmarkSuite.CountBenchmarks = function() {
|
||
|
var result = 0;
|
||
|
var suites = BenchmarkSuite.suites;
|
||
|
for (var i = 0; i < suites.length; i++) {
|
||
|
result += suites[i].benchmarks.length;
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Computes the geometric mean of a set of numbers.
|
||
|
BenchmarkSuite.GeometricMean = function(numbers) {
|
||
|
var log = 0;
|
||
|
for (var i = 0; i < numbers.length; i++) {
|
||
|
log += Math.log(numbers[i]);
|
||
|
}
|
||
|
return Math.pow(Math.E, log / numbers.length);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Computes the geometric mean of a set of throughput time measurements.
|
||
|
BenchmarkSuite.GeometricMeanTime = function(measurements) {
|
||
|
var log = 0;
|
||
|
for (var i = 0; i < measurements.length; i++) {
|
||
|
log += Math.log(measurements[i].time);
|
||
|
}
|
||
|
return Math.pow(Math.E, log / measurements.length);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Computes the average of the worst samples. For example, if percentile is 99, this will report the
|
||
|
// average of the worst 1% of the samples.
|
||
|
BenchmarkSuite.AverageAbovePercentile = function(numbers, percentile) {
|
||
|
// Don't change the original array.
|
||
|
numbers = numbers.slice();
|
||
|
|
||
|
// Sort in ascending order.
|
||
|
numbers.sort(function(a, b) { return a - b; });
|
||
|
|
||
|
// Now the elements we want are at the end. Keep removing them until the array size shrinks too much.
|
||
|
// Examples assuming percentile = 99:
|
||
|
//
|
||
|
// - numbers.length starts at 100: we will remove just the worst entry and then not remove anymore,
|
||
|
// since then numbers.length / originalLength = 0.99.
|
||
|
//
|
||
|
// - numbers.length starts at 1000: we will remove the ten worst.
|
||
|
//
|
||
|
// - numbers.length starts at 10: we will remove just the worst.
|
||
|
var numbersWeWant = [];
|
||
|
var originalLength = numbers.length;
|
||
|
while (numbers.length / originalLength > percentile / 100)
|
||
|
numbersWeWant.push(numbers.pop());
|
||
|
|
||
|
var sum = 0;
|
||
|
for (var i = 0; i < numbersWeWant.length; ++i)
|
||
|
sum += numbersWeWant[i];
|
||
|
|
||
|
var result = sum / numbersWeWant.length;
|
||
|
|
||
|
// Do a sanity check.
|
||
|
if (numbers.length && result < numbers[numbers.length - 1]) {
|
||
|
throw "Sanity check fail: the worst case result is " + result +
|
||
|
" but we didn't take into account " + numbers;
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Computes the geometric mean of a set of latency measurements.
|
||
|
BenchmarkSuite.GeometricMeanLatency = function(measurements) {
|
||
|
var log = 0;
|
||
|
var hasLatencyResult = false;
|
||
|
for (var i = 0; i < measurements.length; i++) {
|
||
|
if (measurements[i].latency != 0) {
|
||
|
log += Math.log(measurements[i].latency);
|
||
|
hasLatencyResult = true;
|
||
|
}
|
||
|
}
|
||
|
if (hasLatencyResult) {
|
||
|
return Math.pow(Math.E, log / measurements.length);
|
||
|
} else {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// Converts a score value to a string with at least three significant
|
||
|
// digits.
|
||
|
BenchmarkSuite.FormatScore = function(value) {
|
||
|
if (value > 100) {
|
||
|
return value.toFixed(0);
|
||
|
} else {
|
||
|
return value.toPrecision(3);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Notifies the runner that we're done running a single benchmark in
|
||
|
// the benchmark suite. This can be useful to report progress.
|
||
|
BenchmarkSuite.prototype.NotifyStep = function(result) {
|
||
|
this.results.push(result);
|
||
|
if (this.runner.NotifyStep) this.runner.NotifyStep(result.benchmark.name);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Notifies the runner that we're done with running a suite and that
|
||
|
// we have a result which can be reported to the user if needed.
