test262/implementation-contributed/v8/mjsunit/compiler/number-modulus.js

257 lines
7.7 KiB
JavaScript

// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Flags: --allow-natives-syntax --opt --noalways-opt
// Test that NumberModulus with Number feedback works if only in the
// end SimplifiedLowering figures out that the inputs to this operation
// are actually Unsigned32.
(function() {
// We need a separately polluted % with NumberOrOddball feedback.
function bar(x) { return x % 2; }
bar(undefined); // The % feedback is now NumberOrOddball.
// Now just use the gadget above in a way that only after RETYPE
// in SimplifiedLowering we find out that the `x` is actually in
// Unsigned32 range (based on taking the SignedSmall feedback on
// the + operator).
function foo(x) {
x = (x >>> 0) + 1;
return bar(x) | 0;
}
assertEquals(0, foo(1));
assertEquals(1, foo(2));
assertEquals(0, foo(3));
assertEquals(1, foo(4));
%OptimizeFunctionOnNextCall(foo);
assertEquals(0, foo(1));
assertEquals(1, foo(2));
assertEquals(0, foo(3));
assertEquals(1, foo(4));
assertOptimized(foo);
})();
// Test that NumberModulus with Number feedback works if only in the
// end SimplifiedLowering figures out that the inputs to this operation
// are actually Signed32.
(function() {
// We need a separately polluted % with NumberOrOddball feedback.
function bar(x) { return x % 2; }
bar(undefined); // The % feedback is now NumberOrOddball.
// Now just use the gadget above in a way that only after RETYPE
// in SimplifiedLowering we find out that the `x` is actually in
// Signed32 range (based on taking the SignedSmall feedback on
// the + operator).
function foo(x) {
x = (x | 0) + 1;
return bar(x) | 0;
}
assertEquals(0, foo(1));
assertEquals(1, foo(2));
assertEquals(0, foo(3));
assertEquals(1, foo(4));
%OptimizeFunctionOnNextCall(foo);
assertEquals(0, foo(1));
assertEquals(1, foo(2));
assertEquals(0, foo(3));
assertEquals(1, foo(4));
assertOptimized(foo);
})();
// Test that SpeculativeNumberModulus with Number feedback works if
// only in the end SimplifiedLowering figures out that the inputs to
// this operation are actually Unsigned32.
(function() {
// We need to use an object literal here to make sure that the
// SpeculativeNumberModulus is not turned into a NumberModulus
// early during JSTypedLowering.
function bar(x) { return {x}.x % 2; }
bar(undefined); // The % feedback is now NumberOrOddball.
// Now just use the gadget above in a way that only after RETYPE
// in SimplifiedLowering we find out that the `x` is actually in
// Unsigned32 range (based on taking the SignedSmall feedback on
// the + operator).
function foo(x) {
x = (x >>> 0) + 1;
return bar(x) | 0;
}
assertEquals(0, foo(1));
assertEquals(1, foo(2));
assertEquals(0, foo(3));
assertEquals(1, foo(4));
%OptimizeFunctionOnNextCall(foo);
assertEquals(0, foo(1));
assertEquals(1, foo(2));
assertEquals(0, foo(3));
assertEquals(1, foo(4));
assertOptimized(foo);
})();
// Test that SpeculativeNumberModulus with Number feedback works if
// only in the end SimplifiedLowering figures out that the inputs to
// this operation are actually Signed32.
(function() {
// We need to use an object literal here to make sure that the
// SpeculativeNumberModulus is not turned into a NumberModulus
// early during JSTypedLowering.
function bar(x) { return {x}.x % 2; }
bar(undefined); // The % feedback is now NumberOrOddball.
// Now just use the gadget above in a way that only after RETYPE
// in SimplifiedLowering we find out that the `x` is actually in
// Signed32 range (based on taking the SignedSmall feedback on
// the + operator).
function foo(x) {
x = (x | 0) + 1;
return bar(x) | 0;
}
assertEquals(0, foo(1));
assertEquals(1, foo(2));
assertEquals(0, foo(3));
assertEquals(1, foo(4));
%OptimizeFunctionOnNextCall(foo);
assertEquals(0, foo(1));
assertEquals(1, foo(2));
assertEquals(0, foo(3));
assertEquals(1, foo(4));
assertOptimized(foo);
})();
// Test that NumberModulus works in the case where TurboFan
// can infer that the output is Signed32 \/ MinusZero, and
// there's a truncation on the result that identifies zeros
// (via the SpeculativeNumberEqual).
