mirror of https://github.com/tc39/test262.git
Remove over-specified tests
Except for a small set of expected input/output pairs, both ES5 and ES2015 define the expected return value of these methods in terms of an "implementation-dependent approximation." This makes it inappropriate to enforce expectations for specific values, even if expressed imprecisely.
This commit is contained in:
parent
26676beab5
commit
f7aa31b41f
|
@ -1,16 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: Math.E is approximately 2.7182818284590452354
|
||||
es5id: 15.8.1.1_A1
|
||||
description: Comparing Math.E with 2.7182818284590452354
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
if (!isEqual(Math.E, 2.7182818284590452354)) {
|
||||
$ERROR('#1: \'Math.E is not approximately equal to 2.7182818284590452354\'');
|
||||
}
|
|
@ -1,16 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: Math.LN10 is approximately 2.302585092994046
|
||||
es5id: 15.8.1.2_A1
|
||||
description: Comparing Math.LN10 with 2.302585092994046
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
if (!isEqual(Math.LN10, 2.302585092994046)) {
|
||||
$ERROR('#1: \'Math.LN10 is not approximately equal to 2.302585092994046\'');
|
||||
}
|
|
@ -1,16 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: Math.LN2 is approximately 0.6931471805599453
|
||||
es5id: 15.8.1.3_A1
|
||||
description: Comparing Math.LN2 with 0.6931471805599453
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
if (!isEqual(Math.LN2, 0.6931471805599453)) {
|
||||
$ERROR('#1: \'Math.LN2 is not approximately equal to 0.6931471805599453\'');
|
||||
}
|
|
@ -1,16 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: Math.LOG10E is approximately 0.4342944819032518
|
||||
es5id: 15.8.1.5_A1
|
||||
description: Comparing Math.LOG10E with 0.4342944819032518
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
if (!isEqual(Math.LOG10E, 0.4342944819032518)) {
|
||||
$ERROR('#1: \'Math.LOG10E is not approximatley equal to 0.4342944819032518\'');
|
||||
}
|
|
@ -1,16 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: Math.LOG2E is approximately 1.4426950408889634
|
||||
es5id: 15.8.1.4_A1
|
||||
description: Comparing Math.LOG2E with 1.4426950408889634
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
if (!isEqual(Math.LOG2E, 1.4426950408889634)) {
|
||||
$ERROR('#1: \'Math.LOG2E is not approximatley equal to 1.4426950408889634\'');
|
||||
}
|
|
@ -1,16 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: Math.PI is approximately 3.1415926535897932
|
||||
es5id: 15.8.1.6_A1
|
||||
description: Comparing Math.PI with 3.1415926535897932
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
if (!isEqual(Math.PI, 3.1415926535897932)) {
|
||||
$ERROR('#1: \'Math.PI is not approximatley equal to 3.1415926535897932\'');
|
||||
}
|
|
@ -1,16 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: Math.SQRT1_2 is approximately 0.7071067811865476
|
||||
es5id: 15.8.1.7_A1
|
||||
description: Comparing Math.SQRT1_2 with 0.7071067811865476
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
if (!isEqual(Math.SQRT1_2, 0.7071067811865476)) {
|
||||
$ERROR('#1: \'Math.SQRT1_2 is not approximatley equal to 0.7071067811865476\'');
|
||||
}
|
|
@ -1,16 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: Math.SQRT2 is approximately 1.4142135623730951
|
||||
es5id: 15.8.1.8_A1
|
||||
description: Comparing Math.SQRT2 with 1.4142135623730951
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
if (!isEqual(Math.SQRT2, 1.4142135623730951)) {
|
||||
$ERROR('#1: \'Math.SQRT2 is not approximatley equal to 1.4142135623730951\'');
|
||||
}
|
|
@ -1,166 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
Math.acos, recommended that implementations use the approximation
|
||||
algorithms for IEEE 754 arithmetic contained in fdlibm
|
||||
es5id: 15.8.2.2_A5
|
||||
description: >
|
||||
Checking if Math.acos is approximately equals to its mathematical
|
||||
values on the set of 64 argument values; all the sample values is
|
||||
calculated with LibC
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var vnum = 64;
|
||||
var x = new Array();
|
||||
x[0] = -1.00000000000000000000;
|
||||
x[1] = -0.96825396825396826000;
|
||||
x[2] = -0.93650793650793651000;
|
||||
x[3] = -0.90476190476190477000;
|
||||
x[4] = -0.87301587301587302000;
|
||||
x[5] = -0.84126984126984128000;
|
||||
x[6] = -0.80952380952380953000;
|
||||
x[7] = -0.77777777777777779000;
|
||||
x[8] = -0.74603174603174605000;
|
||||
x[9] = -0.71428571428571430000;
|
||||
x[10] = -0.68253968253968256000;
|
||||
x[11] = -0.65079365079365081000;
|
||||
x[12] = -0.61904761904761907000;
|
||||
x[13] = -0.58730158730158732000;
|
||||
x[14] = -0.55555555555555558000;
|
||||
x[15] = -0.52380952380952384000;
|
||||
x[16] = -0.49206349206349209000;
|
||||
x[17] = -0.46031746031746035000;
|
||||
x[18] = -0.42857142857142860000;
|
||||
x[19] = -0.39682539682539686000;
|
||||
x[20] = -0.36507936507936511000;
|
||||
x[21] = -0.33333333333333337000;
|
||||
x[22] = -0.30158730158730163000;
|
||||
x[23] = -0.26984126984126988000;
|
||||
x[24] = -0.23809523809523814000;
|
||||
x[25] = -0.20634920634920639000;
|
||||
x[26] = -0.17460317460317465000;
|
||||
x[27] = -0.14285714285714290000;
|
||||
x[28] = -0.11111111111111116000;
|
||||
x[29] = -0.07936507936507941600;
|
||||
x[30] = -0.04761904761904767200;
|
||||
x[31] = -0.01587301587301592800;
|
||||
x[32] = 0.01587301587301581700;
|
||||
x[33] = 0.04761904761904767200;
|
||||
x[34] = 0.07936507936507930500;
|
||||
x[35] = 0.11111111111111116000;
|
||||
x[36] = 0.14285714285714279000;
|
||||
x[37] = 0.17460317460317465000;
|
||||
x[38] = 0.20634920634920628000;
|
||||
x[39] = 0.23809523809523814000;
|
||||
x[40] = 0.26984126984126977000;
|
||||
x[41] = 0.30158730158730163000;
|
||||
x[42] = 0.33333333333333326000;
|
||||
x[43] = 0.36507936507936511000;
|
||||
x[44] = 0.39682539682539675000;
|
||||
x[45] = 0.42857142857142860000;
|
||||
x[46] = 0.46031746031746024000;
|
||||
x[47] = 0.49206349206349209000;
|
||||
x[48] = 0.52380952380952372000;
|
||||
x[49] = 0.55555555555555558000;
|
||||
x[50] = 0.58730158730158721000;
|
||||
x[51] = 0.61904761904761907000;
|
||||
x[52] = 0.65079365079365070000;
|
||||
x[53] = 0.68253968253968256000;
|
||||
x[54] = 0.71428571428571419000;
|
||||
x[55] = 0.74603174603174605000;
|
||||
x[56] = 0.77777777777777768000;
|
||||
x[57] = 0.80952380952380953000;
|
||||
x[58] = 0.84126984126984117000;
|
||||
x[59] = 0.87301587301587302000;
|
||||
x[60] = 0.90476190476190466000;
|
||||
x[61] = 0.93650793650793651000;
|
||||
x[62] = 0.96825396825396814000;
|
||||
x[63] = 1.00000000000000000000;
|
||||
|
||||
|
||||
|
||||
|
||||
var y = new Array();
|
||||
y[0] = 3.14159265358979310000;
|
||||
y[1] = 2.88894492730522990000;
|
||||
y[2] = 2.78333143507717650000;
|
||||
y[3] = 2.70161669879887430000;
|
||||
y[4] = 2.63214880477790030000;
|
||||
y[5] = 2.57042415502425570000;
|
||||
y[6] = 2.51413688066660250000;
|
||||
y[7] = 2.46191883468154950000;
|
||||
y[8] = 2.41287920284638750000;
|
||||
y[9] = 2.36639928027943200000;
|
||||
y[10] = 2.32202832592153240000;
|
||||
y[11] = 2.27942559835728040000;
|
||||
y[12] = 2.23832577143072960000;
|
||||
y[13] = 2.19851714445280910000;
|
||||
y[14] = 2.15982729701117070000;
|
||||
y[15] = 2.12211329592677920000;
|
||||
y[16] = 2.08525480235608330000;
|
||||
y[17] = 2.04914909144415440000;
|
||||
y[18] = 2.01370737086853560000;
|
||||
y[19] = 1.97885200409617520000;
|
||||
y[20] = 1.94451437773781040000;
|
||||
y[21] = 1.91063323624901860000;
|
||||
y[22] = 1.87715336135181590000;
|
||||
y[23] = 1.84402450933553450000;
|
||||
y[24] = 1.81120054356415610000;
|
||||
y[25] = 1.77863871614824330000;
|
||||
y[26] = 1.74629906437061930000;
|
||||
y[27] = 1.71414389570026190000;
|
||||
y[28] = 1.68213734113586070000;
|
||||
y[29] = 1.65024496088003380000;
|
||||
y[30] = 1.61843338941929970000;
|
||||
y[31] = 1.58667000928485250000;
|
||||
y[32] = 1.55492264430494110000;
|
||||
y[33] = 1.52315926417049340000;
|
||||
y[34] = 1.49134769270975950000;
|
||||
y[35] = 1.45945531245393270000;
|
||||
y[36] = 1.42744875788953140000;
|
||||
y[37] = 1.39529358921917380000;
|
||||
y[38] = 1.36295393744155000000;
|
||||
y[39] = 1.33039211002563730000;
|
||||
y[40] = 1.29756814425425880000;
|
||||
y[41] = 1.26443929223797750000;
|
||||
y[42] = 1.23095941734077470000;
|
||||
y[43] = 1.19707827585198270000;
|
||||
y[44] = 1.16274064949361830000;
|
||||
y[45] = 1.12788528272125750000;
|
||||
y[46] = 1.09244356214563900000;
|
||||
y[47] = 1.05633785123370980000;
|
||||
y[48] = 1.01947935766301390000;
|
||||
y[49] = 0.98176535657862274000;
|
||||
y[50] = 0.94307550913698401000;
|
||||
y[51] = 0.90326688215906359000;
|
||||
y[52] = 0.86216705523251280000;
|
||||
y[53] = 0.81956432766826082000;
|
||||
y[54] = 0.77519337331036142000;
|
||||
y[55] = 0.72871345074340554000;
|
||||
y[56] = 0.67967381890824408000;
|
||||
y[57] = 0.62745577292319077000;
|
||||
y[58] = 0.57116849856553775000;
|
||||
y[59] = 0.50944384881189297000;
|
||||
y[60] = 0.43997595479091917000;
|
||||
y[61] = 0.35826121851261677000;
|
||||
y[62] = 0.25264772628456394000;
|
||||
y[63] = 0.00000000000000000000;
|
||||
|
||||
|
||||
|
||||
|
||||
var val;
|
||||
for (var i = 0; i < vnum; i++)
|
||||
{
|
||||
val = Math.acos(x[i]);
|
||||
if (!isEqual(val, y[i]))
|
||||
{
|
||||
$ERROR("\nx = " + x[i] + "\nlibc.acos(x) = " + y[i] + "\nMath.acos(x) = " + Math.acos(x[i]) + "\nMath.abs(libc.acos(x) - Math.acos(x)) > " + prec + "\n\n");
|
||||
}
|
||||
}
|
|
@ -1,165 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
Math.asin, recommended that implementations use the approximation
|
||||
algorithms for IEEE 754 arithmetic contained in fdlibm
|
||||
es5id: 15.8.2.3_A6
|
||||
description: >
|
||||
Checking if Math.asin is approximately equals to its mathematical
|
||||
values on the set of 64 argument values; all the sample values is
|
||||
calculated with LibC
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var vnum = 64;
|
||||
var x = new Array();
|
||||
x[0] = -1.00000000000000000000;
|
||||
x[1] = -0.96825396825396826000;
|
||||
x[2] = -0.93650793650793651000;
|
||||
x[3] = -0.90476190476190477000;
|
||||
x[4] = -0.87301587301587302000;
|
||||
x[5] = -0.84126984126984128000;
|
||||
x[6] = -0.80952380952380953000;
|
||||
x[7] = -0.77777777777777779000;
|
||||
x[8] = -0.74603174603174605000;
|
||||
x[9] = -0.71428571428571430000;
|
||||
x[10] = -0.68253968253968256000;
|
||||
x[11] = -0.65079365079365081000;
|
||||
x[12] = -0.61904761904761907000;
|
||||
x[13] = -0.58730158730158732000;
|
||||
x[14] = -0.55555555555555558000;
|
||||
x[15] = -0.52380952380952384000;
|
||||
x[16] = -0.49206349206349209000;
|
||||
x[17] = -0.46031746031746035000;
|
||||
x[18] = -0.42857142857142860000;
|
||||
x[19] = -0.39682539682539686000;
|
||||
x[20] = -0.36507936507936511000;
|
||||
x[21] = -0.33333333333333337000;
|
||||
x[22] = -0.30158730158730163000;
|
||||
x[23] = -0.26984126984126988000;
|
||||
x[24] = -0.23809523809523814000;
|
||||
x[25] = -0.20634920634920639000;
|
||||
x[26] = -0.17460317460317465000;
|
||||
x[27] = -0.14285714285714290000;
|
||||
x[28] = -0.11111111111111116000;
|
||||
x[29] = -0.07936507936507941600;
|
||||
x[30] = -0.04761904761904767200;
|
||||
x[31] = -0.01587301587301592800;
|
||||
x[32] = 0.01587301587301581700;
|
||||
x[33] = 0.04761904761904767200;
|
||||
x[34] = 0.07936507936507930500;
|
||||
x[35] = 0.11111111111111116000;
|
||||
x[36] = 0.14285714285714279000;
|
||||
x[37] = 0.17460317460317465000;
|
||||
x[38] = 0.20634920634920628000;
|
||||
x[39] = 0.23809523809523814000;
|
||||
x[40] = 0.26984126984126977000;
|
||||
x[41] = 0.30158730158730163000;
|
||||
x[42] = 0.33333333333333326000;
|
||||
x[43] = 0.36507936507936511000;
|
||||
x[44] = 0.39682539682539675000;
|
||||
x[45] = 0.42857142857142860000;
|
||||
x[46] = 0.46031746031746024000;
|
||||
x[47] = 0.49206349206349209000;
|
||||
x[48] = 0.52380952380952372000;
|
||||
x[49] = 0.55555555555555558000;
|
||||
x[50] = 0.58730158730158721000;
|
||||
x[51] = 0.61904761904761907000;
|
||||
x[52] = 0.65079365079365070000;
|
||||
x[53] = 0.68253968253968256000;
|
||||
x[54] = 0.71428571428571419000;
|
||||
x[55] = 0.74603174603174605000;
|
||||
x[56] = 0.77777777777777768000;
|
||||
x[57] = 0.80952380952380953000;
|
||||
x[58] = 0.84126984126984117000;
|
||||
x[59] = 0.87301587301587302000;
|
||||
x[60] = 0.90476190476190466000;
|
||||
x[61] = 0.93650793650793651000;
|
||||
x[62] = 0.96825396825396814000;
|
||||
x[63] = 1.00000000000000000000;
|
||||
|
||||
|
||||
|
||||
|
||||
var y = new Array();
|
||||
y[0] = -1.57079632679489660000;
|
||||
y[1] = -1.31814860051033310000;
|
||||
y[2] = -1.21253510828227990000;
|
||||
y[3] = -1.13082037200397780000;
|
||||
y[4] = -1.06135247798300370000;
|
||||
y[5] = -0.99962782822935903000;
|
||||
y[6] = -0.94334055387170590000;
|
||||
y[7] = -0.89112250788665281000;
|
||||
y[8] = -0.84208287605149101000;
|
||||
y[9] = -0.79560295348453536000;
|
||||
y[10] = -0.75123199912663585000;
|
||||
y[11] = -0.70862927156238398000;
|
||||
y[12] = -0.66752944463583297000;
|
||||
y[13] = -0.62772081765791266000;
|
||||
y[14] = -0.58903097021627393000;
|
||||
y[15] = -0.55131696913188277000;
|
||||
y[16] = -0.51445847556118673000;
|
||||
y[17] = -0.47835276464925774000;
|
||||
y[18] = -0.44291104407363896000;
|
||||
y[19] = -0.40805567730127851000;
|
||||
y[20] = -0.37371805094291394000;
|
||||
y[21] = -0.33983690945412198000;
|
||||
y[22] = -0.30635703455691915000;
|
||||
y[23] = -0.27322818254063785000;
|
||||
y[24] = -0.24040421676925938000;
|
||||
y[25] = -0.20784238935334678000;
|
||||
y[26] = -0.17550273757572274000;
|
||||
y[27] = -0.14334756890536540000;
|
||||
y[28] = -0.11134101434096394000;
|
||||
y[29] = -0.07944863408513722100;
|
||||
y[30] = -0.04763706262440318300;
