audk/ArmPlatformPkg/Drivers/PL180MciDxe/PL180Mci.c

564 lines
17 KiB
C
Raw Normal View History

/** @file
This file implement the MMC Host Protocol for the ARM PrimeCell PL180.
Copyright (c) 2011-2012, ARM Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "PL180Mci.h"
#include <Library/DevicePathLib.h>
#include <Library/BaseMemoryLib.h>
EFI_MMC_HOST_PROTOCOL *gpMmcHost;
// Untested ...
//#define USE_STREAM
#define MMCI0_BLOCKLEN 512
#define MMCI0_POW2_BLOCKLEN 9
#define MMCI0_TIMEOUT 1000
#define SYS_MCI_CARDIN BIT0
#define SYS_MCI_WPROT BIT1
BOOLEAN
MciIsPowerOn (
VOID
)
{
return ((MmioRead32 (MCI_POWER_CONTROL_REG) & MCI_POWER_ON) == MCI_POWER_ON);
}
EFI_STATUS
MciInitialize (
VOID
)
{
MCI_TRACE ("MciInitialize()");
return EFI_SUCCESS;
}
BOOLEAN
MciIsCardPresent (
IN EFI_MMC_HOST_PROTOCOL *This
)
{
return (MmioRead32 (FixedPcdGet32 (PcdPL180SysMciRegAddress)) & SYS_MCI_CARDIN);
}
BOOLEAN
MciIsReadOnly (
IN EFI_MMC_HOST_PROTOCOL *This
)
{
return (MmioRead32 (FixedPcdGet32 (PcdPL180SysMciRegAddress)) & SYS_MCI_WPROT);
}
// Convert block size to 2^n
STATIC
UINT32
GetPow2BlockLen (
IN UINT32 BlockLen
)
{
UINTN Loop;
UINTN Pow2BlockLen;
Loop = 0x8000;
Pow2BlockLen = 15;
do {
Loop = (Loop >> 1) & 0xFFFF;
Pow2BlockLen--;
} while (Pow2BlockLen && (!(Loop & BlockLen)));
return Pow2BlockLen;
}
VOID
MciPrepareDataPath (
IN UINTN TransferDirection
)
{
// Set Data Length & Data Timer
MmioWrite32 (MCI_DATA_TIMER_REG, 0xFFFFFFF);
MmioWrite32 (MCI_DATA_LENGTH_REG, MMCI0_BLOCKLEN);
#ifndef USE_STREAM
//Note: we are using a hardcoded BlockLen (==512). If we decide to use a variable size, we could
// compute the pow2 of BlockLen with the above function GetPow2BlockLen ()
MmioWrite32 (MCI_DATA_CTL_REG, MCI_DATACTL_ENABLE | MCI_DATACTL_DMA_ENABLE | TransferDirection | (MMCI0_POW2_BLOCKLEN << 4));
#else
MmioWrite32 (MCI_DATA_CTL_REG, MCI_DATACTL_ENABLE | MCI_DATACTL_DMA_ENABLE | TransferDirection | MCI_DATACTL_STREAM_TRANS);
#endif
}
EFI_STATUS
MciSendCommand (
IN EFI_MMC_HOST_PROTOCOL *This,
IN MMC_CMD MmcCmd,
IN UINT32 Argument
)
{
UINT32 Status;
UINT32 Cmd;
UINTN RetVal;
UINTN CmdCtrlReg;
UINT32 DoneMask;
RetVal = EFI_SUCCESS;
if ((MmcCmd == MMC_CMD17) || (MmcCmd == MMC_CMD11)) {
MciPrepareDataPath (MCI_DATACTL_CARD_TO_CONT);
} else if ((MmcCmd == MMC_CMD24) || (MmcCmd == MMC_CMD20)) {
