test262/harness/sm/non262-Math-shell.js

80 lines
3.0 KiB
JavaScript

/*---
defines: [assertNear]
allow_unused: True
---*/
// The nearest representable values to +1.0.
const ONE_PLUS_EPSILON = 1 + Math.pow(2, -52); // 0.9999999999999999
const ONE_MINUS_EPSILON = 1 - Math.pow(2, -53); // 1.0000000000000002
{
const fail = function (msg) {
var exc = new Error(msg);
try {
// Try to improve on exc.fileName and .lineNumber; leave exc.stack
// alone. We skip two frames: fail() and its caller, an assertX()
// function.
var frames = exc.stack.trim().split("\n");
if (frames.length > 2) {
var m = /@([^@:]*):([0-9]+)$/.exec(frames[2]);
if (m) {
exc.fileName = m[1];
exc.lineNumber = +m[2];
}
}
} catch (ignore) { throw ignore;}
throw exc;
};
let ENDIAN; // 0 for little-endian, 1 for big-endian.
// Return the difference between the IEEE 754 bit-patterns for a and b.
//
// This is meaningful when a and b are both finite and have the same
// sign. Then the following hold:
//
// * If a === b, then diff(a, b) === 0.
//
// * If a !== b, then diff(a, b) === 1 + the number of representable values
// between a and b.
//
const f = new Float64Array([0, 0]);
const u = new Uint32Array(f.buffer);
const diff = function (a, b) {
f[0] = a;
f[1] = b;
//print(u[1].toString(16) + u[0].toString(16) + " " + u[3].toString(16) + u[2].toString(16));
return Math.abs((u[3-ENDIAN] - u[1-ENDIAN]) * 0x100000000 + u[2+ENDIAN] - u[0+ENDIAN]);
};
// Set ENDIAN to the platform's endianness.
ENDIAN = 0; // try little-endian first
if (diff(2, 4) === 0x100000) // exact wrong answer we'll get on a big-endian platform
ENDIAN = 1;
assertEq(diff(2,4), 0x10000000000000);
assertEq(diff(0, Number.MIN_VALUE), 1);
assertEq(diff(1, ONE_PLUS_EPSILON), 1);
assertEq(diff(1, ONE_MINUS_EPSILON), 1);
var assertNear = function assertNear(a, b, tolerance=1) {
if (!Number.isFinite(b)) {
fail("second argument to assertNear (expected value) must be a finite number");
} else if (Number.isNaN(a)) {
fail("got NaN, expected a number near " + b);
} else if (!Number.isFinite(a)) {
if (b * Math.sign(a) < Number.MAX_VALUE)
fail("got " + a + ", expected a number near " + b);
} else {
// When the two arguments do not have the same sign bit, diff()
// returns some huge number. So if b is positive or negative 0,
// make target the zero that has the same sign bit as a.
var target = b === 0 ? a * 0 : b;
var err = diff(a, target);
if (err > tolerance) {
fail("got " + a + ", expected a number near " + b +
" (relative error: " + err + ")");
}
}
};
}