|
||||
y[31] = -0.01587368248995573600;
|
||||
y[32] = 0.01587368248995562500;
|
||||
y[33] = 0.04763706262440318300;
|
||||
y[34] = 0.07944863408513711000;
|
||||
y[35] = 0.11134101434096394000;
|
||||
y[36] = 0.14334756890536529000;
|
||||
y[37] = 0.17550273757572274000;
|
||||
y[38] = 0.20784238935334667000;
|
||||
y[39] = 0.24040421676925938000;
|
||||
y[40] = 0.27322818254063774000;
|
||||
y[41] = 0.30635703455691915000;
|
||||
y[42] = 0.33983690945412187000;
|
||||
y[43] = 0.37371805094291394000;
|
||||
y[44] = 0.40805567730127840000;
|
||||
y[45] = 0.44291104407363896000;
|
||||
y[46] = 0.47835276464925758000;
|
||||
y[47] = 0.51445847556118673000;
|
||||
y[48] = 0.55131696913188266000;
|
||||
y[49] = 0.58903097021627393000;
|
||||
y[50] = 0.62772081765791254000;
|
||||
y[51] = 0.66752944463583297000;
|
||||
y[52] = 0.70862927156238387000;
|
||||
y[53] = 0.75123199912663585000;
|
||||
y[54] = 0.79560295348453514000;
|
||||
y[55] = 0.84208287605149101000;
|
||||
y[56] = 0.89112250788665259000;
|
||||
y[57] = 0.94334055387170590000;
|
||||
y[58] = 0.99962782822935881000;
|
||||
y[59] = 1.06135247798300370000;
|
||||
y[60] = 1.13082037200397760000;
|
||||
y[61] = 1.21253510828227990000;
|
||||
y[62] = 1.31814860051033270000;
|
||||
y[63] = 1.57079632679489660000;
|
||||
|
||||
|
||||
|
||||
var val;
|
||||
for (var i = 0; i < vnum; i++)
|
||||
{
|
||||
val = Math.asin(x[i]);
|
||||
if (!isEqual(val, y[i]))
|
||||
{
|
||||
$ERROR("\nx = " + x[i] + "\nlibc.asin(x) = " + y[i] + "\nMath.asin(x) = " + Math.asin(x[i]) + "\nMath.abs(libc.asin(x) - Math.asin(x)) > " + prec + "\n\n");
|
||||
}
|
||||
}
|
|
@ -1,165 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
Math.atan, recommended that implementations use the approximation
|
||||
algorithms for IEEE 754 arithmetic contained in fdlibm
|
||||
es5id: 15.8.2.4_A6
|
||||
description: >
|
||||
Checking if Math.atan is approximately equals to its mathematical
|
||||
values on the set of 64 argument values; all the sample values is
|
||||
calculated with LibC
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var vnum = 64;
|
||||
var x = new Array();
|
||||
x[0] = -16.00000000000000000000;
|
||||
x[1] = -15.49206349206349200000;
|
||||
x[2] = -14.98412698412698400000;
|
||||
x[3] = -14.47619047619047600000;
|
||||
x[4] = -13.96825396825396800000;
|
||||
x[5] = -13.46031746031746000000;
|
||||
x[6] = -12.95238095238095300000;
|
||||
x[7] = -12.44444444444444500000;
|
||||
x[8] = -11.93650793650793700000;
|
||||
x[9] = -11.42857142857142900000;
|
||||
x[10] = -10.92063492063492100000;
|
||||
x[11] = -10.41269841269841300000;
|
||||
x[12] = -9.90476190476190510000;
|
||||
x[13] = -9.39682539682539720000;
|
||||
x[14] = -8.88888888888888930000;
|
||||
x[15] = -8.38095238095238140000;
|
||||
x[16] = -7.87301587301587350000;
|
||||
x[17] = -7.36507936507936560000;
|
||||
x[18] = -6.85714285714285770000;
|
||||
x[19] = -6.34920634920634970000;
|
||||
x[20] = -5.84126984126984180000;
|
||||
x[21] = -5.33333333333333390000;
|
||||
x[22] = -4.82539682539682600000;
|
||||
x[23] = -4.31746031746031810000;
|
||||
x[24] = -3.80952380952381020000;
|
||||
x[25] = -3.30158730158730230000;
|
||||
x[26] = -2.79365079365079440000;
|
||||
x[27] = -2.28571428571428650000;
|
||||
x[28] = -1.77777777777777860000;
|
||||
x[29] = -1.26984126984127070000;
|
||||
x[30] = -0.76190476190476275000;
|
||||
x[31] = -0.25396825396825484000;
|
||||
x[32] = 0.25396825396825307000;
|
||||
x[33] = 0.76190476190476275000;
|
||||
x[34] = 1.26984126984126890000;
|
||||
x[35] = 1.77777777777777860000;
|
||||
x[36] = 2.28571428571428470000;
|
||||
x[37] = 2.79365079365079440000;
|
||||
x[38] = 3.30158730158730050000;
|
||||
x[39] = 3.80952380952381020000;
|
||||
x[40] = 4.31746031746031630000;
|
||||
x[41] = 4.82539682539682600000;
|
||||
x[42] = 5.33333333333333210000;
|
||||
x[43] = 5.84126984126984180000;
|
||||
x[44] = 6.34920634920634800000;
|
||||
x[45] = 6.85714285714285770000;
|
||||
x[46] = 7.36507936507936380000;
|
||||
x[47] = 7.87301587301587350000;
|
||||
x[48] = 8.38095238095237960000;
|
||||
x[49] = 8.88888888888888930000;
|
||||
x[50] = 9.39682539682539540000;
|
||||
x[51] = 9.90476190476190510000;
|
||||
x[52] = 10.41269841269841100000;
|
||||
x[53] = 10.92063492063492100000;
|
||||
x[54] = 11.42857142857142700000;
|
||||
x[55] = 11.93650793650793700000;
|
||||
x[56] = 12.44444444444444300000;
|
||||
x[57] = 12.95238095238095300000;
|
||||
x[58] = 13.46031746031745900000;
|
||||
x[59] = 13.96825396825396800000;
|
||||
x[60] = 14.47619047619047400000;
|
||||
x[61] = 14.98412698412698400000;
|
||||
x[62] = 15.49206349206349000000;
|
||||
x[63] = 16.00000000000000000000;
|
||||
|
||||
|
||||
|
||||
var y = new Array();
|
||||
y[0] = -1.50837751679893930000;
|
||||
y[1] = -1.50633657314382670000;
|
||||
y[2] = -1.50415785436419310000;
|
||||
y[3] = -1.50182694519358660000;
|
||||
y[4] = -1.49932735026103090000;
|
||||
y[5] = -1.49664010557682300000;
|
||||
y[6] = -1.49374329974393950000;
|
||||
y[7] = -1.49061147949358030000;
|
||||
y[8] = -1.48721490565349580000;
|
||||
y[9] = -1.48351861384543530000;
|
||||
y[10] = -1.47948121756761840000;
|
||||
y[11] = -1.47505336756015580000;
|
||||
y[12] = -1.47017574693777100000;
|
||||
y[13] = -1.46477643093971600000;
|
||||
y[14] = -1.45876736436890870000;
|
||||
y[15] = -1.45203959426707030000;
|
||||
y[16] = -1.44445671565255360000;
|
||||
y[17] = -1.43584570229039390000;
|
||||
y[18] = -1.42598382855595760000;
|
||||
y[19] = -1.41457960835077490000;
|
||||
y[20] = -1.40124433129607070000;
|
||||
y[21] = -1.38544837679920190000;
|
||||
y[22] = -1.36645204745321510000;
|
||||
y[23] = -1.34319210978762000000;
|
||||
y[24] = -1.31408799636151090000;
|
||||
y[25] = -1.27669520176831860000;
|
||||
y[26] = -1.22705270315911450000;
|
||||
y[27] = -1.15838588519750950000;
|
||||
y[28] = -1.05840686648415900000;
|
||||
y[29] = -0.90372394590298166000;
|
||||
y[30] = -0.65107672144448037000;
|
||||
y[31] = -0.24870998909352368000;
|
||||
y[32] = 0.24870998909352202000;
|
||||
y[33] = 0.65107672144448037000;
|
||||
y[34] = 0.90372394590298100000;
|
||||
y[35] = 1.05840686648415900000;
|
||||
y[36] = 1.15838588519750910000;
|
||||
y[37] = 1.22705270315911450000;
|
||||
y[38] = 1.27669520176831840000;
|
||||
y[39] = 1.31408799636151090000;
|
||||
y[40] = 1.34319210978761980000;
|
||||
y[41] = 1.36645204745321510000;
|
||||
y[42] = 1.38544837679920190000;
|
||||
y[43] = 1.40124433129607070000;
|
||||
y[44] = 1.41457960835077490000;
|
||||
y[45] = 1.42598382855595760000;
|
||||
y[46] = 1.43584570229039390000;
|
||||
y[47] = 1.44445671565255360000;
|
||||
y[48] = 1.45203959426707030000;
|
||||
y[49] = 1.45876736436890870000;
|
||||
y[50] = 1.46477643093971600000;
|
||||
y[51] = 1.47017574693777100000;
|
||||
y[52] = 1.47505336756015580000;
|
||||
y[53] = 1.47948121756761840000;
|
||||
y[54] = 1.48351861384543530000;
|
||||
y[55] = 1.48721490565349580000;
|
||||
y[56] = 1.49061147949358030000;
|
||||
y[57] = 1.49374329974393950000;
|
||||
y[58] = 1.49664010557682300000;
|
||||
y[59] = 1.49932735026103090000;
|
||||
y[60] = 1.50182694519358660000;
|
||||
y[61] = 1.50415785436419310000;
|
||||
y[62] = 1.50633657314382670000;
|
||||
y[63] = 1.50837751679893930000;
|
||||
|
||||
|
||||
|
||||
|
||||
var val;
|
||||
for (var i = 0; i < vnum; i++)
|
||||
{
|
||||
val = Math.atan(x[i]);
|
||||
if (!isEqual(val, y[i]))
|
||||
{
|
||||
$ERROR("\nx = " + x[i] + "\nlibc.atan(x) = " + y[i] + "\nMath.atan(x) = " + Math.atan(x[i]) + "\nMath.abs(libc.atan(x) - Math.atan(x)) > " + prec + "\n\n");
|
||||
}
|
||||
}
|
|
@ -1,20 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
If y is -0 and x is -0, Math.atan2(y,x) is an implementation-dependent
|
||||
approximation to -PI
|
||||
es5id: 15.8.2.5_A10
|
||||
description: Checking if Math.atan2(-0,-0) is an approximation to -PI
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
//prec = 0.00000000000001;
|
||||
var y = -0;
|
||||
var x = -0;
|
||||
if (!isEqual(Math.atan2(y,x), -Math.PI))
|
||||
$ERROR("#1: !isEqual(Math.atan2(-0,-0), -Math.PI)");
|
|
@ -1,28 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
If y is equal to -0 and x<0, Math.atan2(y,x) is an
|
||||
implementation-dependent approximation to -PI
|
||||
es5id: 15.8.2.5_A11
|
||||
description: Checking if Math.atan2(-0,x) is an approximation to -PI, where x<0
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var y = -0;
|
||||
//prec = 0.00000000000001;
|
||||
var x = new Array();
|
||||
x[0] = -0.000000000000001;
|
||||
x[2] = -Infinity;
|
||||
x[1] = -1;
|
||||
var xnum = 3;
|
||||
|
||||
for (var i = 0; i < xnum; i++)
|
||||
{
|
||||
if (!isEqual(Math.atan2(y,x[i]), - Math.PI))
|
||||
$ERROR("#1: Math.abs(Math.atan2(" + y + ", " + x[i] + ") + Math.PI) >= " + prec);
|
||||
}
|
|
@ -1,30 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
If y<0 and x is +0, Math.atan2(y,x) is an implementation-dependent
|
||||
approximation to -PI/2
|
||||
es5id: 15.8.2.5_A12
|
||||
description: >
|
||||
Checking if Math.atan2(y,+0) is an approximation to -PI/2, where
|
||||
y<0
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var x = +0;
|
||||
//prec = 0.00000000000001;
|
||||
var y = new Array();
|
||||
y[0] = -0.000000000000001;
|
||||
y[2] = -Infinity;
|
||||
y[1] = -1;
|
||||
var ynum = 3;
|
||||
|
||||
for (var i = 0; i < ynum; i++)
|
||||
{
|
||||
if (!isEqual(Math.atan2(y[i],x), -(Math.PI)/2))
|
||||
$ERROR("#1: Math.abs(Math.atan2(" + y[i] + ", " + x + ") + ((Math.PI)/2)) >= " + prec);
|
||||
}
|
|
@ -1,30 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
If y<0 and x is -0, Math.atan2(y,x) is an implementation-dependent
|
||||
approximation to -PI/2
|
||||
es5id: 15.8.2.5_A13
|
||||
description: >
|
||||
Checking if Math.atan2(y,-0) is an approximation to -PI/2, where
|
||||
y<0
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var x = -0;
|
||||
//prec = 0.00000000000001;
|
||||
var y = new Array();
|
||||
y[0] = -0.000000000000001;
|
||||
y[2] = -Infinity;
|
||||
y[1] = -1;
|
||||
var ynum = 3;
|
||||
|
||||
for (var i = 0; i < ynum; i++)
|
||||
{
|
||||
if (!isEqual(Math.atan2(y[i],x), -(Math.PI)/2))
|
||||
$ERROR("#1: Math.abs(Math.atan2(" + y[i] + ", -0) + ((Math.PI)/2)) >= " + prec);
|
||||
}
|
|
@ -1,29 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
If y>0 and y is finite and x is equal to -Infinity, Math.atan2(y,x) is an
|
||||
implementation-dependent approximation to +PI
|
||||
es5id: 15.8.2.5_A15
|
||||
description: >
|
||||
Checking if Math.atan2(y,x) is an approximation to +PI, where y>0
|
||||
and y is finite and x is equal to -Infinity
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var x = -Infinity;
|
||||
var y = new Array();
|
||||
y[0] = 0.000000000000001;
|
||||
y[1] = 1;
|
||||
y[2] = 1.7976931348623157E308; //largest finite number
|
||||
var ynum = 3;
|
||||
|
||||
for (var i = 0; i < ynum; i++)
|
||||
{
|
||||
if (!isEqual(Math.atan2(y[i],x),Math.PI))
|
||||
$ERROR("#1: Math.abs(Math.atan2(" + y[i] + ", " + x + ") - Math.PI) >= " + prec);
|
||||
}
|
|
@ -1,29 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
If y<0 and y is finite and x is equal to -Infinity, Math.atan2(y,x) is an
|
||||
implementation-dependent approximation to -PI
|
||||
es5id: 15.8.2.5_A17
|
||||
description: >
|
||||
Checking if Math.atan2(y,x) is an approximation to -PI, where y<0
|
||||
and y is finite and x is equal to -Infinity
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var x = -Infinity;
|
||||
var y = new Array();
|
||||
y[0] = -0.000000000000001;
|
||||
y[1] = -1;
|
||||
y[2] = -1.7976931348623157E308; //largest (by module) finite number
|
||||
var ynum = 3;
|
||||
|
||||
for (var i = 0; i < ynum; i++)
|
||||
{
|
||||
if (!isEqual(Math.atan2(y[i],x), -Math.PI))
|
||||
$ERROR("#1: Math.abs(Math.atan2(" + y[i] + ", " + x + ") + Math.PI) >= " + prec);
|
||||
}
|
|
@ -1,33 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
If y is +Infinity and x is finite, Math.atan2(y,x) is an
|
||||
implementation-dependent approximation to +PI/2
|
||||
es5id: 15.8.2.5_A18
|
||||
description: >
|
||||
Checking if Math.atan2(y,x) is an approximation to +PI/2, where y
|
||||
is +Infinity and x is finite
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var y = +Infinity;
|
||||
var x = new Array();
|
||||
x[0] = 0.000000000000001;
|
||||
x[1] = 1;
|
||||
x[2] = 1.7976931348623157E308; //largest finite number
|
||||
x[3] = -0.000000000000001;
|
||||
x[4] = -1;
|
||||
x[5] = -1.7976931348623157E308; //largest (by module) finite number
|
||||
|
||||
var xnum = 6;
|
||||
|
||||
for (var i = 0; i < xnum; i++)
|
||||
{
|
||||
if (!isEqual(Math.atan2(y,x[i]), (Math.PI)/2))
|
||||
$ERROR("#1: Math.abs(Math.atan2(" + y + ", " + x[i] + ") - (Math.PI/2)) >= " + prec);
|
||||
}
|
|
@ -1,34 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
If y is -Infinity and x is finite, Math.atan2(y,x) is an
|
||||
implementation-dependent approximation to -PI/2
|
||||
es5id: 15.8.2.5_A19
|
||||
description: >
|
||||
Checking if Math.atan2(y,x) is an approximation to -PI/2, where y
|
||||
is -Infinity and x is finite
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
//prec = 0.00000000000001;
|
||||
var y = -Infinity;
|
||||
var x = new Array();
|
||||
x[0] = 0.000000000000001;
|
||||
x[1] = 1;
|
||||
x[2] = 1.7976931348623157E308; //largest finite number
|
||||
x[3] = -0.000000000000001;
|
||||
x[4] = -1;
|
||||
x[5] = -1.7976931348623157E308; //largest (by module) finite number
|
||||
|
||||
var xnum = 6;
|
||||
|
||||
for (var i = 0; i < xnum; i++)
|
||||
{
|
||||
if (!isEqual(Math.atan2(y,x[i]), -(Math.PI)/2))
|
||||
$ERROR("#1: Math.abs(Math.atan2(" + y + ", " + x[i] + ") + (Math.PI/2)) >= " + prec);
|
||||
}
|
|
@ -1,30 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
