mirror of
				https://github.com/tc39/test262.git
				synced 2025-10-31 03:34:08 +01:00 
			
		
		
		
	sourceRevisionAtLastExport: 33f2fb0e53d135f0ee17cfccd9d993eb2a6f47de targetRevisionAtLastExport: 31340cbd9add103f586d501b0c3354b7b182abc0
		
			
				
	
	
		
			311 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			311 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| // Copyright 2009 the V8 project authors. All rights reserved.
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| //
 | |
| //     * Redistributions of source code must retain the above copyright
 | |
| //       notice, this list of conditions and the following disclaimer.
 | |
| //     * Redistributions in binary form must reproduce the above
 | |
| //       copyright notice, this list of conditions and the following
 | |
| //       disclaimer in the documentation and/or other materials provided
 | |
| //       with the distribution.
 | |
| //     * Neither the name of Google Inc. nor the names of its
 | |
| //       contributors may be used to endorse or promote products derived
 | |
| //       from this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| 
 | |
| // Flags: --allow-natives-syntax
 | |
| 
 | |
| // Test fast div and mod.
 | |
| 
 | |
| function divmod(div_func, mod_func, x, y) {
 | |
|   var div_answer = (div_func)(x);
 | |
|   assertEquals(x / y, div_answer, x + "/" + y);
 | |
|   var mod_answer = (mod_func)(x);
 | |
|   assertEquals(x % y, mod_answer, x + "%" + y);
 | |
|   var minus_div_answer = (div_func)(-x);
 | |
|   assertEquals(-x / y, minus_div_answer, "-" + x + "/" + y);
 | |
|   var minus_mod_answer = (mod_func)(-x);
 | |
|   assertEquals(-x % y, minus_mod_answer, "-" + x + "%" + y);
 | |
| }
 | |
| 
 | |
| 
 | |
| function run_tests_for(divisor) {
 | |
|   print("(function(left) { return left / " + divisor + "; })");
 | |
|   var div_func = this.eval("(function(left) { return left / " + divisor + "; })");
 | |
|   var mod_func = this.eval("(function(left) { return left % " + divisor + "; })");
 | |
|   var exp;
 | |
|   // Strange number test.
 | |
|   divmod(div_func, mod_func, 0, divisor);
 | |
|   divmod(div_func, mod_func, 1 / 0, divisor);
 | |
|   // Floating point number test.
 | |
|   for (exp = -1024; exp <= 1024; exp += 8) {
 | |
|     divmod(div_func, mod_func, Math.pow(2, exp), divisor);
 | |
|     divmod(div_func, mod_func, 0.9999999 * Math.pow(2, exp), divisor);
 | |
|     divmod(div_func, mod_func, 1.0000001 * Math.pow(2, exp), divisor);
 | |
|   }
 | |
|   // Integer number test.
 | |
|   for (exp = 0; exp <= 32; exp++) {
 | |
|     divmod(div_func, mod_func, 1 << exp, divisor);
 | |
|     divmod(div_func, mod_func, (1 << exp) + 1, divisor);
 | |
|     divmod(div_func, mod_func, (1 << exp) - 1, divisor);
 | |
|   }
 | |
|   divmod(div_func, mod_func, Math.floor(0x1fffffff / 3), divisor);
 | |
|   divmod(div_func, mod_func, Math.floor(-0x20000000 / 3), divisor);
 | |
| }
 | |
| 
 | |
| 
 | |
| var divisors = [
 | |
|   0,
 | |
|   1,
 | |
|   2,
 | |
|   3,
 | |
|   4,
 | |
|   5,
 | |
|   6,
 | |
|   7,
 | |
|   8,
 | |
|   9,
 | |
|   10,
 | |
|   0x1000000,
 | |
|   0x40000000,
 | |
|   12,
 | |
|   60,
 | |
|   100,
 | |
|   1000 * 60 * 60 * 24];
 | |
| 
 | |
| for (var i = 0; i < divisors.length; i++) {
 | |
|   run_tests_for(divisors[i]);
 | |
| }
 | |
| 
 | |
| // Test extreme corner cases of modulo.
 | |
| 
 | |
| // Computes the modulo by slow but lossless operations.
 | |
| function compute_mod(dividend, divisor) {
 | |
|   // Return NaN if either operand is NaN, if divisor is 0 or
 | |
|   // dividend is an infinity. Return dividend if divisor is an infinity.