|
||
|
BenchmarkSuite.prototype.NotifyResult = function() {
|
||
|
var mean = BenchmarkSuite.GeometricMeanTime(this.results);
|
||
|
var score = this.reference[0] / mean;
|
||
|
BenchmarkSuite.scores.push(score);
|
||
|
if (this.runner.NotifyResult) {
|
||
|
var formatted = BenchmarkSuite.FormatScore(100 * score);
|
||
|
this.runner.NotifyResult(this.name, formatted);
|
||
|
}
|
||
|
if (this.reference.length == 2) {
|
||
|
var meanLatency = BenchmarkSuite.GeometricMeanLatency(this.results);
|
||
|
if (meanLatency != 0) {
|
||
|
var scoreLatency = this.reference[1] / meanLatency;
|
||
|
BenchmarkSuite.scores.push(scoreLatency);
|
||
|
if (this.runner.NotifyResult) {
|
||
|
var formattedLatency = BenchmarkSuite.FormatScore(100 * scoreLatency)
|
||
|
this.runner.NotifyResult(this.name + "Latency", formattedLatency);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// Notifies the runner that running a benchmark resulted in an error.
|
||
|
BenchmarkSuite.prototype.NotifyError = function(error) {
|
||
|
if (this.runner.NotifyError) {
|
||
|
this.runner.NotifyError(this.name, error);
|
||
|
}
|
||
|
if (this.runner.NotifyStep) {
|
||
|
this.runner.NotifyStep(this.name);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// Runs a single benchmark for at least a second and computes the
|
||
|
// average time it takes to run a single iteration.
|
||
|
BenchmarkSuite.prototype.RunSingleBenchmark = function(benchmark, data) {
|
||
|
function Measure(data) {
|
||
|
var elapsed = 0;
|
||
|
var start = new Date();
|
||
|
|
||
|
// Run either for 1 second or for the number of iterations specified
|
||
|
// by minIterations, depending on the config flag doDeterministic.
|
||
|
for (var i = 0; (benchmark.doDeterministic ?
|
||
|
i<benchmark.minIterations : elapsed < 1000); i++) {
|
||
|
benchmark.run();
|
||
|
elapsed = new Date() - start;
|
||
|
}
|
||
|
if (data != null) {
|
||
|
data.runs += i;
|
||
|
data.elapsed += elapsed;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Sets up data in order to skip or not the warmup phase.
|
||
|
if (!benchmark.doWarmup && data == null) {
|
||
|
data = { runs: 0, elapsed: 0 };
|
||
|
}
|
||
|
|
||
|
if (data == null) {
|
||
|
Measure(null);
|
||
|
return { runs: 0, elapsed: 0 };
|
||
|
} else {
|
||
|
Measure(data);
|
||
|
// If we've run too few iterations, we continue for another second.
|
||
|
if (data.runs < benchmark.minIterations) return data;
|
||
|
var usec = (data.elapsed * 1000) / data.runs;
|
||
|
var latencySamples = (benchmark.latencyResult != null) ? benchmark.latencyResult() : [0];
|
||
|
var percentile = 99.5;
|
||
|
var latency = BenchmarkSuite.AverageAbovePercentile(latencySamples, percentile) * 1000;
|
||
|
this.NotifyStep(new BenchmarkResult(benchmark, usec, latency));
|
||
|
return null;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// This function starts running a suite, but stops between each
|
||
|
// individual benchmark in the suite and returns a continuation
|
||
|
// function which can be invoked to run the next benchmark. Once the
|
||
|
// last benchmark has been executed, null is returned.
|
||
|
BenchmarkSuite.prototype.RunStep = function(runner) {
|
||
|
BenchmarkSuite.ResetRNG();
|
||
|
this.results = [];
|
||
|
this.runner = runner;
|
||
|
var length = this.benchmarks.length;
|
||
|
var index = 0;
|
||
|
var suite = this;
|
||
|
var data;
|
||
|
|
||
|
// Run the setup, the actual benchmark, and the tear down in three
|
||
|
// separate steps to allow the framework to yield between any of the
|
||
|
// steps.
|
||
|
|
||
|
function RunNextSetup() {
|
||
|
if (index < length) {
|
||
|
try {
|
||
|
suite.benchmarks[index].Setup();
|
||
|
} catch (e) {
|
||
|
suite.NotifyError(e);
|
||
|
return null;
|
||
|
}
|
||
|
return RunNextBenchmark;
|
||
|
}
|
||
|
suite.NotifyResult();
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
function RunNextBenchmark() {
|
||
|
try {
|
||
|
data = suite.RunSingleBenchmark(suite.benchmarks[index], data);
|
||
|
} catch (e) {
|
||
|
suite.NotifyError(e);
|
||
|
return null;
|
||
|
}
|
||
|
// If data is null, we're done with this benchmark.