(function() {
// We need a separately polluted % with NumberOrOddball feedback.
function bar(x) { return x % 2; }
bar(undefined); // The % feedback is now NumberOrOddball.
// Now we just use the gadget above on an `x` that is known
// to be in Signed32 range and compare it to 0, which passes
// a truncation that identifies zeros.
function foo(x) {
if (bar(x | 0) == 0) return 0;
return 1;
}
assertEquals(0, foo(2));
assertEquals(1, foo(1));
%OptimizeFunctionOnNextCall(foo);
assertEquals(0, foo(2));
assertEquals(1, foo(1));
assertOptimized(foo);
// Now `foo` should stay optimized even if `x % 2` would
// produce -0, aka when we pass a negative value for `x`.
assertEquals(0, foo(-2));
assertEquals(1, foo(-1));
assertOptimized(foo);
})();
// Test that CheckedInt32Mod handles the slow-path (when
// the left hand side is negative) correctly.
(function() {
// We need a SpeculativeNumberModulus with SignedSmall feedback.
function foo(x, y) {
return x % y;
}
assertEquals(0, foo(2, 1));
assertEquals(0, foo(2, 2));
assertEquals(-1, foo(-3, 2));
%OptimizeFunctionOnNextCall(foo);
assertEquals(0, foo(2, 1));
assertEquals(0, foo(2, 2));
assertEquals(-1, foo(-3, 2));
assertOptimized(foo);
// Now `foo` should deoptimize if the result is -0.
assertEquals(-0, foo(-2, 2));
assertUnoptimized(foo);
})();
// Test that NumberModulus passes kIdentifiesZero to the
// left hand side input when the result doesn't care about
// 0 vs -0, even when the inputs are outside Signed32.
(function() {
function foo(x) {
return (x * -2) % (2 ** 32) === 0;
}
assertFalse(foo(2));
assertFalse(foo(1));
%OptimizeFunctionOnNextCall(foo);
assertFalse(foo(2));
assertFalse(foo(1));
// Now `foo` should stay optimized even if `x * -2` would
// produce -0, aka when we pass a zero value for `x`.
assertTrue(foo(0));
assertOptimized(foo);
})();
// Test that NumberModulus passes kIdentifiesZero to the
// right hand side input, even when the inputs are outside
// the Signed32 range.
(function() {
function foo(x) {
return (2 ** 32) % (x * -2);
}
assertEquals(0, foo(1));
assertEquals(0, foo(1));
%OptimizeFunctionOnNextCall(foo);
assertEquals(0, foo(1));
// Now `foo` should stay optimized even if `x * -2` would
// produce -0, aka when we pass a zero value for `x`.
assertEquals(NaN, foo(0));
assertOptimized(foo);
})();
// Test that SpeculativeNumberModulus passes kIdentifiesZero
// to the right hand side input, even when feedback is consumed.
(function() {
function foo(x, y) {
return (x % (y * -2)) | 0;
}
assertEquals(0, foo(2, 1));
assertEquals(-1, foo(-3, 1));
%OptimizeFunctionOnNextCall(foo);
assertEquals(0, foo(2, 1));
assertEquals(-1, foo(-3, 1));
assertOptimized(foo);
// Now `foo` should stay optimized even if `y * -2` would
// produce -0, aka when we pass a zero value for `y`.
assertEquals(0, foo(2, 0));
assertOptimized(foo);
})();
// Test that SpeculativeNumberModulus passes kIdentifiesZero
// to the left hand side input, even when feedback is consumed.
(function() {
function foo(x, y) {
return ((x * -2) % y) | 0;
}
assertEquals(-2, foo(1, 3));
assertEquals(-2, foo(1, 3));
%OptimizeFunctionOnNextCall(foo);
assertEquals(-2, foo(1, 3));
assertOptimized(foo);
// Now `foo` should stay optimized even if `x * -2` would
// produce -0, aka when we pass a zero value for `x`.
assertEquals(0, foo(0, 2));
assertOptimized(foo);
})();