 | |
|   if (isNaN(dividend) || isNaN(divisor) || divisor == 0) { return NaN; }
 | |
|   var sign = 1;
 | |
|   if (dividend < 0) { dividend = -dividend; sign = -1; }
 | |
|   if (dividend == Infinity) { return NaN; }
 | |
|   if (divisor < 0) { divisor = -divisor; }
 | |
|   if (divisor == Infinity) { return sign * dividend; }
 | |
|   function rec_mod(a, b) {
 | |
|     // Subtracts maximal possible multiplum of b from a.
 | |
|     if (a >= b) {
 | |
|       a = rec_mod(a, 2 * b);
 | |
|       if (a >= b) { a -= b; }
 | |
|     }
 | |
|     return a;
 | |
|   }
 | |
|   return sign * rec_mod(dividend, divisor);
 | |
| }
 | |
| 
 | |
| (function () {
 | |
|   var large_non_smi = 1234567891234.12245;
 | |
|   var small_non_smi = 43.2367243;
 | |
|   var repeating_decimal = 0.3;
 | |
|   var finite_decimal = 0.5;
 | |
|   var smi = 43;
 | |
|   var power_of_two = 64;
 | |
|   var min_normal = Number.MIN_VALUE * Math.pow(2, 52);
 | |
|   var max_denormal = Number.MIN_VALUE * (Math.pow(2, 52) - 1);
 | |
| 
 | |
|   // All combinations of NaN, Infinity, normal, denormal and zero.
 | |
|   var example_numbers = [
 | |
|     NaN,
 | |
|     0,
 | |
| 
 | |
|     // Due to a bug in fmod(), modulos involving denormals
 | |
|     // return the wrong result for glibc <= 2.16.
 | |
|     // Details: http://sourceware.org/bugzilla/show_bug.cgi?id=14048
 | |
| 
 | |
|     Number.MIN_VALUE,
 | |
|     3 * Number.MIN_VALUE,
 | |
|     max_denormal,
 | |
| 
 | |
|     min_normal,
 | |
|     repeating_decimal,
 | |
|     finite_decimal,
 | |
|     smi,
 | |
|     power_of_two,
 | |
|     small_non_smi,
 | |
|     large_non_smi,
 | |
|     Number.MAX_VALUE,
 | |
|     Infinity
 | |
|   ];
 | |
| 
 | |
|   function doTest(a, b) {
 | |
|     var exp = compute_mod(a, b);
 | |
|     var act = a % b;
 | |
|     assertEquals(exp, act, a + " % " + b);
 | |
|   }
 | |
| 
 | |
|   for (var i = 0; i < example_numbers.length; i++) {
 | |
|     for (var j = 0; j < example_numbers.length; j++) {
 | |
|       var a = example_numbers[i];
 | |
|       var b = example_numbers[j];
 | |
|       doTest(a,b);
 | |
|       doTest(-a,b);
 | |
|       doTest(a,-b);
 | |
|       doTest(-a,-b);
 | |
|     }
 | |
|   }
 | |
| })();
 | |
| 
 | |
| 
 | |
| (function () {
 | |
|   // Edge cases
 | |
|   var zero = 0;
 | |
|   var minsmi32 = -0x40000000;
 | |
|   var minsmi64 = -0x80000000;
 | |
|   var somenum = 3532;
 | |
|   assertEquals(-0, zero / -1, "0 / -1");
 | |
|   assertEquals(1, minsmi32 / -0x40000000, "minsmi/minsmi-32");
 | |
|   assertEquals(1, minsmi64 / -0x80000000, "minsmi/minsmi-64");
 | |
|   assertEquals(somenum, somenum % -0x40000000, "%minsmi-32");
 | |
|   assertEquals(somenum, somenum % -0x80000000, "%minsmi-64");
 | |
| })();
 | |
| 
 | |
| 
 | |
| // Side-effect-free expressions containing bit operations use
 | |
| // an optimized compiler with int32 values.   Ensure that modulus
 | |
| // produces negative zeros correctly.
 | |
| function negative_zero_modulus_test() {
 | |
|   var x = 4;
 | |
|   var y = -4;
 | |
|   x = x + x - x;
 | |
|   y = y + y - y;
 | |
|   var z = (y | y | y | y) % x;
 | |
|   assertEquals(-1 / 0, 1 / z);
 | |
|   z = (x | x | x | x) % x;
 | |
|   assertEquals(1 / 0, 1 / z);
 | |
|   z = (y | y | y | y) % y;
 | |
|   assertEquals(-1 / 0, 1 / z);
 | |
|   z = (x | x | x | x) % y;
 | |
|   assertEquals(1 / 0, 1 / z);
 | |
| }
 | |
| 
 | |
| negative_zero_modulus_test();
 | |
| 
 | |
| 
 | |
| function lithium_integer_mod() {
 | |
|   var left_operands = [
 | |
|     0,
 | |
|     305419896,  // 0x12345678
 | |
|   ];
 | |
| 
 | |
|   // Test the standard lithium code for modulo opeartions.