|
||
|
return (data == null) ? RunNextTearDown : RunNextBenchmark();
|
||
|
}
|
||
|
|
||
|
function RunNextTearDown() {
|
||
|
try {
|
||
|
suite.benchmarks[index++].TearDown();
|
||
|
} catch (e) {
|
||
|
suite.NotifyError(e);
|
||
|
return null;
|
||
|
}
|
||
|
return RunNextSetup;
|
||
|
}
|
||
|
|
||
|
// Start out running the setup.
|
||
|
return RunNextSetup();
|
||
|
}
|
||
|
// Copyright 2009 the V8 project authors. All rights reserved.
|
||
|
// Copyright (C) 2015 Apple Inc. All rights reserved.
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are
|
||
|
// met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above
|
||
|
// copyright notice, this list of conditions and the following
|
||
|
// disclaimer in the documentation and/or other materials provided
|
||
|
// with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its
|
||
|
// contributors may be used to endorse or promote products derived
|
||
|
// from this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
// This benchmark is based on a JavaScript log processing module used
|
||
|
// by the V8 profiler to generate execution time profiles for runs of
|
||
|
// JavaScript applications, and it effectively measures how fast the
|
||
|
// JavaScript engine is at allocating nodes and reclaiming the memory
|
||
|
// used for old nodes. Because of the way splay trees work, the engine
|
||
|
// also has to deal with a lot of changes to the large tree object
|
||
|
// graph.
|
||
|
|
||
|
var Splay = new BenchmarkSuite('Splay', [81491, 2739514], [
|
||
|
new Benchmark("Splay", true, false,
|
||
|
SplayRun, SplaySetup, SplayTearDown, SplayLatency)
|
||
|
]);
|
||
|
|
||
|
|
||
|
// Configuration.
|
||
|
var kSplayTreeSize = 8000;
|
||
|
var kSplayTreeModifications = 80;
|
||
|
var kSplayTreePayloadDepth = 5;
|
||
|
|
||
|
var splayTree = null;
|
||
|
var splaySampleTimeStart = 0.0;
|
||
|
|
||
|
function GeneratePayloadTree(depth, tag) {
|
||
|
if (depth == 0) {
|
||
|
return {
|
||
|
array : [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ],
|
||
|
string : 'String for key ' + tag + ' in leaf node'
|
||
|
};
|
||
|
} else {
|
||
|
return {
|
||
|
left: GeneratePayloadTree(depth - 1, tag),
|
||
|
right: GeneratePayloadTree(depth - 1, tag)
|
||
|
};
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
function GenerateKey() {
|
||
|
// The benchmark framework guarantees that Math.random is
|
||
|
// deterministic; see base.js.
|
||
|
return Math.random();
|
||
|
}
|
||
|
|
||
|
var splaySamples = [];
|
||
|
|
||
|
function SplayLatency() {
|
||
|
return splaySamples;
|
||
|
}
|
||
|
|
||
|
function SplayUpdateStats(time) {
|
||
|
var pause = time - splaySampleTimeStart;
|
||
|
splaySampleTimeStart = time;
|
||
|
splaySamples.push(pause);
|
||
|
}
|
||
|
|
||
|
function InsertNewNode() {
|
||
|
// Insert new node with a unique key.
|
||
|
var key;
|
||
|
do {
|
||
|
key = GenerateKey();
|
||
|
} while (splayTree.find(key) != null);
|
||
|
var payload = GeneratePayloadTree(kSplayTreePayloadDepth, String(key));
|
||
|
splayTree.insert(key, payload);
|
||
|
return key;
|
||
|
}
|
||
|
|
||
|
|
||
|
function SplaySetup() {
|
||
|
// Check if the platform has the performance.now high resolution timer.
|
||
|
// If not, throw exception and quit.
|
||
|
if (!performance.now) {
|
||
|
throw "PerformanceNowUnsupported";
|
||
|
}
|
||
|
|
||
|
splayTree = new SplayTree();
|
||
|
splaySampleTimeStart = performance.now()
|
||
|
for (var i = 0; i < kSplayTreeSize; i++) {
|
||
|
InsertNewNode();
|
||
|
if ((i+1) % 20 == 19) {
|
||
|
SplayUpdateStats(performance.now());
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
function SplayTearDown() {
|
||
|
// Allow the garbage collector to reclaim the memory
|
||
|
// used by the splay tree no matter how we exit the
|
||
|
// tear down function.