MciPrepareDataPath (MCI_DATACTL_CONT_TO_CARD);
} else if (MmcCmd == MMC_CMD6) {
MmioWrite32 (MCI_DATA_TIMER_REG, 0xFFFFFFF);
MmioWrite32 (MCI_DATA_LENGTH_REG, 64);
#ifndef USE_STREAM
MmioWrite32 (MCI_DATA_CTL_REG, MCI_DATACTL_ENABLE | MCI_DATACTL_CARD_TO_CONT | GetPow2BlockLen (64));
#else
MmioWrite32 (MCI_DATA_CTL_REG, MCI_DATACTL_ENABLE | MCI_DATACTL_CARD_TO_CONT | MCI_DATACTL_STREAM_TRANS);
#endif
} else if (MmcCmd == MMC_ACMD51) {
MmioWrite32 (MCI_DATA_TIMER_REG, 0xFFFFFFF);
/* SCR register is 8 bytes long. */
MmioWrite32 (MCI_DATA_LENGTH_REG, 8);
#ifndef USE_STREAM
MmioWrite32 (MCI_DATA_CTL_REG, MCI_DATACTL_ENABLE | MCI_DATACTL_CARD_TO_CONT | GetPow2BlockLen (8));
#else
MmioWrite32 (MCI_DATA_CTL_REG, MCI_DATACTL_ENABLE | MCI_DATACTL_CARD_TO_CONT | MCI_DATACTL_STREAM_TRANS);
#endif
}
// Create Command for PL180
Cmd = (MMC_GET_INDX (MmcCmd) & INDX_MASK) | MCI_CPSM_ENABLE;
if (MmcCmd & MMC_CMD_WAIT_RESPONSE) {
Cmd |= MCI_CPSM_WAIT_RESPONSE;
}
if (MmcCmd & MMC_CMD_LONG_RESPONSE) {
Cmd |= MCI_CPSM_LONG_RESPONSE;
}
// Clear Status register static flags
MmioWrite32 (MCI_CLEAR_STATUS_REG, MCI_CLR_ALL_STATUS);
// Write to command argument register
MmioWrite32 (MCI_ARGUMENT_REG, Argument);
// Write to command register
MmioWrite32 (MCI_COMMAND_REG, Cmd);
DoneMask = (Cmd & MCI_CPSM_WAIT_RESPONSE)
? (MCI_STATUS_CMD_RESPEND | MCI_STATUS_CMD_ERROR)
: (MCI_STATUS_CMD_SENT | MCI_STATUS_CMD_ERROR);
do {
Status = MmioRead32 (MCI_STATUS_REG);
} while (! (Status & DoneMask));
if ((Status & MCI_STATUS_CMD_ERROR)) {
// Clear Status register error flags
MmioWrite32 (MCI_CLEAR_STATUS_REG, MCI_STATUS_CMD_ERROR);
if ((Status & MCI_STATUS_CMD_START_BIT_ERROR)) {
DEBUG ((EFI_D_ERROR, "MciSendCommand(CmdIndex:%d) Start bit Error! Response:0x%X Status:0x%x\n", (Cmd & 0x3F), MmioRead32 (MCI_RESPONSE0_REG), Status));
RetVal = EFI_NO_RESPONSE;
} else if ((Status & MCI_STATUS_CMD_CMDTIMEOUT)) {
//DEBUG ((EFI_D_ERROR, "MciSendCommand(CmdIndex:%d) TIMEOUT! Response:0x%X Status:0x%x\n", (Cmd & 0x3F), MmioRead32 (MCI_RESPONSE0_REG), Status));
RetVal = EFI_TIMEOUT;
} else if ((!(MmcCmd & MMC_CMD_NO_CRC_RESPONSE)) && (Status & MCI_STATUS_CMD_CMDCRCFAIL)) {
// The CMD1 and response type R3 do not contain CRC. We should ignore the CRC failed Status.