 | |
|   var mod_func;
 | |
|   for (var i = 0; i < left_operands.length; i++) {
 | |
|     for (var j = 0; j < divisors.length; j++) {
 | |
|       mod_func = this.eval("(function(left) { return left % " + divisors[j]+ "; })");
 | |
|       assertEquals((mod_func)(left_operands[i]), left_operands[i] % divisors[j]);
 | |
|       assertEquals((mod_func)(-left_operands[i]), -left_operands[i] % divisors[j]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   var results_powers_of_two = [
 | |
|     // 0
 | |
|     [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 | |
|     // 305419896 == 0x12345678
 | |
|     [0, 0, 0, 8, 24, 56, 120, 120, 120, 632, 1656, 1656, 5752, 5752, 22136, 22136, 22136, 22136, 284280, 284280, 1332856, 3430008, 3430008, 3430008, 3430008, 36984440, 36984440, 36984440, 305419896, 305419896, 305419896],
 | |
|   ];
 | |
| 
 | |
|   // Test the lithium code for modulo operations with a variable power of two
 | |
|   // right hand side operand.
 | |
|   for (var i = 0; i < left_operands.length; i++) {
 | |
|     for (var j = 0; j < 31; j++) {
 | |
|       assertEquals(results_powers_of_two[i][j], left_operands[i] % (2 << j));
 | |
|       assertEquals(results_powers_of_two[i][j], left_operands[i] % -(2 << j));
 | |
|       assertEquals(-results_powers_of_two[i][j], -left_operands[i] % (2 << j));
 | |
|       assertEquals(-results_powers_of_two[i][j], -left_operands[i] % -(2 << j));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Test the lithium code for modulo operations with a constant power of two
 | |
|   // right hand side operand.
 | |
|   for (var i = 0; i < left_operands.length; i++) {
 | |
|     // With positive left hand side operand.
 | |
|     assertEquals(results_powers_of_two[i][0], left_operands[i] % -(2 << 0));
 | |
|     assertEquals(results_powers_of_two[i][1], left_operands[i] % (2 << 1));
 | |
|     assertEquals(results_powers_of_two[i][2], left_operands[i] % -(2 << 2));
 | |
|     assertEquals(results_powers_of_two[i][3], left_operands[i] % (2 << 3));
 | |
|     assertEquals(results_powers_of_two[i][4], left_operands[i] % -(2 << 4));
 | |
|     assertEquals(results_powers_of_two[i][5], left_operands[i] % (2 << 5));
 | |
|     assertEquals(results_powers_of_two[i][6], left_operands[i] % -(2 << 6));
 | |
|     assertEquals(results_powers_of_two[i][7], left_operands[i] % (2 << 7));
 | |
|     assertEquals(results_powers_of_two[i][8], left_operands[i] % -(2 << 8));
 | |
|     assertEquals(results_powers_of_two[i][9], left_operands[i] % (2 << 9));
 | |
|     assertEquals(results_powers_of_two[i][10], left_operands[i] % -(2 << 10));
 | |
|     assertEquals(results_powers_of_two[i][11], left_operands[i] % (2 << 11));
 | |
|     assertEquals(results_powers_of_two[i][12], left_operands[i] % -(2 << 12));
 | |
|     assertEquals(results_powers_of_two[i][13], left_operands[i] % (2 << 13));
 | |
|     assertEquals(results_powers_of_two[i][14], left_operands[i] % -(2 << 14));
 | |
|     assertEquals(results_powers_of_two[i][15], left_operands[i] % (2 << 15));
 | |
|     assertEquals(results_powers_of_two[i][16], left_operands[i] % -(2 << 16));
 | |
|     assertEquals(results_powers_of_two[i][17], left_operands[i] % (2 << 17));
 | |
|     assertEquals(results_powers_of_two[i][18], left_operands[i] % -(2 << 18));
 | |
|     assertEquals(results_powers_of_two[i][19], left_operands[i] % (2 << 19));
 | |
|     assertEquals(results_powers_of_two[i][20], left_operands[i] % -(2 << 20));
 | |
|     assertEquals(results_powers_of_two[i][21], left_operands[i] % (2 << 21));
 | |
|     assertEquals(results_powers_of_two[i][22], left_operands[i] % -(2 << 22));
 | |
|     assertEquals(results_powers_of_two[i][23], left_operands[i] % (2 << 23));
 | |
|     assertEquals(results_powers_of_two[i][24], left_operands[i] % -(2 << 24));
 | |
|     assertEquals(results_powers_of_two[i][25], left_operands[i] % (2 << 25));
 | |
|     assertEquals(results_powers_of_two[i][26], left_operands[i] % -(2 << 26));
 | |
|     assertEquals(results_powers_of_two[i][27], left_operands[i] % (2 << 27));
 | |
|     assertEquals(results_powers_of_two[i][28], left_operands[i] % -(2 << 28));
 | |
|     assertEquals(results_powers_of_two[i][29], left_operands[i] % (2 << 29));
 | |
|     assertEquals(results_powers_of_two[i][30], left_operands[i] % -(2 << 30));
 | |
|     // With negative left hand side operand.