|
||
|
var keys = splayTree.exportKeys();
|
||
|
splayTree = null;
|
||
|
|
||
|
splaySamples = [];
|
||
|
|
||
|
// Verify that the splay tree has the right size.
|
||
|
var length = keys.length;
|
||
|
if (length != kSplayTreeSize) {
|
||
|
throw new Error("Splay tree has wrong size");
|
||
|
}
|
||
|
|
||
|
// Verify that the splay tree has sorted, unique keys.
|
||
|
for (var i = 0; i < length - 1; i++) {
|
||
|
if (keys[i] >= keys[i + 1]) {
|
||
|
throw new Error("Splay tree not sorted");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
function SplayRun() {
|
||
|
// Replace a few nodes in the splay tree.
|
||
|
for (var i = 0; i < kSplayTreeModifications; i++) {
|
||
|
var key = InsertNewNode();
|
||
|
var greatest = splayTree.findGreatestLessThan(key);
|
||
|
if (greatest == null) splayTree.remove(key);
|
||
|
else splayTree.remove(greatest.key);
|
||
|
}
|
||
|
SplayUpdateStats(performance.now());
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Constructs a Splay tree. A splay tree is a self-balancing binary
|
||
|
* search tree with the additional property that recently accessed
|
||
|
* elements are quick to access again. It performs basic operations
|
||
|
* such as insertion, look-up and removal in O(log(n)) amortized time.
|
||
|
*
|
||
|
* @constructor
|
||
|
*/
|
||
|
function SplayTree() {
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Pointer to the root node of the tree.
|
||
|
*
|
||
|
* @type {SplayTree.Node}
|
||
|
* @private
|
||
|
*/
|
||
|
SplayTree.prototype.root_ = null;
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @return {boolean} Whether the tree is empty.
|
||
|
*/
|
||
|
SplayTree.prototype.isEmpty = function() {
|
||
|
return !this.root_;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Inserts a node into the tree with the specified key and value if
|
||
|
* the tree does not already contain a node with the specified key. If
|
||
|
* the value is inserted, it becomes the root of the tree.
|
||
|
*
|
||
|
* @param {number} key Key to insert into the tree.
|
||
|
* @param {*} value Value to insert into the tree.
|
||
|
*/
|
||
|
SplayTree.prototype.insert = function(key, value) {
|
||
|
if (this.isEmpty()) {
|
||
|
this.root_ = new SplayTree.Node(key, value);
|
||
|
return;
|
||
|
}
|
||
|
// Splay on the key to move the last node on the search path for
|
||
|
// the key to the root of the tree.
|
||
|
this.splay_(key);
|
||
|
if (this.root_.key == key) {
|
||
|
return;
|
||
|
}
|
||
|
var node = new SplayTree.Node(key, value);
|
||
|
if (key > this.root_.key) {
|
||
|
node.left = this.root_;
|
||
|
node.right = this.root_.right;
|
||
|
this.root_.right = null;
|
||
|
} else {
|
||
|
node.right = this.root_;
|
||
|
node.left = this.root_.left;
|
||
|
this.root_.left = null;
|
||
|
}
|
||
|
this.root_ = node;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Removes a node with the specified key from the tree if the tree
|
||
|
* contains a node with this key. The removed node is returned. If the
|
||
|
* key is not found, an exception is thrown.
|
||
|
*
|
||
|
* @param {number} key Key to find and remove from the tree.
|
||
|
* @return {SplayTree.Node} The removed node.
|
||
|
*/
|
||
|
SplayTree.prototype.remove = function(key) {
|
||
|
if (this.isEmpty()) {
|
||
|
throw Error('Key not found: ' + key);
|
||
|
}
|
||
|
this.splay_(key);
|
||
|
if (this.root_.key != key) {
|
||
|
throw Error('Key not found: ' + key);
|
||
|
}
|
||
|
var removed = this.root_;
|
||
|
if (!this.root_.left) {
|
||
|
this.root_ = this.root_.right;
|
||
|
} else {
|
||
|
var right = this.root_.right;
|
||
|
this.root_ = this.root_.left;
|
||
|
// Splay to make sure that the new root has an empty right child.
|
||
|
this.splay_(key);
|
||
|
// Insert the original right child as the right child of the new
|
||
|
// root.