If y>0 and x is +0, Math.atan2(y,x) is an implementation-dependent
|
||||
approximation to +PI/2
|
||||
es5id: 15.8.2.5_A2
|
||||
description: >
|
||||
Checking if Math.atan2(y,x) is an approximation to +PI/2, where
|
||||
y>0 and x is +0
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var x = +0;
|
||||
//prec = 0.00000000000001;
|
||||
var y = new Array();
|
||||
y[0] = 0.000000000000001;
|
||||
y[2] = +Infinity;
|
||||
y[1] = 1;
|
||||
var ynum = 3;
|
||||
|
||||
for (var i = 0; i < ynum; i++)
|
||||
{
|
||||
if (!isEqual(Math.atan2(y[i],x),(Math.PI)/2))
|
||||
$ERROR("#1: Math.abs(Math.atan2(" + y[i] + ", " + x + ") - ((Math.PI)/2)) >= " + prec);
|
||||
}
|
|
@ -1,23 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
If y is equal to +Infinity and x is equal to +Infinity, Math.atan2(y,x)
|
||||
is an implementation-dependent approximation to +PI/4
|
||||
es5id: 15.8.2.5_A20
|
||||
description: >
|
||||
Checking if Math.atan2(y,x) is an approximation to +PI/4, where y
|
||||
is equal to +Infinity and x is equal to +Infinity
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
//prec = 0.00000000000001;
|
||||
var y = +Infinity;
|
||||
var x = +Infinity;
|
||||
|
||||
if (!isEqual(Math.atan2(y,x),(Math.PI)/4))
|
||||
$ERROR("#1: Math.abs(Math.atan2(" + y + ", " + x + ") - (Math.PI/4)) >= " + prec);
|
|
@ -1,23 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
If y is equal to +Infinity and x is equal to -Infinity, Math.atan2(y,x)
|
||||
is an implementation-dependent approximation to +3*PI/4
|
||||
es5id: 15.8.2.5_A21
|
||||
description: >
|
||||
Checking if Math.atan2(y,x) is an approximation to +3*PI/4, where
|
||||
y is equal to +Infinity and x is equal to -Infinity
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
//prec = 0.00000000000001;
|
||||
var y = +Infinity;
|
||||
var x = -Infinity;
|
||||
|
||||
if (!isEqual(Math.atan2(y,x), (3*Math.PI)/4))
|
||||
$ERROR("#1: Math.abs(Math.atan2(" + y + ", " + x + ") - (3*Math.PI/4)) >= " + prec);
|
|
@ -1,23 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
If y is equal to -Infinity and x is equal to +Infinity, Math.atan2(y,x)
|
||||
is an implementation-dependent approximation to -PI/4
|
||||
es5id: 15.8.2.5_A22
|
||||
description: >
|
||||
Checking if Math.atan2(y,x) is an approximation to -PI/4, where y
|
||||
is equal to -Infinity and x is equal to +Infinity
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
//prec = 0.00000000000001;
|
||||
var y = -Infinity;
|
||||
var x = +Infinity;
|
||||
|
||||
if (!isEqual(Math.atan2(y,x),- (Math.PI)/4))
|
||||
$ERROR("#1: Math.abs(Math.atan2(" + y + ", " + x + ") + (Math.PI/4)) >= " + prec);
|
|
@ -1,23 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
If y is equal to -Infinity and x is equal to -Infinity, Math.atan2(y,x)
|
||||
is an implementation-dependent approximation to -3*PI/4
|
||||
es5id: 15.8.2.5_A23
|
||||
description: >
|
||||
Checking if Math.atan2(y,x) is an approximation to -3*PI/4, where
|
||||
y is equal to -Infinity and x is equal to -Infinity
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
//prec = 0.00000000000001;
|
||||
var y = -Infinity;
|
||||
var x = -Infinity;
|
||||
|
||||
if (!isEqual(Math.atan2(y,x), -(3*Math.PI)/4))
|
||||
$ERROR("#1: Math.abs(Math.atan2(" + y + ", " + x + ") + (3*Math.PI/4)) >= " + prec);
|
|
@ -1,231 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
Math.atan2, recommended that implementations use the approximation
|
||||
algorithms for IEEE 754 arithmetic contained in fdlibm
|
||||
es5id: 15.8.2.5_A24
|
||||
description: >
|
||||
Checking if Math.atan2(argument1, argument2) is approximately
|
||||
equals to its mathematical values on the set of 64 argument1
|
||||
values and 64 argument2 values; all the sample values is
|
||||
calculated with LibC
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var vnum = 64;
|
||||
var x1 = new Array();
|
||||
x1[0] = -16.00000000000000000000;
|
||||
x1[1] = -15.49206349206349200000;
|
||||
x1[2] = -14.98412698412698400000;
|
||||
x1[3] = -14.47619047619047600000;
|
||||
x1[4] = -13.96825396825396800000;
|
||||
x1[5] = -13.46031746031746000000;
|
||||
x1[6] = -12.95238095238095300000;
|
||||
x1[7] = -12.44444444444444500000;
|
||||
x1[8] = -11.93650793650793700000;
|
||||
x1[9] = -11.42857142857142900000;
|
||||
x1[10] = -10.92063492063492100000;
|
||||
x1[11] = -10.41269841269841300000;
|
||||
x1[12] = -9.90476190476190510000;
|
||||
x1[13] = -9.39682539682539720000;
|
||||
x1[14] = -8.88888888888888930000;
|
||||
x1[15] = -8.38095238095238140000;
|
||||
x1[16] = -7.87301587301587350000;
|
||||
x1[17] = -7.36507936507936560000;
|
||||
x1[18] = -6.85714285714285770000;
|
||||
x1[19] = -6.34920634920634970000;
|
||||
x1[20] = -5.84126984126984180000;
|
||||
x1[21] = -5.33333333333333390000;
|
||||
x1[22] = -4.82539682539682600000;
|
||||
x1[23] = -4.31746031746031810000;
|
||||
x1[24] = -3.80952380952381020000;
|
||||
x1[25] = -3.30158730158730230000;
|
||||
x1[26] = -2.79365079365079440000;
|
||||
x1[27] = -2.28571428571428650000;
|
||||
x1[28] = -1.77777777777777860000;
|
||||
x1[29] = -1.26984126984127070000;
|
||||
x1[30] = -0.76190476190476275000;
|
||||
x1[31] = -0.25396825396825484000;
|
||||
x1[32] = 0.25396825396825307000;
|
||||
x1[33] = 0.76190476190476275000;
|
||||
x1[34] = 1.26984126984126890000;
|
||||
x1[35] = 1.77777777777777860000;
|
||||
x1[36] = 2.28571428571428470000;
|
||||
x1[37] = 2.79365079365079440000;
|
||||
x1[38] = 3.30158730158730050000;
|
||||
x1[39] = 3.80952380952381020000;
|
||||
x1[40] = 4.31746031746031630000;
|
||||
x1[41] = 4.82539682539682600000;
|
||||
x1[42] = 5.33333333333333210000;
|
||||
x1[43] = 5.84126984126984180000;
|
||||
x1[44] = 6.34920634920634800000;
|
||||
x1[45] = 6.85714285714285770000;
|
||||
x1[46] = 7.36507936507936380000;
|
||||
x1[47] = 7.87301587301587350000;
|
||||
x1[48] = 8.38095238095237960000;
|
||||
x1[49] = 8.88888888888888930000;
|
||||
x1[50] = 9.39682539682539540000;
|
||||
x1[51] = 9.90476190476190510000;
|
||||
x1[52] = 10.41269841269841100000;
|
||||
x1[53] = 10.92063492063492100000;
|
||||
x1[54] = 11.42857142857142700000;
|
||||
x1[55] = 11.93650793650793700000;
|
||||
x1[56] = 12.44444444444444300000;
|
||||
x1[57] = 12.95238095238095300000;
|
||||
x1[58] = 13.46031746031745900000;
|
||||
x1[59] = 13.96825396825396800000;
|
||||
x1[60] = 14.47619047619047400000;
|
||||
x1[61] = 14.98412698412698400000;
|
||||
x1[62] = 15.49206349206349000000;
|
||||
x1[63] = 16.00000000000000000000;
|
||||
|
||||
|
||||
var x2 = new Array();
|
||||
x2[0] = -8.00000000000000000000;
|
||||
x2[1] = -7.74603174603174600000;
|
||||
x2[2] = -7.49206349206349210000;
|
||||
x2[3] = -7.23809523809523810000;
|
||||
x2[4] = -6.98412698412698420000;
|
||||
x2[5] = -6.73015873015873020000;
|
||||
x2[6] = -6.47619047619047630000;
|
||||
x2[7] = -6.22222222222222230000;
|
||||
x2[8] = -5.96825396825396840000;
|
||||
x2[9] = -5.71428571428571440000;
|
||||
x2[10] = -5.46031746031746050000;
|
||||
x2[11] = -5.20634920634920650000;
|
||||
x2[12] = -4.95238095238095260000;
|
||||
x2[13] = -4.69841269841269860000;
|
||||
x2[14] = -4.44444444444444460000;
|
||||
x2[15] = -4.19047619047619070000;
|
||||
x2[16] = -3.93650793650793670000;
|
||||
x2[17] = -3.68253968253968280000;
|
||||
x2[18] = -3.42857142857142880000;
|
||||
x2[19] = -3.17460317460317490000;
|
||||
x2[20] = -2.92063492063492090000;
|
||||
x2[21] = -2.66666666666666700000;
|
||||
x2[22] = -2.41269841269841300000;
|
||||
x2[23] = -2.15873015873015910000;
|
||||
x2[24] = -1.90476190476190510000;
|
||||
x2[25] = -1.65079365079365110000;
|
||||
x2[26] = -1.39682539682539720000;
|
||||
x2[27] = -1.14285714285714320000;
|
||||
x2[28] = -0.88888888888888928000;
|
||||
x2[29] = -0.63492063492063533000;
|
||||
x2[30] = -0.38095238095238138000;
|
||||
x2[31] = -0.12698412698412742000;
|
||||
x2[32] = 0.12698412698412653000;
|
||||
x2[33] = 0.38095238095238138000;
|
||||
x2[34] = 0.63492063492063444000;
|
||||
x2[35] = 0.88888888888888928000;
|
||||
x2[36] = 1.14285714285714230000;
|
||||
x2[37] = 1.39682539682539720000;
|
||||
x2[38] = 1.65079365079365030000;
|
||||
x2[39] = 1.90476190476190510000;
|
||||
x2[40] = 2.15873015873015820000;
|
||||
x2[41] = 2.41269841269841300000;
|
||||
x2[42] = 2.66666666666666610000;
|
||||
x2[43] = 2.92063492063492090000;
|
||||
x2[44] = 3.17460317460317400000;
|
||||
x2[45] = 3.42857142857142880000;
|
||||
x2[46] = 3.68253968253968190000;
|
||||
x2[47] = 3.93650793650793670000;
|
||||
x2[48] = 4.19047619047618980000;
|
||||
x2[49] = 4.44444444444444460000;
|
||||
x2[50] = 4.69841269841269770000;
|
||||
x2[51] = 4.95238095238095260000;
|
||||
x2[52] = 5.20634920634920560000;
|
||||
x2[53] = 5.46031746031746050000;
|
||||
x2[54] = 5.71428571428571350000;
|
||||
x2[55] = 5.96825396825396840000;
|
||||
x2[56] = 6.22222222222222140000;
|
||||
x2[57] = 6.47619047619047630000;
|
||||
x2[58] = 6.73015873015872930000;
|
||||
x2[59] = 6.98412698412698420000;
|
||||
x2[60] = 7.23809523809523720000;
|
||||
x2[61] = 7.49206349206349210000;
|
||||
x2[62] = 7.74603174603174520000;
|
||||
x2[63] = 8.00000000000000000000;
|
||||
|
||||
|
||||
var y = new Array();
|
||||
y[0] = -2.03444393579570270000;
|
||||
y[1] = -2.03444393579570270000;
|
||||
y[2] = -2.03444393579570270000;
|
||||
y[3] = -2.03444393579570270000;
|
||||
y[4] = -2.03444393579570270000;
|
||||
y[5] = -2.03444393579570270000;
|
||||
y[6] = -2.03444393579570270000;
|
||||
y[7] = -2.03444393579570270000;
|
||||
y[8] = -2.03444393579570270000;
|
||||
y[9] = -2.03444393579570270000;
|
||||
y[10] = -2.03444393579570270000;
|
||||
y[11] = -2.03444393579570270000;
|
||||
y[12] = -2.03444393579570270000;
|
||||
y[13] = -2.03444393579570270000;
|
||||
y[14] = -2.03444393579570270000;
|
||||
y[15] = -2.03444393579570270000;
|
||||
y[16] = -2.03444393579570270000;
|
||||
y[17] = -2.03444393579570270000;
|
||||
y[18] = -2.03444393579570270000;
|
||||
y[19] = -2.03444393579570270000;
|
||||
y[20] = -2.03444393579570270000;
|
||||
y[21] = -2.03444393579570270000;
|
||||
y[22] = -2.03444393579570270000;
|
||||
y[23] = -2.03444393579570270000;
|
||||
y[24] = -2.03444393579570270000;
|
||||
y[25] = -2.03444393579570270000;
|
||||
y[26] = -2.03444393579570270000;
|
||||
y[27] = -2.03444393579570270000;
|
||||
y[28] = -2.03444393579570270000;
|
||||
y[29] = -2.03444393579570270000;
|
||||
y[30] = -2.03444393579570270000;
|
||||
y[31] = -2.03444393579570270000;
|
||||
y[32] = 1.10714871779409040000;
|
||||
y[33] = 1.10714871779409040000;
|
||||
y[34] = 1.10714871779409040000;
|
||||
y[35] = 1.10714871779409040000;
|
||||
y[36] = 1.10714871779409040000;
|
||||
y[37] = 1.10714871779409040000;
|
||||
y[38] = 1.10714871779409040000;
|
||||
y[39] = 1.10714871779409040000;
|
||||
y[40] = 1.10714871779409040000;
|
||||
y[41] = 1.10714871779409040000;
|
||||
y[42] = 1.10714871779409040000;
|
||||
y[43] = 1.10714871779409040000;
|
||||
y[44] = 1.10714871779409040000;
|
||||
y[45] = 1.10714871779409040000;
|
||||
y[46] = 1.10714871779409040000;
|
||||
y[47] = 1.10714871779409040000;
|
||||
y[48] = 1.10714871779409040000;
|
||||
y[49] = 1.10714871779409040000;
|
||||
y[50] = 1.10714871779409040000;
|
||||
y[51] = 1.10714871779409040000;
|
||||
y[52] = 1.10714871779409040000;
|
||||
y[53] = 1.10714871779409040000;
|
||||
y[54] = 1.10714871779409040000;
|
||||
y[55] = 1.10714871779409040000;
|
||||
y[56] = 1.10714871779409040000;
|
||||
y[57] = 1.10714871779409040000;
|
||||
y[58] = 1.10714871779409040000;
|
||||
y[59] = 1.10714871779409040000;
|
||||
y[60] = 1.10714871779409040000;
|
||||
y[61] = 1.10714871779409040000;
|
||||
y[62] = 1.10714871779409040000;
|
||||
y[63] = 1.10714871779409040000;
|
||||
|
||||
|
||||
|
||||
var val;
|
||||
for (var i = 0; i < vnum; i++)
|
||||
{
|
||||
val = Math.atan2(x1[i], x2[i]);
|
||||
if (!isEqual(val, y[i]))
|
||||
{
|
||||
$ERROR("\nx1 = " + x1[i] + "\nx2 = " + x2[i] + "\nlibc.atan2(x1,x2) = " + y[i] + "\nMath.atan2(x1,x2) = " + Math.atan2(x1[i],x2[i]) + "\nMath.abs(libc.atan2(x1,x2) - Math.atan2(x1,x2)) > " + prec + "\n\n");
|
||||
}
|
||||
}
|
|
@ -1,30 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
If y>0 and x is -0, Math.atan2(y,x) is an implementation-dependent
|
||||
approximation to +PI/2
|
||||
es5id: 15.8.2.5_A3
|
||||
description: >
|
||||
Checking if Math.atan2(y,x) is an approximation to +PI/2, where
|
||||
y>0 and x is -0
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var x = -0;
|
||||
//prec = 0.00000000000001;
|
||||
var y = new Array();
|
||||
y[0] = 0.000000000000001;
|
||||
y[2] = +Infinity;
|
||||
y[1] = 1;
|
||||
var ynum = 3;
|
||||
|
||||
for (var i = 0; i < ynum; i++)
|
||||
{
|
||||
if (!isEqual(Math.atan2(y[i],x), (Math.PI)/2))
|
||||
$ERROR("#1: Math.abs(Math.atan2(" + y[i] + ", " + x + ") - ((Math.PI)/2)) >= " + prec);
|
||||
}
|
|
@ -1,22 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
If y is +0 and x is -0, Math.atan2(y,x) is an implementation-dependent
|
||||
approximation to +PI
|
||||
es5id: 15.8.2.5_A6
|
||||
description: >
|
||||
Checking if Math.atan2(y,x) is an approximation to +PI, where y is
|
||||
+0 and x is -0
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
//prec = 0.00000000000001;
|
||||
var y = +0;
|
||||
var x = -0;
|
||||
if (!isEqual(Math.atan2(y,x), Math.PI))
|
||||
$ERROR("#1: Math.abs(Math.atan2(" + y + ", -0) - Math.PI) >= " + prec);
|
|
@ -1,30 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
If y is equal to +0 and x<0, Math.atan2(y,x) is an
|
||||
implementation-dependent approximation to +PI
|
||||
es5id: 15.8.2.5_A7
|
||||
description: >
|
||||
Checking if Math.atan2(y,x) is an approximation to +PI, where y is
|
||||
equal to +0 and x<0
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var y = +0;
|
||||
//prec = 0.00000000000001;
|
||||
var x = new Array();
|
||||
x[0] = -0.000000000000001;
|
||||