RetVal = EFI_CRC_ERROR;
}
}
// Disable Command Path
CmdCtrlReg = MmioRead32 (MCI_COMMAND_REG);
MmioWrite32 (MCI_COMMAND_REG, (CmdCtrlReg & ~MCI_CPSM_ENABLE));
return RetVal;
}
EFI_STATUS
MciReceiveResponse (
IN EFI_MMC_HOST_PROTOCOL *This,
IN MMC_RESPONSE_TYPE Type,
IN UINT32* Buffer
)
{
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if ( (Type == MMC_RESPONSE_TYPE_R1)
|| (Type == MMC_RESPONSE_TYPE_R1b)
|| (Type == MMC_RESPONSE_TYPE_R3)
|| (Type == MMC_RESPONSE_TYPE_R6)
|| (Type == MMC_RESPONSE_TYPE_R7))
{
Buffer[0] = MmioRead32 (MCI_RESPONSE3_REG);
} else if (Type == MMC_RESPONSE_TYPE_R2) {
Buffer[0] = MmioRead32 (MCI_RESPONSE0_REG);
Buffer[1] = MmioRead32 (MCI_RESPONSE1_REG);
Buffer[2] = MmioRead32 (MCI_RESPONSE2_REG);
Buffer[3] = MmioRead32 (MCI_RESPONSE3_REG);
}
return EFI_SUCCESS;
}
EFI_STATUS
MciReadBlockData (
IN EFI_MMC_HOST_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Length,
IN UINT32* Buffer
)
{
UINTN Loop;
UINTN Finish;
UINTN Status;
EFI_STATUS RetVal;
UINTN DataCtrlReg;
EFI_TPL Tpl;
RetVal = EFI_SUCCESS;
// Read data from the RX FIFO
Loop = 0;
if (Length < MMCI0_BLOCKLEN) {
Finish = Length / 4;
} else {
Finish = MMCI0_BLOCKLEN / 4;
}
// Raise the TPL at the highest level to disable Interrupts.
Tpl = gBS->RaiseTPL (TPL_HIGH_LEVEL);
do {
// Read the Status flags
Status = MmioRead32 (MCI_STATUS_REG);
// Do eight reads if possible else a single read
if (Status & MCI_STATUS_CMD_RXFIFOHALFFULL) {
Buffer[Loop] = MmioRead32(MCI_FIFO_REG);
Loop++;
Buffer[Loop] = MmioRead32(MCI_FIFO_REG);
Loop++;
Buffer[Loop] = MmioRead32(MCI_FIFO_REG);
Loop++;
Buffer[Loop] = MmioRead32(MCI_FIFO_REG);
Loop++;
Buffer[Loop] = MmioRead32(MCI_FIFO_REG);
Loop++;
Buffer[Loop] = MmioRead32(MCI_FIFO_REG);
Loop++;
Buffer[Loop] = MmioRead32(MCI_FIFO_REG);
Loop++;
Buffer[Loop] = MmioRead32(MCI_FIFO_REG);
Loop++;
} else if (Status & MCI_STATUS_CMD_RXDATAAVAILBL) {
Buffer[Loop] = MmioRead32(MCI_FIFO_REG);
Loop++;
} else {
//Check for error conditions and timeouts
if (Status & MCI_STATUS_CMD_DATATIMEOUT) {
DEBUG ((EFI_D_ERROR, "MciReadBlockData(): TIMEOUT! Response:0x%X Status:0x%x\n", MmioRead32 (MCI_RESPONSE0_REG), Status));
RetVal = EFI_TIMEOUT;
break;
} else if (Status & MCI_STATUS_CMD_DATACRCFAIL) {
DEBUG ((EFI_D_ERROR, "MciReadBlockData(): CRC Error! Response:0x%X Status:0x%x\n", MmioRead32 (MCI_RESPONSE0_REG), Status));
RetVal = EFI_CRC_ERROR;
break;
} else if (Status & MCI_STATUS_CMD_START_BIT_ERROR) {
DEBUG ((EFI_D_ERROR, "MciReadBlockData(): Start-bit Error! Response:0x%X Status:0x%x\n", MmioRead32 (MCI_RESPONSE0_REG), Status));