|
||
|
this.root_.right = right;
|
||
|
}
|
||
|
return removed;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Returns the node having the specified key or null if the tree doesn't contain
|
||
|
* a node with the specified key.
|
||
|
*
|
||
|
* @param {number} key Key to find in the tree.
|
||
|
* @return {SplayTree.Node} Node having the specified key.
|
||
|
*/
|
||
|
SplayTree.prototype.find = function(key) {
|
||
|
if (this.isEmpty()) {
|
||
|
return null;
|
||
|
}
|
||
|
this.splay_(key);
|
||
|
return this.root_.key == key ? this.root_ : null;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @return {SplayTree.Node} Node having the maximum key value.
|
||
|
*/
|
||
|
SplayTree.prototype.findMax = function(opt_startNode) {
|
||
|
if (this.isEmpty()) {
|
||
|
return null;
|
||
|
}
|
||
|
var current = opt_startNode || this.root_;
|
||
|
while (current.right) {
|
||
|
current = current.right;
|
||
|
}
|
||
|
return current;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @return {SplayTree.Node} Node having the maximum key value that
|
||
|
* is less than the specified key value.
|
||
|
*/
|
||
|
SplayTree.prototype.findGreatestLessThan = function(key) {
|
||
|
if (this.isEmpty()) {
|
||
|
return null;
|
||
|
}
|
||
|
// Splay on the key to move the node with the given key or the last
|
||
|
// node on the search path to the top of the tree.
|
||
|
this.splay_(key);
|
||
|
// Now the result is either the root node or the greatest node in
|
||
|
// the left subtree.
|
||
|
if (this.root_.key < key) {
|
||
|
return this.root_;
|
||
|
} else if (this.root_.left) {
|
||
|
return this.findMax(this.root_.left);
|
||
|
} else {
|
||
|
return null;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @return {Array<*>} An array containing all the keys of tree's nodes.
|
||
|
*/
|
||
|
SplayTree.prototype.exportKeys = function() {
|
||
|
var result = [];
|
||
|
if (!this.isEmpty()) {
|
||
|
this.root_.traverse_(function(node) { result.push(node.key); });
|
||
|
}
|
||
|
return result;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Perform the splay operation for the given key. Moves the node with
|
||
|
* the given key to the top of the tree. If no node has the given
|
||
|
* key, the last node on the search path is moved to the top of the
|
||
|
* tree. This is the simplified top-down splaying algorithm from:
|
||
|
* "Self-adjusting Binary Search Trees" by Sleator and Tarjan
|
||
|
*
|
||
|
* @param {number} key Key to splay the tree on.
|
||
|
* @private
|
||
|
*/
|
||
|
SplayTree.prototype.splay_ = function(key) {
|
||
|
if (this.isEmpty()) {
|
||
|
return;
|
||
|
}
|
||
|
// Create a dummy node. The use of the dummy node is a bit
|
||
|
// counter-intuitive: The right child of the dummy node will hold
|
||
|
// the L tree of the algorithm. The left child of the dummy node
|
||
|
// will hold the R tree of the algorithm. Using a dummy node, left
|
||
|
// and right will always be nodes and we avoid special cases.
|
||
|
var dummy, left, right;
|
||
|
dummy = left = right = new SplayTree.Node(null, null);
|
||
|
var current = this.root_;
|
||
|
while (true) {
|
||
|
if (key < current.key) {
|
||
|
if (!current.left) {
|
||
|
break;
|
||
|
}
|
||
|
if (key < current.left.key) {
|
||
|
// Rotate right.
|
||
|
var tmp = current.left;
|
||
|
current.left = tmp.right;
|
||
|
tmp.right = current;
|
||
|
current = tmp;
|
||
|
if (!current.left) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
// Link right.
|
||
|
right.left = current;
|
||
|
right = current;
|
||
|
current = current.left;
|
||
|
} else if (key > current.key) {
|
||
|
if (!current.right) {
|
||
|
break;
|
||
|
}
|
||
|
if (key > current.right.key) {
|
||
|
// Rotate left.
|
||
|
var tmp = current.right;
|
||
|
current.right = tmp.left;
|
||
|
tmp.left = current;
|
||
|
current = tmp;
|
||
|
if (!current.right) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
// Link left.
|
||
|
left.right = current;
|
||
|
left = current;
|
||
|
current = current.right;
|
||
|
} else {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
// Assemble.