x[2] = -Infinity;
|
||||
x[1] = -1;
|
||||
var xnum = 3;
|
||||
|
||||
for (var i = 0; i < xnum; i++)
|
||||
{
|
||||
if (!isEqual(Math.atan2(y,x[i]), Math.PI))
|
||||
$ERROR("#1: Math.abs(Math.atan2(" + y + ", " + x[i] + ") - Math.PI) >= " + prec);
|
||||
}
|
|
@ -1,47 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: Cosine is a periodic function with period 2*PI
|
||||
es5id: 15.8.2.7_A6
|
||||
description: >
|
||||
Checking if Math.cos(x) equals to Math.cos(x+n*2*Math.PI) with
|
||||
precision 0.000000000003, where n is an integer from 1 to 100 and
|
||||
x is one of 10 float point values from -Math.PI to +Math.PI
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var prec = 0.000000000003;
|
||||
//prec = 0.000000000000001;
|
||||
var period = 2*Math.PI;
|
||||
var pernum = 100;
|
||||
|
||||
var a = -pernum * period;
|
||||
var b = pernum * period;
|
||||
var snum = 9;
|
||||
var step = period/snum + 0.0;
|
||||
var x = new Array();
|
||||
for (var i = 0; i < snum; i++)
|
||||
{
|
||||
x[i] = a + i*step;
|
||||
}
|
||||
x[9] = a + period;
|
||||
|
||||
var curval;
|
||||
var curx;
|
||||
var j;
|
||||
for (i = 0; i < snum; i++)
|
||||
{
|
||||
curval = Math.cos(x[i]);
|
||||
curx = x[i] + period;
|
||||
j = 0;
|
||||
while (curx <= b)
|
||||
{
|
||||
curx += period;
|
||||
j++;
|
||||
if (Math.abs(Math.cos(curx) - curval) >= prec)
|
||||
{
|
||||
$ERROR("#1: cos is found out to not be periodic:\n Math.abs(Math.cos(" + x[i] + ") - Math.cos(" + x[i] + " + 2*Math.PI*" + j + ")) >= " + prec + "\n Math.cos(" + x[i] + ") === " + curval + "\n Math.cos(" + curx + ") === " + Math.cos(curx));
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,162 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
Math.cos it is recommended that implementations use the approximation
|
||||
algorithms for IEEE 754 arithmetic contained in fdlibm
|
||||
es5id: 15.8.2.7_A7
|
||||
description: >
|
||||
Checking if Math.cos is approximately equals to its mathematical
|
||||
values on the set of 64 argument values; all the sample values is
|
||||
calculated with LibC
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var vnum = 64;
|
||||
var x = new Array();
|
||||
x[0] = -3.14159265358979310000;
|
||||
x[1] = -3.04185955347583150000;
|
||||
x[2] = -2.94212645336186980000;
|
||||
x[3] = -2.84239335324790820000;
|
||||
x[4] = -2.74266025313394660000;
|
||||
x[5] = -2.64292715301998450000;
|
||||
x[6] = -2.54319405290602290000;
|
||||
x[7] = -2.44346095279206120000;
|
||||
x[8] = -2.34372785267809960000;
|
||||
x[9] = -2.24399475256413790000;
|
||||
x[10] = -2.14426165245017630000;
|
||||
x[11] = -2.04452855233621470000;
|
||||
x[12] = -1.94479545222225280000;
|
||||
x[13] = -1.84506235210829120000;
|
||||
x[14] = -1.74532925199432950000;
|
||||
x[15] = -1.64559615188036790000;
|
||||
x[16] = -1.54586305176640600000;
|
||||
x[17] = -1.44612995165244440000;
|
||||
x[18] = -1.34639685153848280000;
|
||||
x[19] = -1.24666375142452110000;
|
||||
x[20] = -1.14693065131055950000;
|
||||
x[21] = -1.04719755119659740000;
|
||||
x[22] = -0.94746445108263622000;
|
||||
x[23] = -0.84773135096867458000;
|
||||
x[24] = -0.74799825085471250000;
|
||||
x[25] = -0.64826515074075086000;
|
||||
x[26] = -0.54853205062678922000;
|
||||
x[27] = -0.44879895051282759000;
|
||||
x[28] = -0.34906585039886595000;
|
||||
x[29] = -0.24933275028490431000;
|
||||
x[30] = -0.14959965017094268000;
|
||||
x[31] = -0.04986655005698104000;
|
||||
x[32] = 0.04986655005698104000;
|
||||
x[33] = 0.14959965017094268000;
|
||||
x[34] = 0.24933275028490431000;
|
||||
x[35] = 0.34906585039886595000;
|
||||
x[36] = 0.44879895051282759000;
|
||||
x[37] = 0.54853205062678922000;
|
||||
x[38] = 0.64826515074075086000;
|
||||
x[39] = 0.74799825085471250000;
|
||||
x[40] = 0.84773135096867414000;
|
||||
x[41] = 0.94746445108263533000;
|
||||
x[42] = 1.04719755119659830000;
|
||||
x[43] = 1.14693065131055950000;
|
||||
x[44] = 1.24666375142452070000;
|
||||
x[45] = 1.34639685153848280000;
|
||||
x[46] = 1.44612995165244400000;
|
||||
x[47] = 1.54586305176640600000;
|
||||
x[48] = 1.64559615188036810000;
|
||||
x[49] = 1.74532925199432930000;
|
||||
x[50] = 1.84506235210829140000;
|
||||
x[51] = 1.94479545222225260000;
|
||||
x[52] = 2.04452855233621470000;
|
||||
x[53] = 2.14426165245017670000;
|
||||
x[54] = 2.24399475256413790000;
|
||||
x[55] = 2.34372785267810000000;
|
||||
x[56] = 2.44346095279206120000;
|
||||
x[57] = 2.54319405290602240000;
|
||||
x[58] = 2.64292715301998450000;
|
||||
x[59] = 2.74266025313394660000;
|
||||
x[60] = 2.84239335324790780000;
|
||||
x[61] = 2.94212645336186980000;
|
||||
x[62] = 3.04185955347583100000;
|
||||
x[63] = 3.14159265358979310000;
|
||||
|
||||
|
||||
var y = new Array();
|
||||
y[0] = -1.00000000000000000000;
|
||||
y[1] = -0.99503077536540141000;
|
||||
y[2] = -0.98017248784854383000;
|
||||
y[3] = -0.95557280578614079000;
|
||||
y[4] = -0.92147621187040774000;
|
||||
y[5] = -0.87822157337022844000;
|
||||
y[6] = -0.82623877431599468000;
|
||||
y[7] = -0.76604444311897790000;
|
||||
y[8] = -0.69823681808607274000;
|
||||
y[9] = -0.62348980185873348000;
|
||||
y[10] = -0.54254626386575933000;
|
||||
y[11] = -0.45621065735316296000;
|
||||
y[12] = -0.36534102436639487000;
|
||||
y[13] = -0.27084046814300500000;
|
||||
y[14] = -0.17364817766693030000;
|
||||
y[15] = -0.07473009358642426800;
|
||||
y[16] = 0.02493069173807303500;
|
||||
y[17] = 0.12434370464748527000;
|
||||
y[18] = 0.22252093395631445000;
|
||||
y[19] = 0.31848665025168443000;
|
||||
y[20] = 0.41128710313061151000;
|
||||
y[21] = 0.50000000000000033000;
|
||||
y[22] = 0.58374367223478973000;
|
||||
y[23] = 0.66168583759685928000;
|
||||
y[24] = 0.73305187182982645000;
|
||||
y[25] = 0.79713250722292250000;
|
||||
y[26] = 0.85329088163215572000;
|
||||
y[27] = 0.90096886790241915000;
|
||||
y[28] = 0.93969262078590832000;
|
||||
y[29] = 0.96907728622907796000;
|
||||
y[30] = 0.98883082622512852000;
|
||||
y[31] = 0.99875692121892234000;
|
||||
y[32] = 0.99875692121892234000;
|
||||
y[33] = 0.98883082622512852000;
|
||||
y[34] = 0.96907728622907796000;
|
||||
y[35] = 0.93969262078590832000;
|
||||
y[36] = 0.90096886790241915000;
|
||||
y[37] = 0.85329088163215572000;
|
||||
y[38] = 0.79713250722292250000;
|
||||
y[39] = 0.73305187182982645000;
|
||||
y[40] = 0.66168583759685962000;
|
||||
y[41] = 0.58374367223479051000;
|
||||
y[42] = 0.49999999999999950000;
|
||||
y[43] = 0.41128710313061151000;
|
||||
y[44] = 0.31848665025168482000;
|
||||
y[45] = 0.22252093395631445000;
|
||||
y[46] = 0.12434370464748572000;
|
||||
y[47] = 0.02493069173807303500;
|
||||
y[48] = -0.07473009358642449000;
|
||||
y[49] = -0.17364817766693008000;
|
||||
y[50] = -0.27084046814300522000;
|
||||
y[51] = -0.36534102436639465000;
|
||||
y[52] = -0.45621065735316296000;
|
||||
y[53] = -0.54254626386575977000;
|
||||
y[54] = -0.62348980185873348000;
|
||||
y[55] = -0.69823681808607307000;
|
||||
y[56] = -0.76604444311897790000;
|
||||
y[57] = -0.82623877431599446000;
|
||||
y[58] = -0.87822157337022844000;
|
||||
y[59] = -0.92147621187040774000;
|
||||
y[60] = -0.95557280578614057000;
|
||||
y[61] = -0.98017248784854383000;
|
||||
y[62] = -0.99503077536540141000;
|
||||
y[63] = -1.00000000000000000000;
|
||||
|
||||
|
||||
var val;
|
||||
for (var i = 0; i < vnum; i++)
|
||||
{
|
||||
val = Math.cos(x[i]);
|
||||
if (!isEqual(val, y[i]))
|
||||
{
|
||||
$ERROR("\nx = " + x[i] + "\nlibc.cos(x) = " + y[i] + "\nMath.cos(x) = " + Math.cos(x[i]) + "\nMath.abs(libc.cos(x) - Math.cos(x)) > " + prec + "\n\n");
|
||||
}
|
||||
}
|
|
@ -1,164 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
Math.exp, recommended that implementations use the approximation
|
||||
algorithms for IEEE 754 arithmetic contained in fdlibm
|
||||
es5id: 15.8.2.8_A6
|
||||
description: >
|
||||
Checking if Math.exp is approximately equals to its mathematical
|
||||
values on the set of 64 argument values; all the sample values is
|
||||
calculated with LibC
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var vnum = 64;
|
||||
var x = new Array();
|
||||
x[0] = -16.00000000000000000000;
|
||||
x[1] = -15.49206349206349200000;
|
||||
x[2] = -14.98412698412698400000;
|
||||
x[3] = -14.47619047619047600000;
|
||||
x[4] = -13.96825396825396800000;
|
||||
x[5] = -13.46031746031746000000;
|
||||
x[6] = -12.95238095238095300000;
|
||||
x[7] = -12.44444444444444500000;
|
||||
x[8] = -11.93650793650793700000;
|
||||
x[9] = -11.42857142857142900000;
|
||||
x[10] = -10.92063492063492100000;
|
||||
x[11] = -10.41269841269841300000;
|
||||
x[12] = -9.90476190476190510000;
|
||||
x[13] = -9.39682539682539720000;
|
||||
x[14] = -8.88888888888888930000;
|
||||
x[15] = -8.38095238095238140000;
|
||||
x[16] = -7.87301587301587350000;
|
||||
x[17] = -7.36507936507936560000;
|
||||
x[18] = -6.85714285714285770000;
|
||||
x[19] = -6.34920634920634970000;
|
||||
x[20] = -5.84126984126984180000;
|
||||
x[21] = -5.33333333333333390000;
|
||||
x[22] = -4.82539682539682600000;
|
||||
x[23] = -4.31746031746031810000;
|
||||
x[24] = -3.80952380952381020000;
|
||||
x[25] = -3.30158730158730230000;
|
||||
x[26] = -2.79365079365079440000;
|
||||
x[27] = -2.28571428571428650000;
|
||||
x[28] = -1.77777777777777860000;
|
||||
x[29] = -1.26984126984127070000;
|
||||
x[30] = -0.76190476190476275000;
|
||||
x[31] = -0.25396825396825484000;
|
||||
x[32] = 0.25396825396825307000;
|
||||
x[33] = 0.76190476190476275000;
|
||||
x[34] = 1.26984126984126890000;
|
||||
x[35] = 1.77777777777777860000;
|
||||
x[36] = 2.28571428571428470000;
|
||||
x[37] = 2.79365079365079440000;
|
||||
x[38] = 3.30158730158730050000;
|
||||
x[39] = 3.80952380952381020000;
|
||||
x[40] = 4.31746031746031630000;
|
||||
x[41] = 4.82539682539682600000;
|
||||
x[42] = 5.33333333333333210000;
|
||||
x[43] = 5.84126984126984180000;
|
||||
x[44] = 6.34920634920634800000;
|
||||
x[45] = 6.85714285714285770000;
|
||||
x[46] = 7.36507936507936380000;
|
||||
x[47] = 7.87301587301587350000;
|
||||
x[48] = 8.38095238095237960000;
|
||||
x[49] = 8.88888888888888930000;
|
||||
x[50] = 9.39682539682539540000;
|
||||
x[51] = 9.90476190476190510000;
|
||||
x[52] = 10.41269841269841100000;
|
||||
x[53] = 10.92063492063492100000;
|
||||
x[54] = 11.42857142857142700000;
|
||||
x[55] = 11.93650793650793700000;
|
||||
x[56] = 12.44444444444444300000;
|
||||
x[57] = 12.95238095238095300000;
|
||||
x[58] = 13.46031746031745900000;
|
||||
x[59] = 13.96825396825396800000;
|
||||
x[60] = 14.47619047619047400000;
|
||||
x[61] = 14.98412698412698400000;
|
||||
x[62] = 15.49206349206349000000;
|
||||
x[63] = 16.00000000000000000000;
|
||||
|
||||
|
||||
|
||||
var y = new Array();
|
||||
y[0] = 0.0000001125351747192591200;
|
||||
y[1] = 0.0000001870175279627160400;
|
||||
y[2] = 0.0000003107966540465112000;
|
||||
y[3] = 0.0000005165000372893601900;
|
||||
y[4] = 0.0000008583499373194266000;
|
||||
y[5] = 0.000001426456073000250500;
|
||||
y[6] = 0.000002370568039596737700;
|
||||
y[7] = 0.000003939548463303105900;
|
||||
y[8] = 0.000006546971795567619300;
|
||||
y[9] = 0.00001088014022196331600;
|
||||
y[10] = 0.00001808125266855845500;
|
||||
y[11] = 0.00003004848204109428100;
|
||||
y[12] = 0.00004993632297081056800;
|
||||
y[13] = 0.00008298709893014922600;
|
||||
y[14] = 0.0001379128093365619200;
|
||||
y[15] = 0.0002291915638009238700;
|
||||
y[16] = 0.0003808839307255494700;
|
||||
y[17] = 0.0006329751683659501200;
|
||||
y[18] = 0.001051915114939835700;
|
||||
y[19] = 0.001748133993779607700;
|
||||
y[20] = 0.002905151201656255000;
|
||||
y[21] = 0.004827949993831437100;
|
||||
y[22] = 0.008023369361859111100;
|
||||
y[23] = 0.01333370395283075800;
|
||||
y[24] = 0.02215872822045164600;
|
||||
y[25] = 0.03682466913056056000;
|
||||
y[26] = 0.06119738655956222900;
|
||||
y[27] = 0.1017013923042267600;
|
||||
y[28] = 0.1690133154060659600;
|
||||
y[29] = 0.2808762017642814100;
|
||||
y[30] = 0.4667764816516809500;
|
||||
y[31] = 0.7757164275739275600;
|
||||
y[32] = 1.289130878828392400;
|
||||
y[33] = 2.142353009006615400;
|
||||
y[34] = 3.560287392519015300;
|
||||
y[35] = 5.916693590664334800;
|
||||
y[36] = 9.832707078469738300;
|
||||
y[37] = 16.340567076777361000;
|
||||
y[38] = 27.155709029035226000;
|
||||
y[39] = 45.128943775619703000;
|
||||
y[40] = 74.997915323273489000;
|
||||
y[41] = 124.635917268588530000;
|
||||
y[42] = 207.127248889834330000;
|
||||
y[43] = 344.216163148372520000;
|
||||
y[44] = 572.038529974419700000;
|
||||
y[45] = 950.647049174870860000;
|
||||
y[46] = 1579.840805732611900000;
|
||||
y[47] = 2625.471749609100700000;
|
||||
y[48] = 4363.162340777078500000;
|
||||
y[49] = 7250.958085841060000000;
|
||||
y[50] = 12050.065767953940000000;
|
||||
y[51] = 20025.503291152076000000;
|
||||
y[52] = 33279.551314186152000000;
|
||||
y[53] = 55305.902656783459000000;
|
||||
y[54] = 91910.580157904318000000;
|
||||
y[55] = 152742.371775148380000000;
|
||||
y[56] = 253836.197045168550000000;
|
||||
y[57] = 421839.822058054970000000;
|
||||
y[58] = 701038.061338060300000000;
|
||||
y[59] = 1165026.006902193900000000;
|
||||
y[60] = 1936108.282291886200000000;
|
||||
y[61] = 3217537.856280616000000000;
|
||||
y[62] = 5347092.386973262800000000;
|
||||
y[63] = 8886110.520507872100000000;
|
||||
|
||||
|
||||
|
||||
var val;
|
||||
for (var i = 0; i < vnum; i++)
|
||||
{
|
||||
val = Math.exp(x[i]);
|
||||
if (!isEqual(val, y[i]))
|
||||
{
|
||||
$ERROR("\nx = " + x[i] + "\nlibc.exp(x) = " + y[i] + "\nMath.exp(x) = " + Math.exp(x[i]) + "\nMath.abs(libc.exp(x) - Math.exp(x)) > " + prec + "\n\n");
|
||||
}
|
||||
}
|
|
@ -1,10 +0,0 @@
|
|||
// Copyright (c) 2014 Ryan Lewis. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
es6id: 20.2.2.18
|
||||
author: Ryan Lewis
|
||||
description: Math.hypot should return 4 if called with 3 and 2.6457513110645907.