RetVal = EFI_NO_RESPONSE;
break;
}
}
//clear RX over run flag
if(Status & MCI_STATUS_CMD_RXOVERRUN) {
MmioWrite32(MCI_CLEAR_STATUS_REG, MCI_STATUS_CMD_RXOVERRUN);
}
} while ((Loop < Finish));
// Restore Tpl
gBS->RestoreTPL (Tpl);
// Clear Status flags
MmioWrite32 (MCI_CLEAR_STATUS_REG, MCI_CLR_ALL_STATUS);
//Disable Data path
DataCtrlReg = MmioRead32 (MCI_DATA_CTL_REG);
MmioWrite32 (MCI_DATA_CTL_REG, (DataCtrlReg & MCI_DATACTL_DISABLE_MASK));
return RetVal;
}
EFI_STATUS
MciWriteBlockData (
IN EFI_MMC_HOST_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Length,
IN UINT32* Buffer
)
{
UINTN Loop;
UINTN Finish;
UINTN Timer;
UINTN Status;
EFI_STATUS RetVal;
UINTN DataCtrlReg;
EFI_TPL Tpl;
RetVal = EFI_SUCCESS;
// Write the data to the TX FIFO
Loop = 0;
Finish = MMCI0_BLOCKLEN / 4;
Timer = MMCI0_TIMEOUT * 100;
// Raise the TPL at the highest level to disable Interrupts.
Tpl = gBS->RaiseTPL (TPL_HIGH_LEVEL);
do {
// Read the Status flags
Status = MmioRead32 (MCI_STATUS_REG);
// Do eight writes if possible else a single write
if (Status & MCI_STATUS_CMD_TXFIFOHALFEMPTY) {
MmioWrite32(MCI_FIFO_REG, Buffer[Loop]);
Loop++;
MmioWrite32(MCI_FIFO_REG, Buffer[Loop]);
Loop++;
MmioWrite32(MCI_FIFO_REG, Buffer[Loop]);
Loop++;
MmioWrite32(MCI_FIFO_REG, Buffer[Loop]);
Loop++;
MmioWrite32(MCI_FIFO_REG, Buffer[Loop]);
Loop++;
MmioWrite32(MCI_FIFO_REG, Buffer[Loop]);
Loop++;
MmioWrite32(MCI_FIFO_REG, Buffer[Loop]);
Loop++;
MmioWrite32(MCI_FIFO_REG, Buffer[Loop]);
Loop++;
} else if (!(Status & MCI_STATUS_CMD_TXFIFOFULL)) {
MmioWrite32(MCI_FIFO_REG, Buffer[Loop]);
Loop++;
} else {
// Check for error conditions and timeouts
if (Status & MCI_STATUS_CMD_DATATIMEOUT) {
DEBUG ((EFI_D_ERROR, "MciWriteBlockData(): TIMEOUT! Response:0x%X Status:0x%x\n", MmioRead32 (MCI_RESPONSE0_REG), Status));
RetVal = EFI_TIMEOUT;
goto Exit;
} else if (Status & MCI_STATUS_CMD_DATACRCFAIL) {
DEBUG ((EFI_D_ERROR, "MciWriteBlockData(): CRC Error! Response:0x%X Status:0x%x\n", MmioRead32 (MCI_RESPONSE0_REG), Status));
RetVal = EFI_CRC_ERROR;
goto Exit;
} else if (Status & MCI_STATUS_CMD_TX_UNDERRUN) {
DEBUG ((EFI_D_ERROR, "MciWriteBlockData(): TX buffer Underrun! Response:0x%X Status:0x%x, Number of bytes written 0x%x\n",MmioRead32(MCI_RESPONSE0_REG),Status, Loop));
RetVal = EFI_BUFFER_TOO_SMALL;
ASSERT(0);
goto Exit;
}
}
} while (Loop < Finish);
// Restore Tpl
gBS->RestoreTPL (Tpl);
// Wait for FIFO to drain
Timer = MMCI0_TIMEOUT * 60;
Status = MmioRead32 (MCI_STATUS_REG);
#ifndef USE_STREAM
// Single block
while (((Status & MCI_STATUS_TXDONE) != MCI_STATUS_TXDONE) && Timer) {
#else
// Stream
while (((Status & MCI_STATUS_CMD_DATAEND) != MCI_STATUS_CMD_DATAEND) && Timer) {
#endif
NanoSecondDelay(10);
Status = MmioRead32 (MCI_STATUS_REG);
Timer--;
}
// Clear Status flags
MmioWrite32 (MCI_CLEAR_STATUS_REG, MCI_CLR_ALL_STATUS);
if (Timer == 0) {
DEBUG ((EFI_D_ERROR, "MciWriteBlockData(): Data End timeout Number of words written 0x%x\n", Loop));
RetVal = EFI_TIMEOUT;
}
Exit:
// Disable Data path
DataCtrlReg = MmioRead32 (MCI_DATA_CTL_REG);
MmioWrite32 (MCI_DATA_CTL_REG, (DataCtrlReg & MCI_DATACTL_DISABLE_MASK));
return RetVal;
}
EFI_STATUS
MciNotifyState (
IN EFI_MMC_HOST_PROTOCOL *This,
IN MMC_STATE State
)
{
UINT32 Data32;
switch (State) {
case MmcInvalidState:
ASSERT (0);
break;
case MmcHwInitializationState:
// If device already turn on then restart it
Data32 = MmioRead32 (MCI_POWER_CONTROL_REG);
if ((Data32 & 0x2) == MCI_POWER_UP) {
MCI_TRACE ("MciNotifyState(MmcHwInitializationState): TurnOff MCI");
// Turn off
MmioWrite32 (MCI_CLOCK_CONTROL_REG, 0);
MmioWrite32 (MCI_POWER_CONTROL_REG, 0);
MicroSecondDelay (100);
}
MCI_TRACE ("MciNotifyState(MmcHwInitializationState): TurnOn MCI");
// Setup clock
// - 0x1D = 29 => should be the clock divider to be less than 400kHz at MCLK = 24Mhz
MmioWrite32 (MCI_CLOCK_CONTROL_REG, 0x1D | MCI_CLOCK_ENABLE | MCI_CLOCK_POWERSAVE);
// Set the voltage
MmioWrite32 (MCI_POWER_CONTROL_REG, MCI_POWER_OPENDRAIN | (15<<2));
MmioWrite32 (MCI_POWER_CONTROL_REG, MCI_POWER_ROD | MCI_POWER_OPENDRAIN | (15<<2) | MCI_POWER_UP);
MicroSecondDelay (10);
MmioWrite32 (MCI_POWER_CONTROL_REG, MCI_POWER_ROD | MCI_POWER_OPENDRAIN | (15<<2) | MCI_POWER_ON);
MicroSecondDelay (100);
// Set Data Length & Data Timer
MmioWrite32 (MCI_DATA_TIMER_REG, 0xFFFFF);
MmioWrite32 (MCI_DATA_LENGTH_REG, 8);
ASSERT ((MmioRead32 (MCI_POWER_CONTROL_REG) & 0x3) == MCI_POWER_ON);
break;
case MmcIdleState:
MCI_TRACE ("MciNotifyState(MmcIdleState)");
break;
case MmcReadyState:
MCI_TRACE ("MciNotifyState(MmcReadyState)");
break;
case MmcIdentificationState:
MCI_TRACE ("MciNotifyState (MmcIdentificationState)");
break;
case MmcStandByState:{
volatile UINT32 PwrCtrlReg;
MCI_TRACE ("MciNotifyState (MmcStandByState)");
// Enable MCICMD push-pull drive
PwrCtrlReg = MmioRead32 (MCI_POWER_CONTROL_REG);
//Disable Open Drain output
PwrCtrlReg &= ~ (MCI_POWER_OPENDRAIN);
MmioWrite32 (MCI_POWER_CONTROL_REG, PwrCtrlReg);
// Set MMCI0 clock to 4MHz (24MHz may be possible with cache enabled)
//
// Note: Increasing clock speed causes TX FIFO under-run errors.