|
||
|
left.right = current.left;
|
||
|
right.left = current.right;
|
||
|
current.left = dummy.right;
|
||
|
current.right = dummy.left;
|
||
|
this.root_ = current;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Constructs a Splay tree node.
|
||
|
*
|
||
|
* @param {number} key Key.
|
||
|
* @param {*} value Value.
|
||
|
*/
|
||
|
SplayTree.Node = function(key, value) {
|
||
|
this.key = key;
|
||
|
this.value = value;
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @type {SplayTree.Node}
|
||
|
*/
|
||
|
SplayTree.Node.prototype.left = null;
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @type {SplayTree.Node}
|
||
|
*/
|
||
|
SplayTree.Node.prototype.right = null;
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Performs an ordered traversal of the subtree starting at
|
||
|
* this SplayTree.Node.
|
||
|
*
|
||
|
* @param {function(SplayTree.Node)} f Visitor function.
|
||
|
* @private
|
||
|
*/
|
||
|
SplayTree.Node.prototype.traverse_ = function(f) {
|
||
|
var current = this;
|
||
|
while (current) {
|
||
|
var left = current.left;
|
||
|
if (left) left.traverse_(f);
|
||
|
f(current);
|
||
|
current = current.right;
|
||
|
}
|
||
|
};
|
||
|
function jscSetUp() {
|
||
|
SplaySetup();
|
||
|
}
|
||
|
|
||
|
function jscTearDown() {
|
||
|
SplayTearDown();
|
||
|
}
|
||
|
|
||
|
function jscRun() {
|
||
|
SplayRun();
|
||
|
}
|
||
|
|
||
|
jscSetUp();
|
||
|
var __before = preciseTime();
|
||
|
var times = [];
|
||
|
for (var i = 0; i < 2000; ++i) {
|
||
|
var _before = preciseTime();
|
||
|
jscRun();
|
||
|
var _after = preciseTime();
|
||
|
times.push(_after - _before);
|
||
|
flashHeapAccess(1);
|
||
|
}
|
||
|
var __after = preciseTime();
|
||
|
jscTearDown();
|
||
|
|
||
|
function averageAbovePercentile(numbers, percentile) {
|
||
|
// Don't change the original array.
|
||
|
numbers = numbers.slice();
|
||
|
|
||
|
// Sort in ascending order.
|
||
|
numbers.sort(function(a, b) { return a - b; });
|
||
|
|
||
|
// Now the elements we want are at the end. Keep removing them until the array size shrinks too much.
|
||
|
// Examples assuming percentile = 99:
|
||
|
//
|
||
|
// - numbers.length starts at 100: we will remove just the worst entry and then not remove anymore,
|
||
|
// since then numbers.length / originalLength = 0.99.
|
||
|
//
|
||
|
// - numbers.length starts at 1000: we will remove the ten worst.
|
||
|
//
|
||
|
// - numbers.length starts at 10: we will remove just the worst.
|
||
|
var numbersWeWant = [];
|
||
|
var originalLength = numbers.length;
|
||
|
while (numbers.length / originalLength > percentile / 100)
|
||
|
numbersWeWant.push(numbers.pop());
|
||
|
|
||
|
var sum = 0;
|
||
|
for (var i = 0; i < numbersWeWant.length; ++i)
|
||
|
sum += numbersWeWant[i];
|
||
|
|
||
|
var result = sum / numbersWeWant.length;
|
||
|
|
||
|
// Do a sanity check.
|
||
|
if (numbers.length && result < numbers[numbers.length - 1]) {
|
||
|
throw "Sanity check fail: the worst case result is " + result +
|
||
|
" but we didn't take into account " + numbers;
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
print("That took " + (__after - __before) * 1000 + " ms.");
|
||
|
|
||
|
function printPercentile(percentile)
|
||
|
{
|
||
|
print("Above " + percentile + "%: " + averageAbovePercentile(times, percentile) * 1000 + " ms.");
|
||
|
}
|
||
|
|
||
|
printPercentile(99.9);
|
||
|
printPercentile(99.5);
|
||
|
printPercentile(99);
|
||
|
printPercentile(97.5);
|
||
|
printPercentile(95);
|
||
|
printPercentile(90);
|
||
|
printPercentile(75);
|
||
|
printPercentile(50);
|
||
|
printPercentile(0);
|
||
|
|
||
|
gc();
|