// Copyright 2009 the Sputnik authors. All rights reserved. // This code is governed by the BSD license found in the LICENSE file. /*--- info: > Math.tan, recommended that implementations use the approximation algorithms for IEEE 754 arithmetic contained in fdlibm es5id: 15.8.2.18_A7 description: > Checking if Math.tan is approximately equals to its mathematical values on the set of 64 argument values; all the sample values is calculated with LibC includes: - math_precision.js - math_isequal.js ---*/ // CHECK#1 var vnum = 64; var x = new Array(); // Result is implementation dependent and varies on platform as you approach limits. // e.g. Output approaches Infinity as input approaches PI / 2 (1.5707963267948966) // The value of 1.5707 for x[0] is chosen below as an arbitrary cut off point for // expecting a result within the validation's tolerance range. x[0] = -1.5707; x[1] = -1.52092977673791570000; x[2] = -1.47106322668093490000; x[3] = -1.42119667662395410000; x[4] = -1.37133012656697330000; x[5] = -1.32146357650999220000; x[6] = -1.27159702645301140000; x[7] = -1.22173047639603060000; x[8] = -1.17186392633904980000; x[9] = -1.12199737628206900000; x[10] = -1.07213082622508820000; x[11] = -1.02226427616810730000; x[12] = -0.97239772611112640000; x[13] = -0.92253117605414559000; x[14] = -0.87266462599716477000; x[15] = -0.82279807594018395000; x[16] = -0.77293152588320302000; x[17] = -0.72306497582622220000; x[18] = -0.67319842576924138000; x[19] = -0.62333187571226056000; x[20] = -0.57346532565527975000; x[21] = -0.52359877559829870000; x[22] = -0.47373222554131811000; x[23] = -0.42386567548433729000; x[24] = -0.37399912542735625000; x[25] = -0.32413257537037543000; x[26] = -0.27426602531339461000; x[27] = -0.22439947525641379000; x[28] = -0.17453292519943298000; x[29] = -0.12466637514245216000; x[30] = -0.07479982508547133900; x[31] = -0.02493327502849052000; x[32] = 0.02493327502849052000; x[33] = 0.07479982508547133900; x[34] = 0.12466637514245216000; x[35] = 0.17453292519943298000; x[36] = 0.22439947525641379000; x[37] = 0.27426602531339461000; x[38] = 0.32413257537037543000; x[39] = 0.37399912542735625000; x[40] = 0.42386567548433707000; x[41] = 0.47373222554131766000; x[42] = 0.52359877559829915000; x[43] = 0.57346532565527975000; x[44] = 0.62333187571226034000; x[45] = 0.67319842576924138000; x[46] = 0.72306497582622198000; x[47] = 0.77293152588320302000; x[48] = 0.82279807594018406000; x[49] = 0.87266462599716466000; x[50] = 0.92253117605414570000; x[51] = 0.97239772611112629000; x[52] = 1.02226427616810730000; x[53] = 1.07213082622508840000; x[54] = 1.12199737628206900000; x[55] = 1.17186392633905000000; x[56] = 1.22173047639603060000; x[57] = 1.27159702645301120000; x[58] = 1.32146357650999220000; x[59] = 1.37133012656697330000; x[60] = 1.42119667662395390000; x[61] = 1.47106322668093490000; x[62] = 1.52092977673791550000; x[63] = 1.5707; var y = new Array(); y[0] = -10381.32741756979; y[1] = -20.03689788997828100000; y[2] = -9.99349498241742220000; y[3] = -6.63456649978931170000; y[4] = -4.94671494494940060000; y[5] = -3.92724714760272690000; y[6] = -3.24192037576928720000; y[7] = -2.74747741945462160000; y[8] = -2.37228029184788760000; y[9] = -2.07652139657233640000; y[10] = -1.83630792973623100000; y[11] = -1.63642745273401610000; y[12] = -1.46673061342097340000; y[13] = -1.32018331365488460000; y[14] = -1.19175359259421000000; y[15] = -1.07774368351222650000; y[16] = -0.97537247158200291000; y[17] = -0.88250523616465493000; y[18] = -0.79747338888240393000; y[19] = -0.71895103828786056000; y[20] = -0.64586847728552887000; y[21] = -0.57735026918962551000; y[22] = -0.51267008667516678000; y[23] = -0.45121718317830323000; y[24] = -0.39247107881010240000; y[25] = -0.33598213147817668000; y[26] = -0.28135637451595324000; y[27] = -0.22824347439014994000; y[28] = -0.17632698070846500000; y[29] = -0.12531625823730441000; y[30] = -0.07493964001908703900; y[31] = -0.02493844305504610100; y[32] = 0.02493844305504610100; y[33] = 0.07493964001908703900; y[34] = 0.12531625823730441000; y[35] = 0.17632698070846500000; y[36] = 0.22824347439014994000; y[37] = 0.28135637451595324000; y[38] = 0.33598213147817668000; y[39] = 0.39247107881010240000; y[40] = 0.45121718317830301000; y[41] = 0.51267008667516623000; y[42] = 0.57735026918962618000; y[43] = 0.64586847728552887000; y[44] = 0.71895103828786022000; y[45] = 0.79747338888240393000; y[46] = 0.88250523616465459000; y[47] = 0.97537247158200291000; y[48] = 1.07774368351222670000; y[49] = 1.19175359259420950000; y[50] = 1.32018331365488510000; y[51] = 1.46673061342097320000; y[52] = 1.63642745273401610000; y[53] = 1.83630792973623190000; y[54] = 2.07652139657233640000; y[55] = 2.37228029184788890000; y[56] = 2.74747741945462160000; y[57] = 3.24192037576928450000; y[58] = 3.92724714760272690000; y[59] = 4.94671494494940060000; y[60] = 6.63456649978930190000; y[61] = 9.99349498241742220000; y[62] = 20.03689788997819200000; y[63] = 10381.32741756979; var val; for (var i = 0; i < vnum; i++) { val = Math.tan(x[i]); if (!isEqual(val, y[i])) { $ERROR("\nx = " + x[i] + "\nlibc.tan(x) = " + y[i] + "\nMath.tan(x) = " + Math.tan(x[i]) + "\nMath.abs(libc.tan(x) - Math.tan(x)) > " + prec + "\n\n"); } }