|
||||
---*/
|
||||
|
||||
assert.sameValue(Math.hypot(3,2.6457513110645907), 4, 'Math.hypot(3,2.6457513110645907)');
|
|
@ -1,163 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
Math.log, recommended that implementations use the approximation
|
||||
algorithms for IEEE 754 arithmetic contained in fdlibm
|
||||
es5id: 15.8.2.10_A6
|
||||
description: >
|
||||
Checking if Math.log is approximately equals to its mathematical
|
||||
values on the set of 64 argument values; all the sample values is
|
||||
calculated with LibC
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var vnum = 64;
|
||||
var x = new Array();
|
||||
x[0] = 0.00000000000000000000;
|
||||
x[1] = 0.25396825396825395000;
|
||||
x[2] = 0.50793650793650791000;
|
||||
x[3] = 0.76190476190476186000;
|
||||
x[4] = 1.01587301587301580000;
|
||||
x[5] = 1.26984126984126980000;
|
||||
x[6] = 1.52380952380952370000;
|
||||
x[7] = 1.77777777777777770000;
|
||||
x[8] = 2.03174603174603160000;
|
||||
x[9] = 2.28571428571428560000;
|
||||
x[10] = 2.53968253968253950000;
|
||||
x[11] = 2.79365079365079350000;
|
||||
x[12] = 3.04761904761904740000;
|
||||
x[13] = 3.30158730158730140000;
|
||||
x[14] = 3.55555555555555540000;
|
||||
x[15] = 3.80952380952380930000;
|
||||
x[16] = 4.06349206349206330000;
|
||||
x[17] = 4.31746031746031720000;
|
||||
x[18] = 4.57142857142857120000;
|
||||
x[19] = 4.82539682539682510000;
|
||||
x[20] = 5.07936507936507910000;
|
||||
x[21] = 5.33333333333333300000;
|
||||
x[22] = 5.58730158730158700000;
|
||||
x[23] = 5.84126984126984090000;
|
||||
x[24] = 6.09523809523809490000;
|
||||
x[25] = 6.34920634920634890000;
|
||||
x[26] = 6.60317460317460280000;
|
||||
x[27] = 6.85714285714285680000;
|
||||
x[28] = 7.11111111111111070000;
|
||||
x[29] = 7.36507936507936470000;
|
||||
x[30] = 7.61904761904761860000;
|
||||
x[31] = 7.87301587301587260000;
|
||||
x[32] = 8.12698412698412650000;
|
||||
x[33] = 8.38095238095238140000;
|
||||
x[34] = 8.63492063492063440000;
|
||||
x[35] = 8.88888888888888930000;
|
||||
x[36] = 9.14285714285714230000;
|
||||
x[37] = 9.39682539682539720000;
|
||||
x[38] = 9.65079365079365030000;
|
||||
x[39] = 9.90476190476190510000;
|
||||
x[40] = 10.15873015873015800000;
|
||||
x[41] = 10.41269841269841300000;
|
||||
x[42] = 10.66666666666666600000;
|
||||
x[43] = 10.92063492063492100000;
|
||||
x[44] = 11.17460317460317400000;
|
||||
x[45] = 11.42857142857142900000;
|
||||
x[46] = 11.68253968253968200000;
|
||||
x[47] = 11.93650793650793700000;
|
||||
x[48] = 12.19047619047619000000;
|
||||
x[49] = 12.44444444444444500000;
|
||||
x[50] = 12.69841269841269800000;
|
||||
x[51] = 12.95238095238095300000;
|
||||
x[52] = 13.20634920634920600000;
|
||||
x[53] = 13.46031746031746000000;
|
||||
x[54] = 13.71428571428571400000;
|
||||
x[55] = 13.96825396825396800000;
|
||||
x[56] = 14.22222222222222100000;
|
||||
x[57] = 14.47619047619047600000;
|
||||
x[58] = 14.73015873015872900000;
|
||||
x[59] = 14.98412698412698400000;
|
||||
x[60] = 15.23809523809523700000;
|
||||
x[61] = 15.49206349206349200000;
|
||||
x[62] = 15.74603174603174500000;
|
||||
x[63] = 16.00000000000000000000;
|
||||
|
||||
|
||||
|
||||
var y = new Array();
|
||||
y[0] = -Infinity;
|
||||
y[1] = -1.37054600415175140000;
|
||||
y[2] = -0.67739882359180614000;
|
||||
y[3] = -0.27193371548364181000;
|
||||
y[4] = 0.01574835696813911200;
|
||||
y[5] = 0.23889190828234888000;
|
||||
y[6] = 0.42121346507630347000;
|
||||
y[7] = 0.57536414490356180000;
|
||||
y[8] = 0.70889553752808443000;
|
||||
y[9] = 0.82667857318446791000;
|
||||
y[10] = 0.93203908884229414000;
|
||||
y[11] = 1.02734926864661900000;
|
||||
y[12] = 1.11436064563624870000;
|
||||
y[13] = 1.19440335330978530000;
|
||||
y[14] = 1.26851132546350720000;
|
||||
y[15] = 1.33750419695045860000;
|
||||
y[16] = 1.40204271808802970000;
|
||||
y[17] = 1.46266733990446450000;
|
||||
y[18] = 1.51982575374441310000;
|
||||
y[19] = 1.57389297501468910000;
|
||||
y[20] = 1.62518626940223940000;
|
||||
y[21] = 1.67397643357167160000;
|
||||
y[22] = 1.72049644920656440000;
|
||||
y[23] = 1.76494821177739820000;
|
||||
y[24] = 1.80750782619619410000;
|
||||
y[25] = 1.84832982071644910000;
|
||||
y[26] = 1.88755053386973050000;
|
||||
y[27] = 1.92529086185257750000;
|
||||
y[28] = 1.96165850602345240000;
|
||||
y[29] = 1.99674982583472250000;
|
||||
y[30] = 2.03065137751040400000;
|
||||
y[31] = 2.06344120033339480000;
|
||||
y[32] = 2.09518989864797510000;
|
||||
y[33] = 2.12596155731472880000;
|
||||
y[34] = 2.15581452046440970000;
|
||||
y[35] = 2.18480205733766210000;
|
||||
y[36] = 2.21297293430435850000;
|
||||
y[37] = 2.24037190849247290000;
|
||||
y[38] = 2.26704015557463420000;
|
||||
y[39] = 2.29301564197789490000;
|
||||
y[40] = 2.31833344996218480000;
|
||||
y[41] = 2.34302606255255650000;
|
||||
y[42] = 2.36712361413161700000;
|
||||
y[43] = 2.39065411154181100000;
|
||||
y[44] = 2.41364362976650960000;
|
||||
y[45] = 2.43611648561856820000;
|
||||
y[46] = 2.45809539233734360000;
|
||||
y[47] = 2.47960159755830700000;
|
||||
y[48] = 2.50065500675613930000;
|
||||
y[49] = 2.52127429395887500000;
|
||||
y[50] = 2.54147700127639450000;
|
||||
y[51] = 2.56127962857257430000;
|
||||
y[52] = 2.58069771442967570000;
|
||||
y[53] = 2.59974590940037050000;
|
||||
y[54] = 2.61843804241252310000;
|
||||
y[55] = 2.63678718108071930000;
|
||||
y[56] = 2.65480568658339780000;
|
||||
y[57] = 2.67250526368279880000;
|
||||
y[58] = 2.68989700639466770000;
|
||||
y[59] = 2.70699143975396780000;
|
||||
y[60] = 2.72379855807034900000;
|
||||
y[61] = 2.74032786002155990000;
|
||||
y[62] = 2.75658838089334020000;
|
||||
y[63] = 2.77258872223978110000;
|
||||
|
||||
|
||||
var val;
|
||||
for (var i = 0; i < vnum; i++)
|
||||
{
|
||||
val = Math.log(x[i]);
|
||||
if (!isEqual(val, y[i]))
|
||||
{
|
||||
$ERROR("\nx = " + x[i] + "\nlibc.log(x) = " + y[i] + "\nMath.log(x) = " + Math.log(x[i]) + "\nMath.abs(libc.log(x) - Math.log(x)) > " + prec + "\n\n");
|
||||
}
|
||||
}
|
|
@ -1,227 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
esid: sec-applying-the-exp-operator
|
||||
description: >
|
||||
Checking if Math.pow(argument1, argument2) is approbaseimatelexponent equals
|
||||
to its mathematical value on the set of 64 argument1 values and 64
|
||||
argument2 values; all the sample values is calculated with LibC
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
var vnum = 64;
|
||||
var base1 = new Array();
|
||||
base1[0] = 0.00000000000000000000;
|
||||
base1[1] = 0.25396825396825395000;
|
||||
base1[2] = 0.50793650793650791000;
|
||||
base1[3] = 0.76190476190476186000;
|
||||
base1[4] = 1.01587301587301580000;
|
||||
base1[5] = 1.26984126984126980000;
|
||||
base1[6] = 1.52380952380952370000;
|
||||
base1[7] = 1.77777777777777770000;
|
||||
base1[8] = 2.03174603174603160000;
|
||||
base1[9] = 2.28571428571428560000;
|
||||
base1[10] = 2.53968253968253950000;
|
||||
base1[11] = 2.79365079365079350000;
|
||||
base1[12] = 3.04761904761904740000;
|
||||
base1[13] = 3.30158730158730140000;
|
||||
base1[14] = 3.55555555555555540000;
|
||||
base1[15] = 3.80952380952380930000;
|
||||
base1[16] = 4.06349206349206330000;
|
||||
base1[17] = 4.31746031746031720000;
|
||||
base1[18] = 4.57142857142857120000;
|
||||
base1[19] = 4.82539682539682510000;
|
||||
base1[20] = 5.07936507936507910000;
|
||||
base1[21] = 5.33333333333333300000;
|
||||
base1[22] = 5.58730158730158700000;
|
||||
base1[23] = 5.84126984126984090000;
|
||||
base1[24] = 6.09523809523809490000;
|
||||
base1[25] = 6.34920634920634890000;
|
||||
base1[26] = 6.60317460317460280000;
|
||||
base1[27] = 6.85714285714285680000;
|
||||
base1[28] = 7.11111111111111070000;
|
||||
base1[29] = 7.36507936507936470000;
|
||||
base1[30] = 7.61904761904761860000;
|
||||
base1[31] = 7.87301587301587260000;
|
||||
base1[32] = 8.12698412698412650000;
|
||||
base1[33] = 8.38095238095238140000;
|
||||
base1[34] = 8.63492063492063440000;
|
||||
base1[35] = 8.88888888888888930000;
|
||||
base1[36] = 9.14285714285714230000;
|
||||
base1[37] = 9.39682539682539720000;
|
||||
base1[38] = 9.65079365079365030000;
|
||||
base1[39] = 9.90476190476190510000;
|
||||
base1[40] = 10.15873015873015800000;
|
||||
base1[41] = 10.41269841269841300000;
|
||||
base1[42] = 10.66666666666666600000;
|
||||
base1[43] = 10.92063492063492100000;
|
||||
base1[44] = 11.17460317460317400000;
|
||||
base1[45] = 11.42857142857142900000;
|
||||
base1[46] = 11.68253968253968200000;
|
||||
base1[47] = 11.93650793650793700000;
|
||||
base1[48] = 12.19047619047619000000;
|
||||
base1[49] = 12.44444444444444500000;
|
||||
base1[50] = 12.69841269841269800000;
|
||||
base1[51] = 12.95238095238095300000;
|
||||
base1[52] = 13.20634920634920600000;
|
||||
base1[53] = 13.46031746031746000000;
|
||||
base1[54] = 13.71428571428571400000;
|
||||
base1[55] = 13.96825396825396800000;
|
||||
base1[56] = 14.22222222222222100000;
|
||||
base1[57] = 14.47619047619047600000;
|
||||
base1[58] = 14.73015873015872900000;
|
||||
base1[59] = 14.98412698412698400000;
|
||||
base1[60] = 15.23809523809523700000;
|
||||
base1[61] = 15.49206349206349200000;
|
||||
base1[62] = 15.74603174603174500000;
|
||||
base1[63] = 16.00000000000000000000;
|
||||
|
||||
|
||||
|
||||
var base2 = new Array();
|
||||
base2[0] = -16.00000000000000000000;
|
||||
base2[1] = -15.49206349206349200000;
|
||||
base2[2] = -14.98412698412698400000;
|
||||
base2[3] = -14.47619047619047600000;
|
||||
base2[4] = -13.96825396825396800000;
|
||||
base2[5] = -13.46031746031746000000;
|
||||
base2[6] = -12.95238095238095300000;
|
||||
base2[7] = -12.44444444444444500000;
|
||||
base2[8] = -11.93650793650793700000;
|
||||
base2[9] = -11.42857142857142900000;
|
||||
base2[10] = -10.92063492063492100000;
|
||||
base2[11] = -10.41269841269841300000;
|
||||
base2[12] = -9.90476190476190510000;
|
||||
base2[13] = -9.39682539682539720000;
|
||||
base2[14] = -8.88888888888888930000;
|
||||
base2[15] = -8.38095238095238140000;
|
||||
base2[16] = -7.87301587301587350000;
|
||||
base2[17] = -7.36507936507936560000;
|
||||
base2[18] = -6.85714285714285770000;
|
||||
base2[19] = -6.34920634920634970000;
|
||||
base2[20] = -5.84126984126984180000;
|
||||
base2[21] = -5.33333333333333390000;
|
||||