 | |
|     assertEquals(-results_powers_of_two[i][0], -left_operands[i] % -(2 << 0));
 | |
|     assertEquals(-results_powers_of_two[i][1], -left_operands[i] % (2 << 1));
 | |
|     assertEquals(-results_powers_of_two[i][2], -left_operands[i] % -(2 << 2));
 | |
|     assertEquals(-results_powers_of_two[i][3], -left_operands[i] % (2 << 3));
 | |
|     assertEquals(-results_powers_of_two[i][4], -left_operands[i] % -(2 << 4));
 | |
|     assertEquals(-results_powers_of_two[i][5], -left_operands[i] % (2 << 5));
 | |
|     assertEquals(-results_powers_of_two[i][6], -left_operands[i] % -(2 << 6));
 | |
|     assertEquals(-results_powers_of_two[i][7], -left_operands[i] % (2 << 7));
 | |
|     assertEquals(-results_powers_of_two[i][8], -left_operands[i] % -(2 << 8));
 | |
|     assertEquals(-results_powers_of_two[i][9], -left_operands[i] % (2 << 9));
 | |
|     assertEquals(-results_powers_of_two[i][10], -left_operands[i] % -(2 << 10));
 | |
|     assertEquals(-results_powers_of_two[i][11], -left_operands[i] % (2 << 11));
 | |
|     assertEquals(-results_powers_of_two[i][12], -left_operands[i] % -(2 << 12));
 | |
|     assertEquals(-results_powers_of_two[i][13], -left_operands[i] % (2 << 13));
 | |
|     assertEquals(-results_powers_of_two[i][14], -left_operands[i] % -(2 << 14));
 | |
|     assertEquals(-results_powers_of_two[i][15], -left_operands[i] % (2 << 15));
 | |
|     assertEquals(-results_powers_of_two[i][16], -left_operands[i] % -(2 << 16));
 | |
|     assertEquals(-results_powers_of_two[i][17], -left_operands[i] % (2 << 17));
 | |
|     assertEquals(-results_powers_of_two[i][18], -left_operands[i] % -(2 << 18));
 | |
|     assertEquals(-results_powers_of_two[i][19], -left_operands[i] % (2 << 19));
 | |
|     assertEquals(-results_powers_of_two[i][20], -left_operands[i] % -(2 << 20));
 | |
|     assertEquals(-results_powers_of_two[i][21], -left_operands[i] % (2 << 21));
 | |
|     assertEquals(-results_powers_of_two[i][22], -left_operands[i] % -(2 << 22));
 | |
|     assertEquals(-results_powers_of_two[i][23], -left_operands[i] % (2 << 23));
 | |
|     assertEquals(-results_powers_of_two[i][24], -left_operands[i] % -(2 << 24));
 | |
|     assertEquals(-results_powers_of_two[i][25], -left_operands[i] % (2 << 25));
 | |
|     assertEquals(-results_powers_of_two[i][26], -left_operands[i] % -(2 << 26));
 | |
|     assertEquals(-results_powers_of_two[i][27], -left_operands[i] % (2 << 27));
 | |
|     assertEquals(-results_powers_of_two[i][28], -left_operands[i] % -(2 << 28));
 | |
|     assertEquals(-results_powers_of_two[i][29], -left_operands[i] % (2 << 29));
 | |
|     assertEquals(-results_powers_of_two[i][30], -left_operands[i] % -(2 << 30));
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| lithium_integer_mod();
 | |
| %OptimizeFunctionOnNextCall(lithium_integer_mod)
 | |
| lithium_integer_mod();
 |