// So careful when optimising this driver for higher performance.
//
MmioWrite32(MCI_CLOCK_CONTROL_REG,0x02 | MCI_CLOCK_ENABLE | MCI_CLOCK_POWERSAVE);
// Set MMCI0 clock to 24MHz (by bypassing the divider)
//MmioWrite32(MCI_CLOCK_CONTROL_REG,MCI_CLOCK_BYPASS | MCI_CLOCK_ENABLE);
break;
}
case MmcTransferState:
//MCI_TRACE ("MciNotifyState(MmcTransferState)");
break;
case MmcSendingDataState:
MCI_TRACE ("MciNotifyState(MmcSendingDataState)");
break;
case MmcReceiveDataState:
MCI_TRACE ("MciNotifyState(MmcReceiveDataState)");
break;
case MmcProgrammingState:
MCI_TRACE ("MciNotifyState(MmcProgrammingState)");
break;
case MmcDisconnectState:
MCI_TRACE ("MciNotifyState(MmcDisconnectState)");
break;
default:
ASSERT (0);
}
return EFI_SUCCESS;
}
EFI_GUID mPL180MciDevicePathGuid = EFI_CALLER_ID_GUID;
EFI_STATUS
MciBuildDevicePath (
IN EFI_MMC_HOST_PROTOCOL *This,
IN EFI_DEVICE_PATH_PROTOCOL **DevicePath
)
{
EFI_DEVICE_PATH_PROTOCOL *NewDevicePathNode;
NewDevicePathNode = CreateDeviceNode (HARDWARE_DEVICE_PATH, HW_VENDOR_DP, sizeof (VENDOR_DEVICE_PATH));
CopyGuid (& ((VENDOR_DEVICE_PATH*)NewDevicePathNode)->Guid, &mPL180MciDevicePathGuid);
*DevicePath = NewDevicePathNode;
return EFI_SUCCESS;
}
EFI_MMC_HOST_PROTOCOL gMciHost = {
MMC_HOST_PROTOCOL_REVISION,
MciIsCardPresent,
MciIsReadOnly,
MciBuildDevicePath,
MciNotifyState,
MciSendCommand,
MciReceiveResponse,
MciReadBlockData,
MciWriteBlockData
};
EFI_STATUS
PL180MciDxeInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_HANDLE Handle;
DEBUG ((EFI_D_WARN, "Probing ID registers at 0x%lx for a PL180\n",
MCI_PERIPH_ID_REG0));
// Check if this is a PL180
if (MmioRead8 (MCI_PERIPH_ID_REG0) != MCI_PERIPH_ID0 ||
MmioRead8 (MCI_PERIPH_ID_REG1) != MCI_PERIPH_ID1 ||
MmioRead8 (MCI_PERIPH_ID_REG2) != MCI_PERIPH_ID2 ||
MmioRead8 (MCI_PCELL_ID_REG0) != MCI_PCELL_ID0 ||
MmioRead8 (MCI_PCELL_ID_REG1) != MCI_PCELL_ID1 ||
MmioRead8 (MCI_PCELL_ID_REG2) != MCI_PCELL_ID2 ||
MmioRead8 (MCI_PCELL_ID_REG3) != MCI_PCELL_ID3) {
DEBUG ((EFI_D_WARN, "Probing ID registers at 0x%lx for a PL180"
" failed\n", MCI_PERIPH_ID_REG0));
return EFI_NOT_FOUND;
}
Handle = NULL;
MCI_TRACE ("PL180MciDxeInitialize()");
//Publish Component Name, BlockIO protocol interfaces
Status = gBS->InstallMultipleProtocolInterfaces (
&Handle,
&gEfiMmcHostProtocolGuid, &gMciHost,
NULL
);
ASSERT_EFI_ERROR (Status);
return EFI_SUCCESS;
}