base2[22] = -4.82539682539682600000;
|
||||
base2[23] = -4.31746031746031810000;
|
||||
base2[24] = -3.80952380952381020000;
|
||||
base2[25] = -3.30158730158730230000;
|
||||
base2[26] = -2.79365079365079440000;
|
||||
base2[27] = -2.28571428571428650000;
|
||||
base2[28] = -1.77777777777777860000;
|
||||
base2[29] = -1.26984126984127070000;
|
||||
base2[30] = -0.76190476190476275000;
|
||||
base2[31] = -0.25396825396825484000;
|
||||
base2[32] = 0.25396825396825307000;
|
||||
base2[33] = 0.76190476190476275000;
|
||||
base2[34] = 1.26984126984126890000;
|
||||
base2[35] = 1.77777777777777860000;
|
||||
base2[36] = 2.28571428571428470000;
|
||||
base2[37] = 2.79365079365079440000;
|
||||
base2[38] = 3.30158730158730050000;
|
||||
base2[39] = 3.80952380952381020000;
|
||||
base2[40] = 4.31746031746031630000;
|
||||
base2[41] = 4.82539682539682600000;
|
||||
base2[42] = 5.33333333333333210000;
|
||||
base2[43] = 5.84126984126984180000;
|
||||
base2[44] = 6.34920634920634800000;
|
||||
base2[45] = 6.85714285714285770000;
|
||||
base2[46] = 7.36507936507936380000;
|
||||
base2[47] = 7.87301587301587350000;
|
||||
base2[48] = 8.38095238095237960000;
|
||||
base2[49] = 8.88888888888888930000;
|
||||
base2[50] = 9.39682539682539540000;
|
||||
base2[51] = 9.90476190476190510000;
|
||||
base2[52] = 10.41269841269841100000;
|
||||
base2[53] = 10.92063492063492100000;
|
||||
base2[54] = 11.42857142857142700000;
|
||||
base2[55] = 11.93650793650793700000;
|
||||
base2[56] = 12.44444444444444300000;
|
||||
base2[57] = 12.95238095238095300000;
|
||||
base2[58] = 13.46031746031745900000;
|
||||
base2[59] = 13.96825396825396800000;
|
||||
base2[60] = 14.47619047619047400000;
|
||||
base2[61] = 14.98412698412698400000;
|
||||
base2[62] = 15.49206349206349000000;
|
||||
base2[63] = 16.00000000000000000000;
|
||||
|
||||
|
||||
var exponent = new Array();
|
||||
exponent[0] = +Infinity;
|
||||
exponent[1] = 1664158979.11096290000000000000;
|
||||
exponent[2] = 25596.98862206424700000000;
|
||||
exponent[3] = 51.24224360332205900000;
|
||||
exponent[4] = 0.80253721621001273000;
|
||||
exponent[5] = 0.04013281604184240600;
|
||||
exponent[6] = 0.00427181167466968250;
|
||||
exponent[7] = 0.00077698684629307839;
|
||||
exponent[8] = 0.00021140449751288852;
|
||||
exponent[9] = 0.00007886641216275820;
|
||||
exponent[10] = 0.00003797970495625904;
|
||||
exponent[11] = 0.00002260186576944384;
|
||||
exponent[12] = 0.00001608735704675994;
|
||||
exponent[13] = 0.00001335526639440840;
|
||||
exponent[14] = 0.00001267782407825002;
|
||||
exponent[15] = 0.00001354410739307298;
|
||||
exponent[16] = 0.00001607404700077214;
|
||||
exponent[17] = 0.00002096489798949858;
|
||||
exponent[18] = 0.00002978033411316872;
|
||||
exponent[19] = 0.00004572015769326707;
|
||||
exponent[20] = 0.00007536620884896827;
|
||||
exponent[21] = 0.00013263967558882687;
|
||||
exponent[22] = 0.00024800091950917796;
|
||||
exponent[23] = 0.00049049578772052680;
|
||||
exponent[24] = 0.00102225521238885490;
|
||||
exponent[25] = 0.00223744147356661880;
|
||||
exponent[26] = 0.00512739755878587920;
|
||||
exponent[27] = 0.01226918030754863000;
|
||||
exponent[28] = 0.03058049475427409400;
|
||||
exponent[29] = 0.07921771472569966200;
|
||||
exponent[30] = 0.21285098601167457000;
|
||||
exponent[31] = 0.59211846233860321000;
|
||||
exponent[32] = 1.70252376919407730000;
|
||||
exponent[33] = 5.05197994186350920000;
|
||||
exponent[34] = 15.44896866758827700000;
|
||||
exponent[35] = 48.62279949816147700000;
|
||||
exponent[36] = 157.31086033139039000000;
|
||||
exponent[37] = 522.60021277476767000000;
|
||||
exponent[38] = 1780.82316713426990000000;
|
||||
exponent[39] = 6218.58509846337710000000;
|
||||
exponent[40] = 22232.54916898025500000000;
|
||||
exponent[41] = 81310.50695814844200000000;
|
||||
exponent[42] = 303962.39599994919000000000;
|
||||
exponent[43] = 1160609.39151835810000000000;
|
||||
exponent[44] = 4523160.16396183520000000000;
|
||||
exponent[45] = 17980506.53105686600000000000;
|
||||
exponent[46] = 72861260.63140085300000000000;
|
||||
exponent[47] = 300795965.18372804000000000000;
|
||||
exponent[48] = 1264408843.88636260000000000000;
|
||||
exponent[49] = 5408983705.82595920000000000000;
|
||||
exponent[50] = 23536438485.32324600000000000000;
|
||||
exponent[51] = 104125724201.77888000000000000000;
|
||||
exponent[52] = 468137079409.17462000000000000000;
|
||||
exponent[53] = 2137965865913.91260000000000000000;
|
||||
exponent[54] = 9914368643808.25200000000000000000;
|
||||
exponent[55] = 46665726995317.89800000000000000000;
|
||||
exponent[56] = 222863786409039.87000000000000000000;
|
||||
exponent[57] = 1079534443702065.00000000000000000000;
|
||||
exponent[58] = 5302037850329952.00000000000000000000;
|
||||
exponent[59] = 26394813313751084.00000000000000000000;
|
||||
exponent[60] = 133146543235024720.00000000000000000000;
|
||||
exponent[61] = 680375082351885950.00000000000000000000;
|
||||
exponent[62] = 3520878542447823900.00000000000000000000;
|
||||
exponent[63] = 18446744073709552000.00000000000000000000;
|
||||
|
||||
|
||||
|
||||
var val;
|
||||
for (var i = 0; i < vnum; i++)
|
||||
{
|
||||
val = Math.pow(base1[i], base2[i]);
|
||||
if (!isEqual(val, exponent[i]))
|
||||
{
|
||||
$ERROR("\nbase1 = " + base1[i] + "\nbase2 = " + base2[i] + "\nlibc.pow(base1,base2) = " + exponent[i] + "\nMath.pow(base1,base2) = " + Math.pow(base1[i], base2[i]) + "\nMath.abs(libc.pow(base1,base2) - Math.pow(base1,base2)) > " + prec + "\n\n");
|
||||
}
|
||||
}
|
|
@ -1,47 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: Sine is a periodic function with period 2*PI
|
||||
es5id: 15.8.2.16_A6
|
||||
description: >
|
||||
Checking if Math.sin(x) equals to Math.sin(x+n*2*Math.PI) with
|
||||
precision 0.000000000003, where n is an integer from 1 to 100 and
|
||||
x is one of 10 float point values from 0 to 2*Math.PI
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var prec = 0.000000000003;
|
||||
//prec = 0.000000000000001;
|
||||
var period = 2*Math.PI;
|
||||
var pernum = 100;
|
||||
|
||||
var a = -pernum * period;
|
||||
var b = pernum * period;
|
||||
var snum = 9;
|
||||
var step = period/snum + 0.0;
|
||||
var x = new Array();
|
||||
for (var i = 0; i < snum; i++)
|
||||
{
|
||||
x[i] = a + i*step;
|
||||
}
|
||||
x[9] = a + period;
|
||||
|
||||
var curval;
|
||||
var curx;
|
||||
var j;
|
||||
for (i = 0; i < snum; i++)
|
||||
{
|
||||
curval = Math.sin(x[i]);
|
||||
curx = x[i] + period;
|
||||
var j = 0;
|
||||
while (curx <= b)
|
||||
{
|
||||
curx += period;
|
||||
j++;
|
||||
if (Math.abs(Math.sin(curx) - curval) >= prec)
|
||||
{
|
||||
$ERROR("#1: sin is found out to not be periodic:\n Math.abs(Math.sin(" + x[i] + ") - Math.sin(" + x[i] + " + 2*Math.PI*" + j + ")) >= " + prec + "\n Math.sin(" + x[i] + ") === " + curval + "\n Math.sin(" + curx + ") === " + Math.sin(curx));
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,165 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
Math.sin it is recommended that implementations use the approximation
|
||||
algorithms for IEEE 754 arithmetic contained in fdlibm
|
||||
es5id: 15.8.2.16_A7
|
||||
description: >
|
||||
Checking if Math.sin is approximately equals to its mathematical
|
||||
values on the set of 64 argument values; all the sample values is
|
||||
calculated with LibC
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var vnum = 64;
|
||||
var x = new Array();
|
||||
x[0] = 0.00000000000000000000;
|
||||
x[1] = 0.09973310011396169200;
|
||||
x[2] = 0.19946620022792338000;
|
||||
x[3] = 0.29919930034188508000;
|
||||
x[4] = 0.39893240045584677000;
|
||||
x[5] = 0.49866550056980841000;
|
||||
x[6] = 0.59839860068377015000;
|
||||
x[7] = 0.69813170079773179000;
|
||||
x[8] = 0.79786480091169354000;
|
||||
x[9] = 0.89759790102565518000;
|
||||
x[10] = 0.99733100113961681000;
|
||||
x[11] = 1.09706410125357840000;
|
||||
x[12] = 1.19679720136754030000;
|
||||
x[13] = 1.29653030148150190000;
|
||||
x[14] = 1.39626340159546360000;
|
||||
x[15] = 1.49599650170942520000;
|
||||
x[16] = 1.59572960182338710000;
|
||||
x[17] = 1.69546270193734870000;
|
||||
x[18] = 1.79519580205131040000;
|
||||
x[19] = 1.89492890216527200000;
|
||||
x[20] = 1.99466200227923360000;
|
||||
x[21] = 2.09439510239319570000;
|
||||
x[22] = 2.19412820250715690000;
|
||||
x[23] = 2.29386130262111850000;
|
||||
x[24] = 2.39359440273508060000;
|
||||
x[25] = 2.49332750284904230000;
|
||||
x[26] = 2.59306060296300390000;
|
||||
x[27] = 2.69279370307696550000;
|
||||
x[28] = 2.79252680319092720000;
|
||||
x[29] = 2.89225990330488880000;
|
||||
x[30] = 2.99199300341885040000;
|
||||
x[31] = 3.09172610353281210000;
|
||||
x[32] = 3.19145920364677420000;
|
||||
x[33] = 3.29119230376073580000;
|
||||
x[34] = 3.39092540387469740000;
|
||||
x[35] = 3.49065850398865910000;
|
||||
x[36] = 3.59039160410262070000;
|
||||
x[37] = 3.69012470421658230000;
|
||||
x[38] = 3.78985780433054400000;
|
||||
x[39] = 3.88959090444450560000;
|
||||
x[40] = 3.98932400455846730000;
|
||||
x[41] = 4.08905710467242840000;
|
||||
x[42] = 4.18879020478639140000;
|
||||
x[43] = 4.28852330490035260000;
|
||||
x[44] = 4.38825640501431380000;
|
||||
x[45] = 4.48798950512827590000;
|
||||
x[46] = 4.58772260524223710000;
|
||||
x[47] = 4.68745570535619920000;
|
||||
x[48] = 4.78718880547016120000;
|
||||
x[49] = 4.88692190558412240000;
|
||||
x[50] = 4.98665500569808450000;
|
||||
x[51] = 5.08638810581204570000;
|
||||
x[52] = 5.18612120592600780000;
|
||||
x[53] = 5.28585430603996990000;
|
||||
x[54] = 5.38558740615393110000;
|
||||
x[55] = 5.48532050626789310000;
|
||||
x[56] = 5.58505360638185430000;
|
||||
x[57] = 5.68478670649581550000;
|
||||
x[58] = 5.78451980660977760000;
|
||||
x[59] = 5.88425290672373970000;
|
||||
x[60] = 5.98398600683770090000;
|
||||
x[61] = 6.08371910695166300000;
|
||||
x[62] = 6.18345220706562420000;
|
||||
// Result is implementation dependent and varies on platform as you approach limits.
|
||||
// e.g. Output approaches zero as input approaches PI * 2 (6.28318530717958647).
|
||||
// The value of 6.2831 for x[63] is chosen below as an arbitrary cut off point for
|
||||
// expecting a result within the validation's tolerance range.
