mirror of
				https://github.com/tc39/test262.git
				synced 2025-10-31 03:34:08 +01:00 
			
		
		
		
	sourceRevisionAtLastExport: 33f2fb0e53d135f0ee17cfccd9d993eb2a6f47de targetRevisionAtLastExport: 31340cbd9add103f586d501b0c3354b7b182abc0
		
			
				
	
	
		
			79 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			79 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| // Copyright 2014 the V8 project authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style license that can be
 | |
| // found in the LICENSE file.
 | |
| 
 | |
| // Flags: --no-fast-math
 | |
| 
 | |
| assertTrue(isNaN(Math.expm1(NaN)));
 | |
| assertTrue(isNaN(Math.expm1(function() {})));
 | |
| assertTrue(isNaN(Math.expm1({ toString: function() { return NaN; } })));
 | |
| assertTrue(isNaN(Math.expm1({ valueOf: function() { return "abc"; } })));
 | |
| assertEquals(Infinity, 1/Math.expm1(0));
 | |
| assertEquals(-Infinity, 1/Math.expm1(-0));
 | |
| assertEquals(Infinity, Math.expm1(Infinity));
 | |
| assertEquals(-1, Math.expm1(-Infinity));
 | |
| 
 | |
| 
 | |
| // Sanity check:
 | |
| // Math.expm1(x) stays reasonably close to Math.exp(x) - 1 for large values.
 | |
| for (var x = 1; x < 700; x += 0.25) {
 | |
|   var expected = Math.exp(x) - 1;
 | |
|   assertEqualsDelta(expected, Math.expm1(x), expected * 1E-15);
 | |
|   expected = Math.exp(-x) - 1;
 | |
|   assertEqualsDelta(expected, Math.expm1(-x), -expected * 1E-15);
 | |
| }
 | |
| 
 | |
| // Approximation for values close to 0:
 | |
| // Use six terms of Taylor expansion at 0 for exp(x) as test expectation:
 | |
| // exp(x) - 1 == exp(0) + exp(0) * x + x * x / 2 + ... - 1
 | |
| //            == x + x * x / 2 + x * x * x / 6 + ...
 | |
| function expm1(x) {
 | |
|   return x * (1 + x * (1/2 + x * (
 | |
|               1/6 + x * (1/24 + x * (
 | |
|               1/120 + x * (1/720 + x * (
 | |
|               1/5040 + x * (1/40320 + x*(
 | |
|               1/362880 + x * (1/3628800))))))))));
 | |
| }
 | |
| 
 | |
| // Sanity check:
 | |
| // Math.expm1(x) stays reasonabliy close to the Taylor series for small values.
 | |
| for (var x = 1E-1; x > 1E-300; x *= 0.8) {
 | |
|   var expected = expm1(x);
 | |
|   assertEqualsDelta(expected, Math.expm1(x), expected * 1E-15);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Tests related to the fdlibm implementation.
 | |
| // Test overflow.
 | |
| assertEquals(Infinity, Math.expm1(709.8));
 | |
| // Test largest double value.
 | |
| assertEquals(Infinity, Math.exp(1.7976931348623157e308));
 | |
| // Cover various code paths.
 | |
| assertEquals(-1, Math.expm1(-56 * Math.LN2));
 | |
| assertEquals(-1, Math.expm1(-50));
 | |
| // Test most negative double value.
 | |
| assertEquals(-1, Math.expm1(-1.7976931348623157e308));
 | |
| // Test argument reduction.
 | |
| // Cases for 0.5*log(2) < |x| < 1.5*log(2).
 | |
| assertEquals(Math.E - 1, Math.expm1(1));
 | |
| assertEquals(1/Math.E - 1, Math.expm1(-1));
 | |
| // Cases for 1.5*log(2) < |x|.
 | |
| assertEquals(6.38905609893065, Math.expm1(2));
 | |
| assertEquals(-0.8646647167633873, Math.expm1(-2));
 | |
| // Cases where Math.expm1(x) = x.
 | |
| assertEquals(0, Math.expm1(0));
 | |
| assertEquals(Math.pow(2,-55), Math.expm1(Math.pow(2,-55)));
 | |
| // Tests for the case where argument reduction has x in the primary range.
 | |
| // Test branch for k = 0.
 | |
| assertEquals(0.18920711500272105, Math.expm1(0.25 * Math.LN2));
 | |
| // Test branch for k = -1.
 | |
| assertEquals(-0.5, Math.expm1(-Math.LN2));
 | |
| // Test branch for k = 1.
 | |
| assertEquals(1, Math.expm1(Math.LN2));
 | |
| // Test branch for k <= -2 || k > 56. k = -3.
 | |
| assertEquals(1.4411518807585582e17, Math.expm1(57 * Math.LN2));
 | |
| // Test last branch for k < 20, k = 19.
 | |
| assertEquals(524286.99999999994, Math.expm1(19 * Math.LN2));
 | |
| // Test the else branch, k = 20.
 | |
| assertEquals(1048575, Math.expm1(20 * Math.LN2));
 |