|
||||
x[63] = 6.2831;
|
||||
|
||||
|
||||
var y = new Array();
|
||||
y[0] = 0.00000000000000000000;
|
||||
y[1] = 0.09956784659581666100;
|
||||
y[2] = 0.19814614319939758000;
|
||||
y[3] = 0.29475517441090421000;
|
||||
y[4] = 0.38843479627469474000;
|
||||
y[5] = 0.47825397862131819000;
|
||||
y[6] = 0.56332005806362206000;
|
||||
y[7] = 0.64278760968653925000;
|
||||
y[8] = 0.71586684925971844000;
|
||||
y[9] = 0.78183148246802980000;
|
||||
y[10] = 0.84002592315077140000;
|
||||
y[11] = 0.88987180881146855000;
|
||||
y[12] = 0.93087374864420425000;
|
||||
y[13] = 0.96262424695001203000;
|
||||
y[14] = 0.98480775301220802000;
|
||||
y[15] = 0.99720379718118013000;
|
||||
y[16] = 0.99968918200081625000;
|
||||
y[17] = 0.99223920660017206000;
|
||||
y[18] = 0.97492791218182362000;
|
||||
y[19] = 0.94792734616713181000;
|
||||
y[20] = 0.91150585231167325000;
|
||||
y[21] = 0.86602540378443849000;
|
||||
y[22] = 0.81193800571585661000;
|
||||
y[23] = 0.74978120296773443000;
|
||||
y[24] = 0.68017273777091936000;
|
||||
y[25] = 0.60380441032547738000;
|
||||
y[26] = 0.52143520337949811000;
|
||||
y[27] = 0.43388373911755823000;
|
||||
y[28] = 0.34202014332566888000;
|
||||
y[29] = 0.24675739769029384000;
|
||||
y[30] = 0.14904226617617472000;
|
||||
y[31] = 0.04984588566069748200;
|
||||
y[32] = -0.04984588566069723300;
|
||||
y[33] = -0.14904226617617447000;
|
||||
y[34] = -0.24675739769029362000;
|
||||
y[35] = -0.34202014332566866000;
|
||||
y[36] = -0.43388373911755801000;
|
||||
y[37] = -0.52143520337949789000;
|
||||
y[38] = -0.60380441032547716000;
|
||||
y[39] = -0.68017273777091913000;
|
||||
y[40] = -0.74978120296773398000;
|
||||
y[41] = -0.81193800571585595000;
|
||||
y[42] = -0.86602540378443882000;
|
||||
y[43] = -0.91150585231167314000;
|
||||
y[44] = -0.94792734616713159000;
|
||||
y[45] = -0.97492791218182362000;
|
||||
y[46] = -0.99223920660017195000;
|
||||
y[47] = -0.99968918200081625000;
|
||||
y[48] = -0.99720379718118013000;
|
||||
y[49] = -0.98480775301220813000;
|
||||
y[50] = -0.96262424695001203000;
|
||||
y[51] = -0.93087374864420447000;
|
||||
y[52] = -0.88987180881146866000;
|
||||
y[53] = -0.84002592315077129000;
|
||||
y[54] = -0.78183148246802991000;
|
||||
y[55] = -0.71586684925971833000;
|
||||
y[56] = -0.64278760968653958000;
|
||||
y[57] = -0.56332005806362273000;
|
||||
y[58] = -0.47825397862131858000;
|
||||
y[59] = -0.38843479627469474000;
|
||||
y[60] = -0.29475517441090471000;
|
||||
y[61] = -0.19814614319939772000;
|
||||
y[62] = -0.09956784659581728600;
|
||||
y[63] = -0.00008530717948287973;
|
||||
|
||||
var val;
|
||||
for (var i = 0; i < vnum; i++)
|
||||
{
|
||||
val = Math.sin(x[i]);
|
||||
if (!isEqual(val, y[i]))
|
||||
{
|
||||
$ERROR("\nx = " + x[i] + "\nlibc.sin(x) = " + y[i] + "\nMath.sin(x) = " + Math.sin(x[i]) + "\nMath.abs(libc.sin(x) - Math.sin(x)) > " + prec + "\n\n");
|
||||
}
|
||||
}
|
|
@ -1,163 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
Math.sqrt, recommended that implementations use the approximation
|
||||
algorithms for IEEE 754 arithmetic contained in fdlibm
|
||||
es5id: 15.8.2.17_A6
|
||||
description: >
|
||||
Checking if Math.sqrt is approximately equals to its mathematical
|
||||
values on the set of 64 argument values; all the sample values is
|
||||
calculated with LibC
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var vnum = 64;
|
||||
var x = new Array();
|
||||
x[0] = 0.00000000000000000000;
|
||||
x[1] = 0.25396825396825395000;
|
||||
x[2] = 0.50793650793650791000;
|
||||
x[3] = 0.76190476190476186000;
|
||||
x[4] = 1.01587301587301580000;
|
||||
x[5] = 1.26984126984126980000;
|
||||
x[6] = 1.52380952380952370000;
|
||||
x[7] = 1.77777777777777770000;
|
||||
x[8] = 2.03174603174603160000;
|
||||
x[9] = 2.28571428571428560000;
|
||||
x[10] = 2.53968253968253950000;
|
||||
x[11] = 2.79365079365079350000;
|
||||
x[12] = 3.04761904761904740000;
|
||||
x[13] = 3.30158730158730140000;
|
||||
x[14] = 3.55555555555555540000;
|
||||
x[15] = 3.80952380952380930000;
|
||||
x[16] = 4.06349206349206330000;
|
||||
x[17] = 4.31746031746031720000;
|
||||
x[18] = 4.57142857142857120000;
|
||||
x[19] = 4.82539682539682510000;
|
||||
x[20] = 5.07936507936507910000;
|
||||
x[21] = 5.33333333333333300000;
|
||||
x[22] = 5.58730158730158700000;
|
||||
x[23] = 5.84126984126984090000;
|
||||
x[24] = 6.09523809523809490000;
|
||||
x[25] = 6.34920634920634890000;
|
||||
x[26] = 6.60317460317460280000;
|
||||
x[27] = 6.85714285714285680000;
|
||||
x[28] = 7.11111111111111070000;
|
||||
x[29] = 7.36507936507936470000;
|
||||
x[30] = 7.61904761904761860000;
|
||||
x[31] = 7.87301587301587260000;
|
||||
x[32] = 8.12698412698412650000;
|
||||
x[33] = 8.38095238095238140000;
|
||||
x[34] = 8.63492063492063440000;
|
||||
x[35] = 8.88888888888888930000;
|
||||
x[36] = 9.14285714285714230000;
|
||||
x[37] = 9.39682539682539720000;
|
||||
x[38] = 9.65079365079365030000;
|
||||
x[39] = 9.90476190476190510000;
|
||||
x[40] = 10.15873015873015800000;
|
||||
x[41] = 10.41269841269841300000;
|
||||
x[42] = 10.66666666666666600000;
|
||||
x[43] = 10.92063492063492100000;
|
||||
x[44] = 11.17460317460317400000;
|
||||
x[45] = 11.42857142857142900000;
|
||||
x[46] = 11.68253968253968200000;
|
||||
x[47] = 11.93650793650793700000;
|
||||
x[48] = 12.19047619047619000000;
|
||||
x[49] = 12.44444444444444500000;
|
||||
x[50] = 12.69841269841269800000;
|
||||
x[51] = 12.95238095238095300000;
|
||||
x[52] = 13.20634920634920600000;
|
||||
x[53] = 13.46031746031746000000;
|
||||
x[54] = 13.71428571428571400000;
|
||||
x[55] = 13.96825396825396800000;
|
||||
x[56] = 14.22222222222222100000;
|
||||
x[57] = 14.47619047619047600000;
|
||||
x[58] = 14.73015873015872900000;
|
||||
x[59] = 14.98412698412698400000;
|
||||
x[60] = 15.23809523809523700000;
|
||||
x[61] = 15.49206349206349200000;
|
||||
x[62] = 15.74603174603174500000;
|
||||
x[63] = 16.00000000000000000000;
|
||||
|
||||
|
||||
|
||||
var y = new Array();
|
||||
y[0] = 0.00000000000000000000;
|
||||
y[1] = 0.50395263067896967000;
|
||||
y[2] = 0.71269664509979835000;
|
||||
y[3] = 0.87287156094396945000;
|
||||
y[4] = 1.00790526135793930000;
|
||||
y[5] = 1.12687233963802200000;
|
||||
y[6] = 1.23442679969673530000;
|
||||
y[7] = 1.33333333333333330000;
|
||||
y[8] = 1.42539329019959670000;
|
||||
y[9] = 1.51185789203690880000;
|
||||
y[10] = 1.59363814577919150000;
|
||||
y[11] = 1.67142178807468980000;
|
||||
y[12] = 1.74574312188793890000;
|
||||
y[13] = 1.81702705031799170000;
|
||||
y[14] = 1.88561808316412670000;
|
||||
y[15] = 1.95180014589706640000;
|
||||
y[16] = 2.01581052271587870000;
|
||||
y[17] = 2.07784992659727900000;
|
||||
y[18] = 2.13808993529939520000;
|
||||
y[19] = 2.19667858946110380000;
|
||||
y[20] = 2.25374467927604400000;
|
||||
y[21] = 2.30940107675850290000;
|
||||
y[22] = 2.36374736114111530000;
|
||||
y[23] = 2.41687191246657520000;
|
||||
y[24] = 2.46885359939347060000;
|
||||
y[25] = 2.51976315339484810000;
|
||||
y[26] = 2.56966429775848400000;
|
||||
y[27] = 2.61861468283190830000;
|
||||
y[28] = 2.66666666666666650000;
|
||||
y[29] = 2.71386797119523940000;
|
||||
y[30] = 2.76026223736941700000;
|
||||
y[31] = 2.80588949764880670000;
|
||||
y[32] = 2.85078658039919340000;
|
||||
y[33] = 2.89498745782298350000;
|
||||
y[34] = 2.93852354676981160000;
|
||||
y[35] = 2.98142396999971960000;
|
||||
y[36] = 3.02371578407381760000;
|
||||
y[37] = 3.06542417893925380000;
|
||||
y[38] = 3.10657265339049320000;
|
||||
y[39] = 3.14718316987777280000;
|
||||
y[40] = 3.18727629155838300000;
|
||||
y[41] = 3.22687130401855570000;
|
||||
y[42] = 3.26598632371090410000;
|
||||
y[43] = 3.30463839483761390000;
|
||||
y[44] = 3.34284357614937950000;
|
||||
y[45] = 3.38061701891406630000;
|
||||
y[46] = 3.41797303712883060000;
|
||||
y[47] = 3.45492517089848670000;
|
||||
y[48] = 3.49148624377587780000;
|
||||
y[49] = 3.52766841475278750000;
|
||||
y[50] = 3.56348322549899170000;
|
||||
y[51] = 3.59894164336974940000;
|
||||
y[52] = 3.63405410063598340000;
|
||||
y[53] = 3.66883053033489940000;
|
||||
y[54] = 3.70328039909020570000;
|
||||
y[55] = 3.73741273720925400000;
|
||||
y[56] = 3.77123616632825340000;
|
||||
y[57] = 3.80475892484536750000;
|
||||
y[58] = 3.83798889135426350000;
|
||||
y[59] = 3.87093360626696680000;
|
||||
y[60] = 3.90360029179413280000;
|
||||
y[61] = 3.93599587043272870000;
|
||||
y[62] = 3.96812698209517300000;
|
||||
y[63] = 4.00000000000000000000;
|
||||
|
||||
|
||||
var val;
|
||||
for (var i = 0; i < vnum; i++)
|
||||
{
|
||||
val = Math.sqrt(x[i]);
|
||||
if (!isEqual(val, y[i]))
|
||||
{
|
||||
$ERROR("\nx = " + x[i] + "\nlibc.sqrt(x) = " + y[i] + "\nMath.sqrt(x) = " + Math.sqrt(x[i]) + "\nMath.abs(libc.sqrt(x) - Math.sqrt(x)) > " + prec + "\n\n");
|
||||
}
|
||||
}
|
|
@ -1,47 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: Tangent is a periodic function with period PI
|
||||
es5id: 15.8.2.18_A6
|
||||
description: >
|
||||
Checking if Math.tan(x) equals to Math.tan(x+n*Math.PI) with
|
||||
precision 0.000000000003, where n is an integer from 1 to 100 and
|
||||
x is one of 10 float point values from 0 to Math.PI
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var prec = 0.00000000003;
|
||||
//prec = 0.000000000000001;
|
||||
var period = Math.PI;
|
||||
var pernum = 100;
|
||||
|
||||
var a = -pernum * period + period/2;
|
||||
var b = pernum * period - period/2;
|
||||
var snum = 9;
|
||||
var step = period/(snum + 2);
|
||||
var x = new Array();
|
||||
for (var i = 0; i <= snum; i++) //// We exlude special points
|
||||
{ //// in this cycle.
|
||||
x[i] = a + (i+1)*step; ////
|
||||
} ////
|
||||
|
||||
|
||||
var curval;
|
||||
var curx;
|
||||
var j;
|
||||
for (i = 0; i < snum; i++)
|
||||
{
|
||||
curval = Math.tan(x[i]);
|
||||
curx = x[i] + period;
|
||||
var j = 0;
|
||||
while (curx <= b)
|
||||
{
|
||||
curx += period;
|
||||
j++;
|
||||
if (Math.abs(Math.tan(curx) - curval) >= prec)
|
||||
{
|
||||
$ERROR("#1: tan is found out to not be periodic:\n Math.abs(Math.tan(" + x[i] + ") - Math.tan(" + x[i] + " + 2*Math.PI*" + j + ")) >= " + prec + "\n Math.tan(" + x[i] + ") === " + curval + "\n Math.tan(" + curx + ") === " + Math.tan(curx));
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,167 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: >
|
||||
Math.tan, recommended that implementations use the approximation
|
||||
algorithms for IEEE 754 arithmetic contained in fdlibm
|
||||
es5id: 15.8.2.18_A7
|
||||
description: >
|
||||
Checking if Math.tan is approximately equals to its mathematical
|
||||
values on the set of 64 argument values; all the sample values is
|
||||
calculated with LibC
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
var vnum = 64;
|
||||
var x = new Array();
|
||||
// Result is implementation dependent and varies on platform as you approach limits.
|
||||
// e.g. Output approaches Infinity as input approaches PI / 2 (1.5707963267948966)
|
||||
// The value of 1.5707 for x[0] is chosen below as an arbitrary cut off point for
|
||||
// expecting a result within the validation's tolerance range.
|
||||
x[0] = -1.5707;
|
||||
x[1] = -1.52092977673791570000;
|
||||
x[2] = -1.47106322668093490000;
|
||||
x[3] = -1.42119667662395410000;
|
||||
x[4] = -1.37133012656697330000;
|
||||
x[5] = -1.32146357650999220000;
|
||||
x[6] = -1.27159702645301140000;
|
||||
x[7] = -1.22173047639603060000;
|
||||
x[8] = -1.17186392633904980000;
|
||||
x[9] = -1.12199737628206900000;
|
||||
x[10] = -1.07213082622508820000;
|
||||
x[11] = -1.02226427616810730000;
|
||||
x[12] = -0.97239772611112640000;
|
||||
x[13] = -0.92253117605414559000;
|
||||
x[14] = -0.87266462599716477000;
|
||||
x[15] = -0.82279807594018395000;
|
||||
x[16] = -0.77293152588320302000;
|
||||
x[17] = -0.72306497582622220000;
|
||||
x[18] = -0.67319842576924138000;
|
||||
x[19] = -0.62333187571226056000;
|
||||
x[20] = -0.57346532565527975000;
|
||||
x[21] = -0.52359877559829870000;
|
||||
x[22] = -0.47373222554131811000;
|
||||
x[23] = -0.42386567548433729000;
|
||||
x[24] = -0.37399912542735625000;
|
||||
x[25] = -0.32413257537037543000;
|
||||
x[26] = -0.27426602531339461000;
|
||||
x[27] = -0.22439947525641379000;
|
||||
x[28] = -0.17453292519943298000;
|
||||
x[29] = -0.12466637514245216000;
|
||||
x[30] = -0.07479982508547133900;
|
||||
x[31] = -0.02493327502849052000;
|
||||
x[32] = 0.02493327502849052000;
|
||||
x[33] = 0.07479982508547133900;
|
||||
x[34] = 0.12466637514245216000;
|
||||
x[35] = 0.17453292519943298000;
|
||||
x[36] = 0.22439947525641379000;
|
||||
x[37] = 0.27426602531339461000;
|
||||
x[38] = 0.32413257537037543000;
|
||||
x[39] = 0.37399912542735625000;
|
||||
x[40] = 0.42386567548433707000;
|
||||
x[41] = 0.47373222554131766000;
|
||||
x[42] = 0.52359877559829915000;
|
||||
x[43] = 0.57346532565527975000;
|
||||
x[44] = 0.62333187571226034000;
|
||||
x[45] = 0.67319842576924138000;
|
||||
x[46] = 0.72306497582622198000;
|
||||
x[47] = 0.77293152588320302000;
|
||||
x[48] = 0.82279807594018406000;
|
||||
x[49] = 0.87266462599716466000;
|
||||
x[50] = 0.92253117605414570000;
|
||||
x[51] = 0.97239772611112629000;
|
||||
x[52] = 1.02226427616810730000;
|
||||
x[53] = 1.07213082622508840000;
|
||||
x[54] = 1.12199737628206900000;
|
||||
x[55] = 1.17186392633905000000;
|
||||
x[56] = 1.22173047639603060000;
|
||||
x[57] = 1.27159702645301120000;
|
||||
x[58] = 1.32146357650999220000;
|
||||
x[59] = 1.37133012656697330000;
|
||||
x[60] = 1.42119667662395390000;
|
||||
x[61] = 1.47106322668093490000;
|
||||
x[62] = 1.52092977673791550000;
|
||||
x[63] = 1.5707;
|
||||
|
||||
|
||||
|
||||
var y = new Array();
|
||||
y[0] = -10381.32741756979;
|
||||
y[1] = -20.03689788997828100000;
|
||||
y[2] = -9.99349498241742220000;
|
||||
y[3] = -6.63456649978931170000;
|
||||
y[4] = -4.94671494494940060000;
|
||||
y[5] = -3.92724714760272690000;
|
||||
y[6] = -3.24192037576928720000;
|
||||
y[7] = -2.74747741945462160000;
|
||||
y[8] = -2.37228029184788760000;
|
||||
y[9] = -2.07652139657233640000;
|
||||
y[10] = -1.83630792973623100000;
|
||||
y[11] = -1.63642745273401610000;
|
||||
y[12] = -1.46673061342097340000;
|
||||
y[13] = -1.32018331365488460000;
|
||||
y[14] = -1.19175359259421000000;
|
||||
y[15] = -1.07774368351222650000;
|
||||
y[16] = -0.97537247158200291000;
|
||||
y[17] = -0.88250523616465493000;
|
||||
y[18] = -0.79747338888240393000;
|
||||
y[19] = -0.71895103828786056000;
|
||||
y[20] = -0.64586847728552887000;
|
||||
y[21] = -0.57735026918962551000;
|
||||
y[22] = -0.51267008667516678000;
|
||||
y[23] = -0.45121718317830323000;
|
||||
y[24] = -0.39247107881010240000;
|
||||
y[25] = -0.33598213147817668000;
|
||||
y[26] = -0.28135637451595324000;
|
||||
y[27] = -0.22824347439014994000;
|
||||
y[28] = -0.17632698070846500000;
|
||||
y[29] = -0.12531625823730441000;
|
||||
y[30] = -0.07493964001908703900;
|
||||
y[31] = -0.02493844305504610100;
|
||||
y[32] = 0.02493844305504610100;
|
||||
y[33] = 0.07493964001908703900;
|
||||
y[34] = 0.12531625823730441000;
|
||||
y[35] = 0.17632698070846500000;
|
||||
y[36] = 0.22824347439014994000;
|
||||
y[37] = 0.28135637451595324000;
|
||||
y[38] = 0.33598213147817668000;
|
||||
y[39] = 0.39247107881010240000;
|
||||
y[40] = 0.45121718317830301000;
|
||||
y[41] = 0.51267008667516623000;
|
||||
y[42] = 0.57735026918962618000;
|
||||
y[43] = 0.64586847728552887000;
|
||||
y[44] = 0.71895103828786022000;
|
||||
y[45] = 0.79747338888240393000;
|
||||
y[46] = 0.88250523616465459000;
|
||||
y[47] = 0.97537247158200291000;
|
||||
y[48] = 1.07774368351222670000;
|
||||
y[49] = 1.19175359259420950000;
|
||||
y[50] = 1.32018331365488510000;
|
||||
y[51] = 1.46673061342097320000;
|
||||
y[52] = 1.63642745273401610000;
|
||||
y[53] = 1.83630792973623190000;
|
||||
y[54] = 2.07652139657233640000;
|
||||
y[55] = 2.37228029184788890000;
|
||||
y[56] = 2.74747741945462160000;
|
||||
y[57] = 3.24192037576928450000;
|
||||
y[58] = 3.92724714760272690000;
|
||||
y[59] = 4.94671494494940060000;
|
||||
y[60] = 6.63456649978930190000;
|
||||
y[61] = 9.99349498241742220000;
|
||||
y[62] = 20.03689788997819200000;
|
||||
y[63] = 10381.32741756979;
|
||||
|
||||
|
||||
var val;
|
||||
for (var i = 0; i < vnum; i++)
|
||||
{
|
||||
val = Math.tan(x[i]);
|
||||
if (!isEqual(val, y[i]))
|
||||
{
|
||||
$ERROR("\nx = " + x[i] + "\nlibc.tan(x) = " + y[i] + "\nMath.tan(x) = " + Math.tan(x[i]) + "\nMath.abs(libc.tan(x) - Math.tan(x)) > " + prec + "\n\n");
|
||||
}
|
||||
}
|
|
@ -1,16 +0,0 @@
|
|||
// Copyright 2009 the Sputnik authors. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
info: Number.MAX_VALUE is approximately 1.7976931348623157e308
|
||||
es5id: 15.7.3.2_A1
|
||||
description: Checking Number.MAX_VALUE value
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
// CHECK#1
|
||||
if (!isEqual(Number.MAX_VALUE, 1.7976931348623157e308)) {
|
||||
$ERROR('#1: Number.MAX_VALUE approximately equal to 1.7976931348623157e308');
|
||||
}
|
|
@ -30,13 +30,3 @@ if (Number(1.3) !== 1.3) {
|
|||
if (Number(-1.3) !== -1.3) {
|
||||
$ERROR('#4: Number(-1.3) === -1.3. Actual: ' + (Number(-1.3)));
|
||||
}
|
||||
|
||||
// CHECK#5
|
||||
if (Number(Number.MAX_VALUE) !== 1.7976931348623157e308) {
|
||||
$ERROR('#5: Number(Number.MAX_VALUE) === 1.7976931348623157e308. Actual: ' + (Number(Number.MAX_VALUE)));
|
||||
}
|
||||
|
||||
// CHECK#6
|
||||
if (Number(Number.MIN_VALUE) !== 5e-324) {
|
||||
$ERROR('#6: Number(Number.MIN_VALUE) === 5e-324. Actual: ' + (Number(Number.MIN_VALUE)));
|
||||
}
|
||||
|
|
|
@ -30,13 +30,3 @@ if (+(1.3) !== 1.3) {
|
|||
if (+(-1.3) !== -1.3) {
|
||||
$ERROR('#4: +(-1.3) === -1.3. Actual: ' + (+(-1.3)));
|
||||
}
|
||||
|
||||
// CHECK#5
|
||||
if (+(Number.MAX_VALUE) !== 1.7976931348623157e308) {
|
||||
$ERROR('#5: +(Number.MAX_VALUE) === 1.7976931348623157e308. Actual: ' + (+(Number.MAX_VALUE)));
|
||||
}
|
||||
|
||||
// CHECK#6
|
||||
if (+(Number.MIN_VALUE) !== 5e-324) {
|
||||
$ERROR('#6: +(Number.MIN_VALUE) === 5e-324. Actual: ' + (+(Number.MIN_VALUE)));
|
||||
}
|
||||
|
|
|
@ -1,225 +0,0 @@
|
|||
// Copyright 2016 Rick Waldron. All rights reserved.
|
||||
// This code is governed by the BSD license found in the LICENSE file.
|
||||
|
||||
/*---
|
||||
esid: sec-applying-the-exp-operator
|
||||
description: >
|
||||
Checking if Math.pow(argument1, argument2) is approximately equals
|
||||
to its mathematical value on the set of 64 argument1 values and 64
|
||||
argument2 values; all the sample values is calculated with LibC
|
||||
includes:
|
||||
- math_precision.js
|
||||
- math_isequal.js
|
||||
---*/
|
||||
|
||||
var vnum = 64;
|
||||
var base1 = [];
|
||||
base1[0] = 0.00000000000000000000;
|
||||
base1[1] = 0.25396825396825395000;
|
||||
base1[2] = 0.50793650793650791000;
|
||||
base1[3] = 0.76190476190476186000;
|
||||
base1[4] = 1.01587301587301580000;
|
||||
base1[5] = 1.26984126984126980000;
|
||||
base1[6] = 1.52380952380952370000;
|
||||
base1[7] = 1.77777777777777770000;
|
||||
base1[8] = 2.03174603174603160000;
|
||||
base1[9] = 2.28571428571428560000;
|
||||
base1[10] = 2.53968253968253950000;
|
||||
base1[11] = 2.79365079365079350000;
|
||||
base1[12] = 3.04761904761904740000;
|
||||
base1[13] = 3.30158730158730140000;
|
||||
base1[14] = 3.55555555555555540000;
|
||||
base1[15] = 3.80952380952380930000;
|
||||
base1[16] = 4.06349206349206330000;
|
||||
base1[17] = 4.31746031746031720000;
|
||||
base1[18] = 4.57142857142857120000;
|
||||
base1[19] = 4.82539682539682510000;
|
||||
base1[20] = 5.07936507936507910000;
|
||||
base1[21] = 5.33333333333333300000;
|
||||
base1[22] = 5.58730158730158700000;
|
||||
base1[23] = 5.84126984126984090000;
|
||||
base1[24] = 6.09523809523809490000;
|
||||
base1[25] = 6.34920634920634890000;
|
||||
base1[26] = 6.60317460317460280000;
|
||||
base1[27] = 6.85714285714285680000;
|
||||
base1[28] = 7.11111111111111070000;
|
||||
base1[29] = 7.36507936507936470000;
|
||||
base1[30] = 7.61904761904761860000;
|
||||
base1[31] = 7.87301587301587260000;
|
||||
base1[32] = 8.12698412698412650000;
|
||||
base1[33] = 8.38095238095238140000;
|
||||
base1[34] = 8.63492063492063440000;
|
||||
base1[35] = 8.88888888888888930000;
|
||||
base1[36] = 9.14285714285714230000;
|
||||
base1[37] = 9.39682539682539720000;
|
||||
base1[38] = 9.65079365079365030000;
|
||||
base1[39] = 9.90476190476190510000;
|
||||
base1[40] = 10.15873015873015800000;
|
||||
base1[41] = 10.41269841269841300000;
|
||||
base1[42] = 10.66666666666666600000;
|
||||
base1[43] = 10.92063492063492100000;
|
||||
base1[44] = 11.17460317460317400000;
|
||||
base1[45] = 11.42857142857142900000;
|
||||
base1[46] = 11.68253968253968200000;
|
||||
base1[47] = 11.93650793650793700000;
|
||||
base1[48] = 12.19047619047619000000;
|
||||
base1[49] = 12.44444444444444500000;
|
||||
base1[50] = 12.69841269841269800000;
|
||||
base1[51] = 12.95238095238095300000;
|
||||
base1[52] = 13.20634920634920600000;
|
||||
base1[53] = 13.46031746031746000000;
|
||||
base1[54] = 13.71428571428571400000;
|
||||
base1[55] = 13.96825396825396800000;
|
||||
base1[56] = 14.22222222222222100000;
|
||||
base1[57] = 14.47619047619047600000;
|
||||
base1[58] = 14.73015873015872900000;
|
||||
base1[59] = 14.98412698412698400000;
|
||||
base1[60] = 15.23809523809523700000;
|
||||
base1[61] = 15.49206349206349200000;
|
||||
base1[62] = 15.74603174603174500000;
|
||||
base1[63] = 16.00000000000000000000;
|
||||
|
||||
|
||||
|
||||
var base2 = [];
|
||||
base2[0] = -16.00000000000000000000;
|
||||
base2[1] = -15.49206349206349200000;
|
||||
base2[2] = -14.98412698412698400000;
|
||||
base2[3] = -14.47619047619047600000;
|
||||
base2[4] = -13.96825396825396800000;
|
||||
base2[5] = -13.46031746031746000000;
|
||||
base2[6] = -12.95238095238095300000;
|
||||
base2[7] = -12.44444444444444500000;
|
||||
base2[8] = -11.93650793650793700000;
|
||||
base2[9] = -11.42857142857142900000;
|
||||
base2[10] = -10.92063492063492100000;
|
||||
base2[11] = -10.41269841269841300000;
|
||||
base2[12] = -9.90476190476190510000;
|
||||
base2[13] = -9.39682539682539720000;
|
||||
base2[14] = -8.88888888888888930000;
|
||||
base2[15] = -8.38095238095238140000;
|
||||
base2[16] = -7.87301587301587350000;
|
||||
base2[17] = -7.36507936507936560000;
|
||||
base2[18] = -6.85714285714285770000;
|
||||
base2[19] = -6.34920634920634970000;
|
||||
base2[20] = -5.84126984126984180000;
|
||||
base2[21] = -5.33333333333333390000;
|
||||
base2[22] = -4.82539682539682600000;
|
||||
base2[23] = -4.31746031746031810000;
|
||||
base2[24] = -3.80952380952381020000;
|
||||
base2[25] = -3.30158730158730230000;
|
||||
base2[26] = -2.79365079365079440000;
|
||||
base2[27] = -2.28571428571428650000;
|
||||
base2[28] = -1.77777777777777860000;
|
||||
base2[29] = -1.26984126984127070000;
|
||||
base2[30] = -0.76190476190476275000;
|
||||
base2[31] = -0.25396825396825484000;
|
||||
base2[32] = 0.25396825396825307000;
|
||||
base2[33] = 0.76190476190476275000;
|
||||
base2[34] = 1.26984126984126890000;
|
||||
base2[35] = 1.77777777777777860000;
|
||||
base2[36] = 2.28571428571428470000;
|
||||
base2[37] = 2.79365079365079440000;
|
||||
base2[38] = 3.30158730158730050000;
|
||||
base2[39] = 3.80952380952381020000;
|
||||
base2[40] = 4.31746031746031630000;
|
||||
base2[41] = 4.82539682539682600000;
|
||||
base2[42] = 5.33333333333333210000;
|
||||
base2[43] = 5.84126984126984180000;
|
||||
base2[44] = 6.34920634920634800000;
|
||||
base2[45] = 6.85714285714285770000;
|
||||
base2[46] = 7.36507936507936380000;
|
||||
base2[47] = 7.87301587301587350000;
|
||||
base2[48] = 8.38095238095237960000;
|
||||
base2[49] = 8.88888888888888930000;
|
||||
base2[50] = 9.39682539682539540000;
|
||||
base2[51] = 9.90476190476190510000;
|
||||
base2[52] = 10.41269841269841100000;
|
||||
base2[53] = 10.92063492063492100000;
|
||||
base2[54] = 11.42857142857142700000;
|
||||
base2[55] = 11.93650793650793700000;
|
||||
base2[56] = 12.44444444444444300000;
|
||||
base2[57] = 12.95238095238095300000;
|
||||
base2[58] = 13.46031746031745900000;
|
||||
base2[59] = 13.96825396825396800000;
|
||||
base2[60] = 14.47619047619047400000;
|
||||
base2[61] = 14.98412698412698400000;
|
||||
base2[62] = 15.49206349206349000000;
|
||||
base2[63] = 16.00000000000000000000;
|
||||
|
||||
|
||||
var exponents = [];
|
||||
exponents[0] = +Infinity;
|
||||
exponents[1] = 1664158979.11096290000000000000;
|
||||
exponents[2] = 25596.98862206424700000000;
|
||||
exponents[3] = 51.24224360332205900000;
|
||||
exponents[4] = 0.80253721621001273000;
|
||||
exponents[5] = 0.04013281604184240600;
|
||||
exponents[6] = 0.00427181167466968250;
|
||||
exponents[7] = 0.00077698684629307839;
|
||||
exponents[8] = 0.00021140449751288852;
|
||||
exponents[9] = 0.00007886641216275820;
|
||||
exponents[10] = 0.00003797970495625904;
|
||||
exponents[11] = 0.00002260186576944384;
|
||||
exponents[12] = 0.00001608735704675994;
|
||||
exponents[13] = 0.00001335526639440840;
|
||||
exponents[14] = 0.00001267782407825002;
|
||||
exponents[15] = 0.00001354410739307298;
|
||||
exponents[16] = 0.00001607404700077214;
|
||||
exponents[17] = 0.00002096489798949858;
|
||||
exponents[18] = 0.00002978033411316872;
|
||||
exponents[19] = 0.00004572015769326707;
|
||||
exponents[20] = 0.00007536620884896827;
|
||||
exponents[21] = 0.00013263967558882687;
|
||||
exponents[22] = 0.00024800091950917796;
|
||||
exponents[23] = 0.00049049578772052680;
|
||||
exponents[24] = 0.00102225521238885490;
|
||||
exponents[25] = 0.00223744147356661880;
|
||||
exponents[26] = 0.00512739755878587920;
|
||||
exponents[27] = 0.01226918030754863000;
|
||||
exponents[28] = 0.03058049475427409400;
|
||||
exponents[29] = 0.07921771472569966200;
|
||||
exponents[30] = 0.21285098601167457000;
|
||||
exponents[31] = 0.59211846233860321000;
|
||||
exponents[32] = 1.70252376919407730000;
|
||||
exponents[33] = 5.05197994186350920000;
|
||||
exponents[34] = 15.44896866758827700000;
|
||||
exponents[35] = 48.62279949816147700000;
|
||||
exponents[36] = 157.31086033139039000000;
|
||||
exponents[37] = 522.60021277476767000000;
|
||||
exponents[38] = 1780.82316713426990000000;
|
||||
exponents[39] = 6218.58509846337710000000;
|
||||
exponents[40] = 22232.54916898025500000000;
|
||||
exponents[41] = 81310.50695814844200000000;
|
||||
exponents[42] = 303962.39599994919000000000;
|
||||
exponents[43] = 1160609.39151835810000000000;
|
||||
exponents[44] = 4523160.16396183520000000000;
|
||||
exponents[45] = 17980506.53105686600000000000;
|
||||
exponents[46] = 72861260.63140085300000000000;
|
||||
exponents[47] = 300795965.18372804000000000000;
|
||||
exponents[48] = 1264408843.88636260000000000000;
|
||||
exponents[49] = 5408983705.82595920000000000000;
|
||||
exponents[50] = 23536438485.32324600000000000000;
|
||||
exponents[51] = 104125724201.77888000000000000000;
|
||||
exponents[52] = 468137079409.17462000000000000000;
|
||||
exponents[53] = 2137965865913.91260000000000000000;
|
||||
exponents[54] = 9914368643808.25200000000000000000;
|
||||
exponents[55] = 46665726995317.89800000000000000000;
|
||||
exponents[56] = 222863786409039.87000000000000000000;
|
||||
exponents[57] = 1079534443702065.00000000000000000000;
|
||||
exponents[58] = 5302037850329952.00000000000000000000;
|
||||
exponents[59] = 26394813313751084.00000000000000000000;
|
||||
exponents[60] = 133146543235024720.00000000000000000000;
|
||||
exponents[61] = 680375082351885950.00000000000000000000;
|
||||
exponents[62] = 3520878542447823900.00000000000000000000;
|
||||
exponents[63] = 18446744073709552000.00000000000000000000;
|
||||
|
||||
|
||||
|
||||
var val;
|
||||
for (var i = 0; i < vnum; i++) {
|
||||
val = base1[i] ** base2[i];
|
||||
if (!isEqual(val, exponents[i])) {
|
||||
$ERROR("\nx1 = " + base1[i] + "\nx2 = " + base2[i] + "\nlibc.pow(x1,x2) = " + exponents[i] + "\n(x1 ** base2) = " + (base1[i] ** base2[i]) + "\nMath.abs(libc.pow(x1,x2) - (x1 ** base2)) > " + prec + "\n\n");
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue