mirror of https://github.com/acidanthera/audk.git
1072 lines
37 KiB
C
1072 lines
37 KiB
C
|
/** @file
|
||
|
MM Driver Dispatcher.
|
||
|
|
||
|
Step #1 - When a FV protocol is added to the system every driver in the FV
|
||
|
is added to the mDiscoveredList. The Before, and After Depex are
|
||
|
pre-processed as drivers are added to the mDiscoveredList. If an Apriori
|
||
|
file exists in the FV those drivers are addeded to the
|
||
|
mScheduledQueue. The mFvHandleList is used to make sure a
|
||
|
FV is only processed once.
|
||
|
|
||
|
Step #2 - Dispatch. Remove driver from the mScheduledQueue and load and
|
||
|
start it. After mScheduledQueue is drained check the
|
||
|
mDiscoveredList to see if any item has a Depex that is ready to
|
||
|
be placed on the mScheduledQueue.
|
||
|
|
||
|
Step #3 - Adding to the mScheduledQueue requires that you process Before
|
||
|
and After dependencies. This is done recursively as the call to add
|
||
|
to the mScheduledQueue checks for Before and recursively adds
|
||
|
all Befores. It then addes the item that was passed in and then
|
||
|
processess the After dependecies by recursively calling the routine.
|
||
|
|
||
|
Dispatcher Rules:
|
||
|
The rules for the dispatcher are similar to the DXE dispatcher.
|
||
|
|
||
|
The rules for DXE dispatcher are in chapter 10 of the DXE CIS. Figure 10-3
|
||
|
is the state diagram for the DXE dispatcher
|
||
|
|
||
|
Depex - Dependency Expresion.
|
||
|
|
||
|
Copyright (c) 2014, Hewlett-Packard Development Company, L.P.
|
||
|
Copyright (c) 2009 - 2014, Intel Corporation. All rights reserved.<BR>
|
||
|
Copyright (c) 2016 - 2018, ARM Limited. All rights reserved.<BR>
|
||
|
|
||
|
This program and the accompanying materials are licensed and made available
|
||
|
under the terms and conditions of the BSD License which accompanies this
|
||
|
distribution. The full text of the license may be found at
|
||
|
http://opensource.org/licenses/bsd-license.php
|
||
|
|
||
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||
|
|
||
|
**/
|
||
|
|
||
|
#include "StandaloneMmCore.h"
|
||
|
|
||
|
//
|
||
|
// MM Dispatcher Data structures
|
||
|
//
|
||
|
#define KNOWN_HANDLE_SIGNATURE SIGNATURE_32('k','n','o','w')
|
||
|
|
||
|
typedef struct {
|
||
|
UINTN Signature;
|
||
|
LIST_ENTRY Link; // mFvHandleList
|
||
|
EFI_HANDLE Handle;
|
||
|
} KNOWN_HANDLE;
|
||
|
|
||
|
//
|
||
|
// Function Prototypes
|
||
|
//
|
||
|
|
||
|
EFI_STATUS
|
||
|
MmCoreFfsFindMmDriver (
|
||
|
IN EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader
|
||
|
);
|
||
|
|
||
|
/**
|
||
|
Insert InsertedDriverEntry onto the mScheduledQueue. To do this you
|
||
|
must add any driver with a before dependency on InsertedDriverEntry first.
|
||
|
You do this by recursively calling this routine. After all the Befores are
|
||
|
processed you can add InsertedDriverEntry to the mScheduledQueue.
|
||
|
Then you can add any driver with an After dependency on InsertedDriverEntry
|
||
|
by recursively calling this routine.
|
||
|
|
||
|
@param InsertedDriverEntry The driver to insert on the ScheduledLink Queue
|
||
|
|
||
|
**/
|
||
|
VOID
|
||
|
MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (
|
||
|
IN EFI_MM_DRIVER_ENTRY *InsertedDriverEntry
|
||
|
);
|
||
|
|
||
|
//
|
||
|
// The Driver List contains one copy of every driver that has been discovered.
|
||
|
// Items are never removed from the driver list. List of EFI_MM_DRIVER_ENTRY
|
||
|
//
|
||
|
LIST_ENTRY mDiscoveredList = INITIALIZE_LIST_HEAD_VARIABLE (mDiscoveredList);
|
||
|
|
||
|
//
|
||
|
// Queue of drivers that are ready to dispatch. This queue is a subset of the
|
||
|
// mDiscoveredList.list of EFI_MM_DRIVER_ENTRY.
|
||
|
//
|
||
|
LIST_ENTRY mScheduledQueue = INITIALIZE_LIST_HEAD_VARIABLE (mScheduledQueue);
|
||
|
|
||
|
//
|
||
|
// List of handles who's Fv's have been parsed and added to the mFwDriverList.
|
||
|
//
|
||
|
LIST_ENTRY mFvHandleList = INITIALIZE_LIST_HEAD_VARIABLE (mFvHandleList);
|
||
|
|
||
|
//
|
||
|
// Flag for the MM Dispacher. TRUE if dispatcher is execuing.
|
||
|
//
|
||
|
BOOLEAN gDispatcherRunning = FALSE;
|
||
|
|
||
|
//
|
||
|
// Flag for the MM Dispacher. TRUE if there is one or more MM drivers ready to be dispatched
|
||
|
//
|
||
|
BOOLEAN gRequestDispatch = FALSE;
|
||
|
|
||
|
//
|
||
|
// The global variable is defined for Loading modules at fixed address feature to track the MM code
|
||
|
// memory range usage. It is a bit mapped array in which every bit indicates the correspoding
|
||
|
// memory page available or not.
|
||
|
//
|
||
|
GLOBAL_REMOVE_IF_UNREFERENCED UINT64 *mMmCodeMemoryRangeUsageBitMap=NULL;
|
||
|
|
||
|
/**
|
||
|
To check memory usage bit map array to figure out if the memory range in which the image will be loaded
|
||
|
is available or not. If memory range is avaliable, the function will mark the correponding bits to 1
|
||
|
which indicates the memory range is used. The function is only invoked when load modules at fixed address
|
||
|
feature is enabled.
|
||
|
|
||
|
@param ImageBase The base addres the image will be loaded at.
|
||
|
@param ImageSize The size of the image
|
||
|
|
||
|
@retval EFI_SUCCESS The memory range the image will be loaded in is available
|
||
|
@retval EFI_NOT_FOUND The memory range the image will be loaded in is not available
|
||
|
**/
|
||
|
EFI_STATUS
|
||
|
CheckAndMarkFixLoadingMemoryUsageBitMap (
|
||
|
IN EFI_PHYSICAL_ADDRESS ImageBase,
|
||
|
IN UINTN ImageSize
|
||
|
)
|
||
|
{
|
||
|
UINT32 MmCodePageNumber;
|
||
|
UINT64 MmCodeSize;
|
||
|
EFI_PHYSICAL_ADDRESS MmCodeBase;
|
||
|
UINTN BaseOffsetPageNumber;
|
||
|
UINTN TopOffsetPageNumber;
|
||
|
UINTN Index;
|
||
|
|
||
|
//
|
||
|
// Build tool will calculate the smm code size and then patch the PcdLoadFixAddressMmCodePageNumber
|
||
|
//
|
||
|
MmCodePageNumber = 0;
|
||
|
MmCodeSize = EFI_PAGES_TO_SIZE (MmCodePageNumber);
|
||
|
MmCodeBase = gLoadModuleAtFixAddressMmramBase;
|
||
|
|
||
|
//
|
||
|
// If the memory usage bit map is not initialized, do it. Every bit in the array
|
||
|
// indicate the status of the corresponding memory page, available or not
|
||
|
//
|
||
|
if (mMmCodeMemoryRangeUsageBitMap == NULL) {
|
||
|
mMmCodeMemoryRangeUsageBitMap = AllocateZeroPool (((MmCodePageNumber / 64) + 1) * sizeof (UINT64));
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// If the Dxe code memory range is not allocated or the bit map array allocation failed, return EFI_NOT_FOUND
|
||
|
//
|
||
|
if (mMmCodeMemoryRangeUsageBitMap == NULL) {
|
||
|
return EFI_NOT_FOUND;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// see if the memory range for loading the image is in the MM code range.
|
||
|
//
|
||
|
if (MmCodeBase + MmCodeSize < ImageBase + ImageSize || MmCodeBase > ImageBase) {
|
||
|
return EFI_NOT_FOUND;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Test if the memory is avalaible or not.
|
||
|
//
|
||
|
BaseOffsetPageNumber = (UINTN)EFI_SIZE_TO_PAGES ((UINT32)(ImageBase - MmCodeBase));
|
||
|
TopOffsetPageNumber = (UINTN)EFI_SIZE_TO_PAGES ((UINT32)(ImageBase + ImageSize - MmCodeBase));
|
||
|
for (Index = BaseOffsetPageNumber; Index < TopOffsetPageNumber; Index ++) {
|
||
|
if ((mMmCodeMemoryRangeUsageBitMap[Index / 64] & LShiftU64 (1, (Index % 64))) != 0) {
|
||
|
//
|
||
|
// This page is already used.
|
||
|
//
|
||
|
return EFI_NOT_FOUND;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Being here means the memory range is available. So mark the bits for the memory range
|
||
|
//
|
||
|
for (Index = BaseOffsetPageNumber; Index < TopOffsetPageNumber; Index ++) {
|
||
|
mMmCodeMemoryRangeUsageBitMap[Index / 64] |= LShiftU64 (1, (Index % 64));
|
||
|
}
|
||
|
return EFI_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Get the fixed loading address from image header assigned by build tool. This function only be called
|
||
|
when Loading module at Fixed address feature enabled.
|
||
|
|
||
|
@param ImageContext Pointer to the image context structure that describes the PE/COFF
|
||
|
image that needs to be examined by this function.
|
||
|
@retval EFI_SUCCESS An fixed loading address is assigned to this image by build tools .
|
||
|
@retval EFI_NOT_FOUND The image has no assigned fixed loadding address.
|
||
|
|
||
|
**/
|
||
|
EFI_STATUS
|
||
|
GetPeCoffImageFixLoadingAssignedAddress(
|
||
|
IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
|
||
|
)
|
||
|
{
|
||
|
UINTN SectionHeaderOffset;
|
||
|
EFI_STATUS Status;
|
||
|
EFI_IMAGE_SECTION_HEADER SectionHeader;
|
||
|
EFI_IMAGE_OPTIONAL_HEADER_UNION *ImgHdr;
|
||
|
EFI_PHYSICAL_ADDRESS FixLoadingAddress;
|
||
|
UINT16 Index;
|
||
|
UINTN Size;
|
||
|
UINT16 NumberOfSections;
|
||
|
UINT64 ValueInSectionHeader;
|
||
|
|
||
|
FixLoadingAddress = 0;
|
||
|
Status = EFI_NOT_FOUND;
|
||
|
|
||
|
//
|
||
|
// Get PeHeader pointer
|
||
|
//
|
||
|
ImgHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)((CHAR8* )ImageContext->Handle + ImageContext->PeCoffHeaderOffset);
|
||
|
SectionHeaderOffset = ImageContext->PeCoffHeaderOffset + sizeof (UINT32) + sizeof (EFI_IMAGE_FILE_HEADER) +
|
||
|
ImgHdr->Pe32.FileHeader.SizeOfOptionalHeader;
|
||
|
NumberOfSections = ImgHdr->Pe32.FileHeader.NumberOfSections;
|
||
|
|
||
|
//
|
||
|
// Get base address from the first section header that doesn't point to code section.
|
||
|
//
|
||
|
for (Index = 0; Index < NumberOfSections; Index++) {
|
||
|
//
|
||
|
// Read section header from file
|
||
|
//
|
||
|
Size = sizeof (EFI_IMAGE_SECTION_HEADER);
|
||
|
Status = ImageContext->ImageRead (
|
||
|
ImageContext->Handle,
|
||
|
SectionHeaderOffset,
|
||
|
&Size,
|
||
|
&SectionHeader
|
||
|
);
|
||
|
if (EFI_ERROR (Status)) {
|
||
|
return Status;
|
||
|
}
|
||
|
|
||
|
Status = EFI_NOT_FOUND;
|
||
|
|
||
|
if ((SectionHeader.Characteristics & EFI_IMAGE_SCN_CNT_CODE) == 0) {
|
||
|
//
|
||
|
// Build tool will save the address in PointerToRelocations & PointerToLineNumbers fields
|
||
|
// in the first section header that doesn't point to code section in image header. So there
|
||
|
// is an assumption that when the feature is enabled, if a module with a loading address
|
||
|
// assigned by tools, the PointerToRelocations & PointerToLineNumbers fields should not be
|
||
|
// Zero, or else, these 2 fields should be set to Zero
|
||
|
//
|
||
|
ValueInSectionHeader = ReadUnaligned64 ((UINT64*)&SectionHeader.PointerToRelocations);
|
||
|
if (ValueInSectionHeader != 0) {
|
||
|
//
|
||
|
// Found first section header that doesn't point to code section in which build tool saves the
|
||
|
// offset to SMRAM base as image base in PointerToRelocations & PointerToLineNumbers fields
|
||
|
//
|
||
|
FixLoadingAddress = (EFI_PHYSICAL_ADDRESS)(gLoadModuleAtFixAddressMmramBase + (INT64)ValueInSectionHeader);
|
||
|
//
|
||
|
// Check if the memory range is available.
|
||
|
//
|
||
|
Status = CheckAndMarkFixLoadingMemoryUsageBitMap (FixLoadingAddress, (UINTN)(ImageContext->ImageSize + ImageContext->SectionAlignment));
|
||
|
if (!EFI_ERROR(Status)) {
|
||
|
//
|
||
|
// The assigned address is valid. Return the specified loading address
|
||
|
//
|
||
|
ImageContext->ImageAddress = FixLoadingAddress;
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
SectionHeaderOffset += sizeof (EFI_IMAGE_SECTION_HEADER);
|
||
|
}
|
||
|
DEBUG ((DEBUG_INFO|DEBUG_LOAD, "LOADING MODULE FIXED INFO: Loading module at fixed address %x, Status = %r\n",
|
||
|
FixLoadingAddress, Status));
|
||
|
return Status;
|
||
|
}
|
||
|
/**
|
||
|
Loads an EFI image into SMRAM.
|
||
|
|
||
|
@param DriverEntry EFI_MM_DRIVER_ENTRY instance
|
||
|
|
||
|
@return EFI_STATUS
|
||
|
|
||
|
**/
|
||
|
EFI_STATUS
|
||
|
EFIAPI
|
||
|
MmLoadImage (
|
||
|
IN OUT EFI_MM_DRIVER_ENTRY *DriverEntry
|
||
|
)
|
||
|
{
|
||
|
VOID *Buffer;
|
||
|
UINTN PageCount;
|
||
|
EFI_STATUS Status;
|
||
|
EFI_PHYSICAL_ADDRESS DstBuffer;
|
||
|
PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
|
||
|
|
||
|
DEBUG ((DEBUG_INFO, "MmLoadImage - %g\n", &DriverEntry->FileName));
|
||
|
|
||
|
Buffer = AllocateCopyPool (DriverEntry->Pe32DataSize, DriverEntry->Pe32Data);
|
||
|
if (Buffer == NULL) {
|
||
|
return EFI_OUT_OF_RESOURCES;
|
||
|
}
|
||
|
|
||
|
Status = EFI_SUCCESS;
|
||
|
|
||
|
//
|
||
|
// Initialize ImageContext
|
||
|
//
|
||
|
ImageContext.Handle = Buffer;
|
||
|
ImageContext.ImageRead = PeCoffLoaderImageReadFromMemory;
|
||
|
|
||
|
//
|
||
|
// Get information about the image being loaded
|
||
|
//
|
||
|
Status = PeCoffLoaderGetImageInfo (&ImageContext);
|
||
|
if (EFI_ERROR (Status)) {
|
||
|
if (Buffer != NULL) {
|
||
|
MmFreePool (Buffer);
|
||
|
}
|
||
|
return Status;
|
||
|
}
|
||
|
|
||
|
PageCount = (UINTN)EFI_SIZE_TO_PAGES ((UINTN)ImageContext.ImageSize + ImageContext.SectionAlignment);
|
||
|
DstBuffer = (UINTN)(-1);
|
||
|
|
||
|
Status = MmAllocatePages (
|
||
|
AllocateMaxAddress,
|
||
|
EfiRuntimeServicesCode,
|
||
|
PageCount,
|
||
|
&DstBuffer
|
||
|
);
|
||
|
if (EFI_ERROR (Status)) {
|
||
|
if (Buffer != NULL) {
|
||
|
MmFreePool (Buffer);
|
||
|
}
|
||
|
return Status;
|
||
|
}
|
||
|
|
||
|
ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)DstBuffer;
|
||
|
|
||
|
//
|
||
|
// Align buffer on section boundry
|
||
|
//
|
||
|
ImageContext.ImageAddress += ImageContext.SectionAlignment - 1;
|
||
|
ImageContext.ImageAddress &= ~((EFI_PHYSICAL_ADDRESS)(ImageContext.SectionAlignment - 1));
|
||
|
|
||
|
//
|
||
|
// Load the image to our new buffer
|
||
|
//
|
||
|
Status = PeCoffLoaderLoadImage (&ImageContext);
|
||
|
if (EFI_ERROR (Status)) {
|
||
|
if (Buffer != NULL) {
|
||
|
MmFreePool (Buffer);
|
||
|
}
|
||
|
MmFreePages (DstBuffer, PageCount);
|
||
|
return Status;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Relocate the image in our new buffer
|
||
|
//
|
||
|
Status = PeCoffLoaderRelocateImage (&ImageContext);
|
||
|
if (EFI_ERROR (Status)) {
|
||
|
if (Buffer != NULL) {
|
||
|
MmFreePool (Buffer);
|
||
|
}
|
||
|
MmFreePages (DstBuffer, PageCount);
|
||
|
return Status;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Flush the instruction cache so the image data are written before we execute it
|
||
|
//
|
||
|
InvalidateInstructionCacheRange ((VOID *)(UINTN) ImageContext.ImageAddress, (UINTN) ImageContext.ImageSize);
|
||
|
|
||
|
//
|
||
|
// Save Image EntryPoint in DriverEntry
|
||
|
//
|
||
|
DriverEntry->ImageEntryPoint = ImageContext.EntryPoint;
|
||
|
DriverEntry->ImageBuffer = DstBuffer;
|
||
|
DriverEntry->NumberOfPage = PageCount;
|
||
|
|
||
|
if (mEfiSystemTable != NULL) {
|
||
|
Status = mEfiSystemTable->BootServices->AllocatePool (
|
||
|
EfiBootServicesData,
|
||
|
sizeof (EFI_LOADED_IMAGE_PROTOCOL),
|
||
|
(VOID **)&DriverEntry->LoadedImage
|
||
|
);
|
||
|
if (EFI_ERROR (Status)) {
|
||
|
if (Buffer != NULL) {
|
||
|
MmFreePool (Buffer);
|
||
|
}
|
||
|
MmFreePages (DstBuffer, PageCount);
|
||
|
return Status;
|
||
|
}
|
||
|
|
||
|
ZeroMem (DriverEntry->LoadedImage, sizeof (EFI_LOADED_IMAGE_PROTOCOL));
|
||
|
//
|
||
|
// Fill in the remaining fields of the Loaded Image Protocol instance.
|
||
|
// Note: ImageBase is an SMRAM address that can not be accessed outside of SMRAM if SMRAM window is closed.
|
||
|
//
|
||
|
DriverEntry->LoadedImage->Revision = EFI_LOADED_IMAGE_PROTOCOL_REVISION;
|
||
|
DriverEntry->LoadedImage->ParentHandle = NULL;
|
||
|
DriverEntry->LoadedImage->SystemTable = mEfiSystemTable;
|
||
|
DriverEntry->LoadedImage->DeviceHandle = NULL;
|
||
|
DriverEntry->LoadedImage->FilePath = NULL;
|
||
|
|
||
|
DriverEntry->LoadedImage->ImageBase = (VOID *)(UINTN)DriverEntry->ImageBuffer;
|
||
|
DriverEntry->LoadedImage->ImageSize = ImageContext.ImageSize;
|
||
|
DriverEntry->LoadedImage->ImageCodeType = EfiRuntimeServicesCode;
|
||
|
DriverEntry->LoadedImage->ImageDataType = EfiRuntimeServicesData;
|
||
|
|
||
|
//
|
||
|
// Create a new image handle in the UEFI handle database for the MM Driver
|
||
|
//
|
||
|
DriverEntry->ImageHandle = NULL;
|
||
|
Status = mEfiSystemTable->BootServices->InstallMultipleProtocolInterfaces (
|
||
|
&DriverEntry->ImageHandle,
|
||
|
&gEfiLoadedImageProtocolGuid,
|
||
|
DriverEntry->LoadedImage,
|
||
|
NULL
|
||
|
);
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Print the load address and the PDB file name if it is available
|
||
|
//
|
||
|
DEBUG_CODE_BEGIN ();
|
||
|
|
||
|
UINTN Index;
|
||
|
UINTN StartIndex;
|
||
|
CHAR8 EfiFileName[256];
|
||
|
|
||
|
DEBUG ((DEBUG_INFO | DEBUG_LOAD,
|
||
|
"Loading MM driver at 0x%11p EntryPoint=0x%11p ",
|
||
|
(VOID *)(UINTN) ImageContext.ImageAddress,
|
||
|
FUNCTION_ENTRY_POINT (ImageContext.EntryPoint)));
|
||
|
|
||
|
//
|
||
|
// Print Module Name by Pdb file path.
|
||
|
// Windows and Unix style file path are all trimmed correctly.
|
||
|
//
|
||
|
if (ImageContext.PdbPointer != NULL) {
|
||
|
StartIndex = 0;
|
||
|
for (Index = 0; ImageContext.PdbPointer[Index] != 0; Index++) {
|
||
|
if ((ImageContext.PdbPointer[Index] == '\\') || (ImageContext.PdbPointer[Index] == '/')) {
|
||
|
StartIndex = Index + 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Copy the PDB file name to our temporary string, and replace .pdb with .efi
|
||
|
// The PDB file name is limited in the range of 0~255.
|
||
|
// If the length is bigger than 255, trim the redudant characters to avoid overflow in array boundary.
|
||
|
//
|
||
|
for (Index = 0; Index < sizeof (EfiFileName) - 4; Index++) {
|
||
|
EfiFileName[Index] = ImageContext.PdbPointer[Index + StartIndex];
|
||
|
if (EfiFileName[Index] == 0) {
|
||
|
EfiFileName[Index] = '.';
|
||
|
}
|
||
|
if (EfiFileName[Index] == '.') {
|
||
|
EfiFileName[Index + 1] = 'e';
|
||
|
EfiFileName[Index + 2] = 'f';
|
||
|
EfiFileName[Index + 3] = 'i';
|
||
|
EfiFileName[Index + 4] = 0;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (Index == sizeof (EfiFileName) - 4) {
|
||
|
EfiFileName[Index] = 0;
|
||
|
}
|
||
|
DEBUG ((DEBUG_INFO | DEBUG_LOAD, "%a", EfiFileName));
|
||
|
}
|
||
|
DEBUG ((DEBUG_INFO | DEBUG_LOAD, "\n"));
|
||
|
|
||
|
DEBUG_CODE_END ();
|
||
|
|
||
|
//
|
||
|
// Free buffer allocated by Fv->ReadSection.
|
||
|
//
|
||
|
// The UEFI Boot Services FreePool() function must be used because Fv->ReadSection
|
||
|
// used the UEFI Boot Services AllocatePool() function
|
||
|
//
|
||
|
MmFreePool (Buffer);
|
||
|
return Status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Preprocess dependency expression and update DriverEntry to reflect the
|
||
|
state of Before and After dependencies. If DriverEntry->Before
|
||
|
or DriverEntry->After is set it will never be cleared.
|
||
|
|
||
|
@param DriverEntry DriverEntry element to update .
|
||
|
|
||
|
@retval EFI_SUCCESS It always works.
|
||
|
|
||
|
**/
|
||
|
EFI_STATUS
|
||
|
MmPreProcessDepex (
|
||
|
IN EFI_MM_DRIVER_ENTRY *DriverEntry
|
||
|
)
|
||
|
{
|
||
|
UINT8 *Iterator;
|
||
|
|
||
|
Iterator = DriverEntry->Depex;
|
||
|
DriverEntry->Dependent = TRUE;
|
||
|
|
||
|
if (*Iterator == EFI_DEP_BEFORE) {
|
||
|
DriverEntry->Before = TRUE;
|
||
|
} else if (*Iterator == EFI_DEP_AFTER) {
|
||
|
DriverEntry->After = TRUE;
|
||
|
}
|
||
|
|
||
|
if (DriverEntry->Before || DriverEntry->After) {
|
||
|
CopyMem (&DriverEntry->BeforeAfterGuid, Iterator + 1, sizeof (EFI_GUID));
|
||
|
}
|
||
|
|
||
|
return EFI_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Read Depex and pre-process the Depex for Before and After. If Section Extraction
|
||
|
protocol returns an error via ReadSection defer the reading of the Depex.
|
||
|
|
||
|
@param DriverEntry Driver to work on.
|
||
|
|
||
|
@retval EFI_SUCCESS Depex read and preprossesed
|
||
|
@retval EFI_PROTOCOL_ERROR The section extraction protocol returned an error
|
||
|
and Depex reading needs to be retried.
|
||
|
@retval Error DEPEX not found.
|
||
|
|
||
|
**/
|
||
|
EFI_STATUS
|
||
|
MmGetDepexSectionAndPreProccess (
|
||
|
IN EFI_MM_DRIVER_ENTRY *DriverEntry
|
||
|
)
|
||
|
{
|
||
|
EFI_STATUS Status;
|
||
|
|
||
|
//
|
||
|
// Data already read
|
||
|
//
|
||
|
if (DriverEntry->Depex == NULL) {
|
||
|
Status = EFI_NOT_FOUND;
|
||
|
} else {
|
||
|
Status = EFI_SUCCESS;
|
||
|
}
|
||
|
if (EFI_ERROR (Status)) {
|
||
|
if (Status == EFI_PROTOCOL_ERROR) {
|
||
|
//
|
||
|
// The section extraction protocol failed so set protocol error flag
|
||
|
//
|
||
|
DriverEntry->DepexProtocolError = TRUE;
|
||
|
} else {
|
||
|
//
|
||
|
// If no Depex assume depend on all architectural protocols
|
||
|
//
|
||
|
DriverEntry->Depex = NULL;
|
||
|
DriverEntry->Dependent = TRUE;
|
||
|
DriverEntry->DepexProtocolError = FALSE;
|
||
|
}
|
||
|
} else {
|
||
|
//
|
||
|
// Set Before and After state information based on Depex
|
||
|
// Driver will be put in Dependent state
|
||
|
//
|
||
|
MmPreProcessDepex (DriverEntry);
|
||
|
DriverEntry->DepexProtocolError = FALSE;
|
||
|
}
|
||
|
|
||
|
return Status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
This is the main Dispatcher for MM and it exits when there are no more
|
||
|
drivers to run. Drain the mScheduledQueue and load and start a PE
|
||
|
image for each driver. Search the mDiscoveredList to see if any driver can
|
||
|
be placed on the mScheduledQueue. If no drivers are placed on the
|
||
|
mScheduledQueue exit the function.
|
||
|
|
||
|
@retval EFI_SUCCESS All of the MM Drivers that could be dispatched
|
||
|
have been run and the MM Entry Point has been
|
||
|
registered.
|
||
|
@retval EFI_NOT_READY The MM Driver that registered the MM Entry Point
|
||
|
was just dispatched.
|
||
|
@retval EFI_NOT_FOUND There are no MM Drivers available to be dispatched.
|
||
|
@retval EFI_ALREADY_STARTED The MM Dispatcher is already running
|
||
|
|
||
|
**/
|
||
|
EFI_STATUS
|
||
|
MmDispatcher (
|
||
|
VOID
|
||
|
)
|
||
|
{
|
||
|
EFI_STATUS Status;
|
||
|
LIST_ENTRY *Link;
|
||
|
EFI_MM_DRIVER_ENTRY *DriverEntry;
|
||
|
BOOLEAN ReadyToRun;
|
||
|
BOOLEAN PreviousMmEntryPointRegistered;
|
||
|
|
||
|
DEBUG ((DEBUG_INFO, "MmDispatcher\n"));
|
||
|
|
||
|
if (!gRequestDispatch) {
|
||
|
DEBUG ((DEBUG_INFO, " !gRequestDispatch\n"));
|
||
|
return EFI_NOT_FOUND;
|
||
|
}
|
||
|
|
||
|
if (gDispatcherRunning) {
|
||
|
DEBUG ((DEBUG_INFO, " gDispatcherRunning\n"));
|
||
|
//
|
||
|
// If the dispatcher is running don't let it be restarted.
|
||
|
//
|
||
|
return EFI_ALREADY_STARTED;
|
||
|
}
|
||
|
|
||
|
gDispatcherRunning = TRUE;
|
||
|
|
||
|
do {
|
||
|
//
|
||
|
// Drain the Scheduled Queue
|
||
|
//
|
||
|
DEBUG ((DEBUG_INFO, " Drain the Scheduled Queue\n"));
|
||
|
while (!IsListEmpty (&mScheduledQueue)) {
|
||
|
DriverEntry = CR (
|
||
|
mScheduledQueue.ForwardLink,
|
||
|
EFI_MM_DRIVER_ENTRY,
|
||
|
ScheduledLink,
|
||
|
EFI_MM_DRIVER_ENTRY_SIGNATURE
|
||
|
);
|
||
|
DEBUG ((DEBUG_INFO, " DriverEntry (Scheduled) - %g\n", &DriverEntry->FileName));
|
||
|
|
||
|
//
|
||
|
// Load the MM Driver image into memory. If the Driver was transitioned from
|
||
|
// Untrused to Scheduled it would have already been loaded so we may need to
|
||
|
// skip the LoadImage
|
||
|
//
|
||
|
if (DriverEntry->ImageHandle == NULL) {
|
||
|
Status = MmLoadImage (DriverEntry);
|
||
|
|
||
|
//
|
||
|
// Update the driver state to reflect that it's been loaded
|
||
|
//
|
||
|
if (EFI_ERROR (Status)) {
|
||
|
//
|
||
|
// The MM Driver could not be loaded, and do not attempt to load or start it again.
|
||
|
// Take driver from Scheduled to Initialized.
|
||
|
//
|
||
|
DriverEntry->Initialized = TRUE;
|
||
|
DriverEntry->Scheduled = FALSE;
|
||
|
RemoveEntryList (&DriverEntry->ScheduledLink);
|
||
|
|
||
|
//
|
||
|
// If it's an error don't try the StartImage
|
||
|
//
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
DriverEntry->Scheduled = FALSE;
|
||
|
DriverEntry->Initialized = TRUE;
|
||
|
RemoveEntryList (&DriverEntry->ScheduledLink);
|
||
|
|
||
|
//
|
||
|
// Cache state of MmEntryPointRegistered before calling entry point
|
||
|
//
|
||
|
PreviousMmEntryPointRegistered = gMmCorePrivate->MmEntryPointRegistered;
|
||
|
|
||
|
//
|
||
|
// For each MM driver, pass NULL as ImageHandle
|
||
|
//
|
||
|
if (mEfiSystemTable == NULL) {
|
||
|
DEBUG ((DEBUG_INFO, "StartImage - 0x%x (Standalone Mode)\n", DriverEntry->ImageEntryPoint));
|
||
|
Status = ((MM_IMAGE_ENTRY_POINT)(UINTN)DriverEntry->ImageEntryPoint) (DriverEntry->ImageHandle, &gMmCoreMmst);
|
||
|
} else {
|
||
|
DEBUG ((DEBUG_INFO, "StartImage - 0x%x (Tradition Mode)\n", DriverEntry->ImageEntryPoint));
|
||
|
Status = ((EFI_IMAGE_ENTRY_POINT)(UINTN)DriverEntry->ImageEntryPoint) (
|
||
|
DriverEntry->ImageHandle,
|
||
|
mEfiSystemTable
|
||
|
);
|
||
|
}
|
||
|
if (EFI_ERROR(Status)) {
|
||
|
DEBUG ((DEBUG_INFO, "StartImage Status - %r\n", Status));
|
||
|
MmFreePages(DriverEntry->ImageBuffer, DriverEntry->NumberOfPage);
|
||
|
}
|
||
|
|
||
|
if (!PreviousMmEntryPointRegistered && gMmCorePrivate->MmEntryPointRegistered) {
|
||
|
//
|
||
|
// Return immediately if the MM Entry Point was registered by the MM
|
||
|
// Driver that was just dispatched. The MM IPL will reinvoke the MM
|
||
|
// Core Dispatcher. This is required so MM Mode may be enabled as soon
|
||
|
// as all the dependent MM Drivers for MM Mode have been dispatched.
|
||
|
// Once the MM Entry Point has been registered, then MM Mode will be
|
||
|
// used.
|
||
|
//
|
||
|
gRequestDispatch = TRUE;
|
||
|
gDispatcherRunning = FALSE;
|
||
|
return EFI_NOT_READY;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Search DriverList for items to place on Scheduled Queue
|
||
|
//
|
||
|
DEBUG ((DEBUG_INFO, " Search DriverList for items to place on Scheduled Queue\n"));
|
||
|
ReadyToRun = FALSE;
|
||
|
for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
|
||
|
DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
|
||
|
DEBUG ((DEBUG_INFO, " DriverEntry (Discovered) - %g\n", &DriverEntry->FileName));
|
||
|
|
||
|
if (DriverEntry->DepexProtocolError) {
|
||
|
//
|
||
|
// If Section Extraction Protocol did not let the Depex be read before retry the read
|
||
|
//
|
||
|
Status = MmGetDepexSectionAndPreProccess (DriverEntry);
|
||
|
}
|
||
|
|
||
|
if (DriverEntry->Dependent) {
|
||
|
if (MmIsSchedulable (DriverEntry)) {
|
||
|
MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
|
||
|
ReadyToRun = TRUE;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} while (ReadyToRun);
|
||
|
|
||
|
//
|
||
|
// If there is no more MM driver to dispatch, stop the dispatch request
|
||
|
//
|
||
|
DEBUG ((DEBUG_INFO, " no more MM driver to dispatch, stop the dispatch request\n"));
|
||
|
gRequestDispatch = FALSE;
|
||
|
for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
|
||
|
DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
|
||
|
DEBUG ((DEBUG_INFO, " DriverEntry (Discovered) - %g\n", &DriverEntry->FileName));
|
||
|
|
||
|
if (!DriverEntry->Initialized) {
|
||
|
//
|
||
|
// We have MM driver pending to dispatch
|
||
|
//
|
||
|
gRequestDispatch = TRUE;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
gDispatcherRunning = FALSE;
|
||
|
|
||
|
return EFI_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Insert InsertedDriverEntry onto the mScheduledQueue. To do this you
|
||
|
must add any driver with a before dependency on InsertedDriverEntry first.
|
||
|
You do this by recursively calling this routine. After all the Befores are
|
||
|
processed you can add InsertedDriverEntry to the mScheduledQueue.
|
||
|
Then you can add any driver with an After dependency on InsertedDriverEntry
|
||
|
by recursively calling this routine.
|
||
|
|
||
|
@param InsertedDriverEntry The driver to insert on the ScheduledLink Queue
|
||
|
|
||
|
**/
|
||
|
VOID
|
||
|
MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (
|
||
|
IN EFI_MM_DRIVER_ENTRY *InsertedDriverEntry
|
||
|
)
|
||
|
{
|
||
|
LIST_ENTRY *Link;
|
||
|
EFI_MM_DRIVER_ENTRY *DriverEntry;
|
||
|
|
||
|
//
|
||
|
// Process Before Dependency
|
||
|
//
|
||
|
for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
|
||
|
DriverEntry = CR(Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
|
||
|
if (DriverEntry->Before && DriverEntry->Dependent && DriverEntry != InsertedDriverEntry) {
|
||
|
DEBUG ((DEBUG_DISPATCH, "Evaluate MM DEPEX for FFS(%g)\n", &DriverEntry->FileName));
|
||
|
DEBUG ((DEBUG_DISPATCH, " BEFORE FFS(%g) = ", &DriverEntry->BeforeAfterGuid));
|
||
|
if (CompareGuid (&InsertedDriverEntry->FileName, &DriverEntry->BeforeAfterGuid)) {
|
||
|
//
|
||
|
// Recursively process BEFORE
|
||
|
//
|
||
|
DEBUG ((DEBUG_DISPATCH, "TRUE\n END\n RESULT = TRUE\n"));
|
||
|
MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
|
||
|
} else {
|
||
|
DEBUG ((DEBUG_DISPATCH, "FALSE\n END\n RESULT = FALSE\n"));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Convert driver from Dependent to Scheduled state
|
||
|
//
|
||
|
|
||
|
InsertedDriverEntry->Dependent = FALSE;
|
||
|
InsertedDriverEntry->Scheduled = TRUE;
|
||
|
InsertTailList (&mScheduledQueue, &InsertedDriverEntry->ScheduledLink);
|
||
|
|
||
|
|
||
|
//
|
||
|
// Process After Dependency
|
||
|
//
|
||
|
for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
|
||
|
DriverEntry = CR(Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
|
||
|
if (DriverEntry->After && DriverEntry->Dependent && DriverEntry != InsertedDriverEntry) {
|
||
|
DEBUG ((DEBUG_DISPATCH, "Evaluate MM DEPEX for FFS(%g)\n", &DriverEntry->FileName));
|
||
|
DEBUG ((DEBUG_DISPATCH, " AFTER FFS(%g) = ", &DriverEntry->BeforeAfterGuid));
|
||
|
if (CompareGuid (&InsertedDriverEntry->FileName, &DriverEntry->BeforeAfterGuid)) {
|
||
|
//
|
||
|
// Recursively process AFTER
|
||
|
//
|
||
|
DEBUG ((DEBUG_DISPATCH, "TRUE\n END\n RESULT = TRUE\n"));
|
||
|
MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
|
||
|
} else {
|
||
|
DEBUG ((DEBUG_DISPATCH, "FALSE\n END\n RESULT = FALSE\n"));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Return TRUE if the Fv has been processed, FALSE if not.
|
||
|
|
||
|
@param FvHandle The handle of a FV that's being tested
|
||
|
|
||
|
@retval TRUE Fv protocol on FvHandle has been processed
|
||
|
@retval FALSE Fv protocol on FvHandle has not yet been
|
||
|
processed
|
||
|
|
||
|
**/
|
||
|
BOOLEAN
|
||
|
FvHasBeenProcessed (
|
||
|
IN EFI_HANDLE FvHandle
|
||
|
)
|
||
|
{
|
||
|
LIST_ENTRY *Link;
|
||
|
KNOWN_HANDLE *KnownHandle;
|
||
|
|
||
|
for (Link = mFvHandleList.ForwardLink; Link != &mFvHandleList; Link = Link->ForwardLink) {
|
||
|
KnownHandle = CR (Link, KNOWN_HANDLE, Link, KNOWN_HANDLE_SIGNATURE);
|
||
|
if (KnownHandle->Handle == FvHandle) {
|
||
|
return TRUE;
|
||
|
}
|
||
|
}
|
||
|
return FALSE;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Remember that Fv protocol on FvHandle has had it's drivers placed on the
|
||
|
mDiscoveredList. This fucntion adds entries on the mFvHandleList. Items are
|
||
|
never removed/freed from the mFvHandleList.
|
||
|
|
||
|
@param FvHandle The handle of a FV that has been processed
|
||
|
|
||
|
**/
|
||
|
VOID
|
||
|
FvIsBeingProcesssed (
|
||
|
IN EFI_HANDLE FvHandle
|
||
|
)
|
||
|
{
|
||
|
KNOWN_HANDLE *KnownHandle;
|
||
|
|
||
|
DEBUG ((DEBUG_INFO, "FvIsBeingProcesssed - 0x%08x\n", FvHandle));
|
||
|
|
||
|
KnownHandle = AllocatePool (sizeof (KNOWN_HANDLE));
|
||
|
ASSERT (KnownHandle != NULL);
|
||
|
|
||
|
KnownHandle->Signature = KNOWN_HANDLE_SIGNATURE;
|
||
|
KnownHandle->Handle = FvHandle;
|
||
|
InsertTailList (&mFvHandleList, &KnownHandle->Link);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Add an entry to the mDiscoveredList. Allocate memory to store the DriverEntry,
|
||
|
and initilize any state variables. Read the Depex from the FV and store it
|
||
|
in DriverEntry. Pre-process the Depex to set the Before and After state.
|
||
|
The Discovered list is never free'ed and contains booleans that represent the
|
||
|
other possible MM driver states.
|
||
|
|
||
|
@param Fv Fv protocol, needed to read Depex info out of
|
||
|
FLASH.
|
||
|
@param FvHandle Handle for Fv, needed in the
|
||
|
EFI_MM_DRIVER_ENTRY so that the PE image can be
|
||
|
read out of the FV at a later time.
|
||
|
@param DriverName Name of driver to add to mDiscoveredList.
|
||
|
|
||
|
@retval EFI_SUCCESS If driver was added to the mDiscoveredList.
|
||
|
@retval EFI_ALREADY_STARTED The driver has already been started. Only one
|
||
|
DriverName may be active in the system at any one
|
||
|
time.
|
||
|
|
||
|
**/
|
||
|
EFI_STATUS
|
||
|
MmAddToDriverList (
|
||
|
IN EFI_HANDLE FvHandle,
|
||
|
IN VOID *Pe32Data,
|
||
|
IN UINTN Pe32DataSize,
|
||
|
IN VOID *Depex,
|
||
|
IN UINTN DepexSize,
|
||
|
IN EFI_GUID *DriverName
|
||
|
)
|
||
|
{
|
||
|
EFI_MM_DRIVER_ENTRY *DriverEntry;
|
||
|
|
||
|
DEBUG ((DEBUG_INFO, "MmAddToDriverList - %g (0x%08x)\n", DriverName, Pe32Data));
|
||
|
|
||
|
//
|
||
|
// Create the Driver Entry for the list. ZeroPool initializes lots of variables to
|
||
|
// NULL or FALSE.
|
||
|
//
|
||
|
DriverEntry = AllocateZeroPool (sizeof (EFI_MM_DRIVER_ENTRY));
|
||
|
ASSERT (DriverEntry != NULL);
|
||
|
|
||
|
DriverEntry->Signature = EFI_MM_DRIVER_ENTRY_SIGNATURE;
|
||
|
CopyGuid (&DriverEntry->FileName, DriverName);
|
||
|
DriverEntry->FvHandle = FvHandle;
|
||
|
DriverEntry->Pe32Data = Pe32Data;
|
||
|
DriverEntry->Pe32DataSize = Pe32DataSize;
|
||
|
DriverEntry->Depex = Depex;
|
||
|
DriverEntry->DepexSize = DepexSize;
|
||
|
|
||
|
MmGetDepexSectionAndPreProccess (DriverEntry);
|
||
|
|
||
|
InsertTailList (&mDiscoveredList, &DriverEntry->Link);
|
||
|
gRequestDispatch = TRUE;
|
||
|
|
||
|
return EFI_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
This function is the main entry point for an MM handler dispatch
|
||
|
or communicate-based callback.
|
||
|
|
||
|
Event notification that is fired every time a FV dispatch protocol is added.
|
||
|
More than one protocol may have been added when this event is fired, so you
|
||
|
must loop on MmLocateHandle () to see how many protocols were added and
|
||
|
do the following to each FV:
|
||
|
If the Fv has already been processed, skip it. If the Fv has not been
|
||
|
processed then mark it as being processed, as we are about to process it.
|
||
|
Read the Fv and add any driver in the Fv to the mDiscoveredList.The
|
||
|
mDiscoveredList is never free'ed and contains variables that define
|
||
|
the other states the MM driver transitions to..
|
||
|
While you are at it read the A Priori file into memory.
|
||
|
Place drivers in the A Priori list onto the mScheduledQueue.
|
||
|
|
||
|
@param DispatchHandle The unique handle assigned to this handler by SmiHandlerRegister().
|
||
|
@param Context Points to an optional handler context which was specified when the handler was registered.
|
||
|
@param CommBuffer A pointer to a collection of data in memory that will
|
||
|
be conveyed from a non-MM environment into an MM environment.
|
||
|
@param CommBufferSize The size of the CommBuffer.
|
||
|
|
||
|
@return Status Code
|
||
|
|
||
|
**/
|
||
|
EFI_STATUS
|
||
|
EFIAPI
|
||
|
MmDriverDispatchHandler (
|
||
|
IN EFI_HANDLE DispatchHandle,
|
||
|
IN CONST VOID *Context, OPTIONAL
|
||
|
IN OUT VOID *CommBuffer, OPTIONAL
|
||
|
IN OUT UINTN *CommBufferSize OPTIONAL
|
||
|
)
|
||
|
{
|
||
|
EFI_STATUS Status;
|
||
|
|
||
|
DEBUG ((DEBUG_INFO, "MmDriverDispatchHandler\n"));
|
||
|
|
||
|
//
|
||
|
// Execute the MM Dispatcher on any newly discovered FVs and previously
|
||
|
// discovered MM drivers that have been discovered but not dispatched.
|
||
|
//
|
||
|
Status = MmDispatcher ();
|
||
|
|
||
|
//
|
||
|
// Check to see if CommBuffer and CommBufferSize are valid
|
||
|
//
|
||
|
if (CommBuffer != NULL && CommBufferSize != NULL) {
|
||
|
if (*CommBufferSize > 0) {
|
||
|
if (Status == EFI_NOT_READY) {
|
||
|
//
|
||
|
// If a the MM Core Entry Point was just registered, then set flag to
|
||
|
// request the MM Dispatcher to be restarted.
|
||
|
//
|
||
|
*(UINT8 *)CommBuffer = COMM_BUFFER_MM_DISPATCH_RESTART;
|
||
|
} else if (!EFI_ERROR (Status)) {
|
||
|
//
|
||
|
// Set the flag to show that the MM Dispatcher executed without errors
|
||
|
//
|
||
|
*(UINT8 *)CommBuffer = COMM_BUFFER_MM_DISPATCH_SUCCESS;
|
||
|
} else {
|
||
|
//
|
||
|
// Set the flag to show that the MM Dispatcher encountered an error
|
||
|
//
|
||
|
*(UINT8 *)CommBuffer = COMM_BUFFER_MM_DISPATCH_ERROR;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return EFI_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
This function is the main entry point for an MM handler dispatch
|
||
|
or communicate-based callback.
|
||
|
|
||
|
@param DispatchHandle The unique handle assigned to this handler by SmiHandlerRegister().
|
||
|
@param Context Points to an optional handler context which was specified when the handler was registered.
|
||
|
@param CommBuffer A pointer to a collection of data in memory that will
|
||
|
be conveyed from a non-MM environment into an MM environment.
|
||
|
@param CommBufferSize The size of the CommBuffer.
|
||
|
|
||
|
@return Status Code
|
||
|
|
||
|
**/
|
||
|
EFI_STATUS
|
||
|
EFIAPI
|
||
|
MmFvDispatchHandler (
|
||
|
IN EFI_HANDLE DispatchHandle,
|
||
|
IN CONST VOID *Context, OPTIONAL
|
||
|
IN OUT VOID *CommBuffer, OPTIONAL
|
||
|
IN OUT UINTN *CommBufferSize OPTIONAL
|
||
|
)
|
||
|
{
|
||
|
EFI_STATUS Status;
|
||
|
EFI_MM_COMMUNICATE_FV_DISPATCH_DATA *CommunicationFvDispatchData;
|
||
|
EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
|
||
|
|
||
|
DEBUG ((DEBUG_INFO, "MmFvDispatchHandler\n"));
|
||
|
|
||
|
CommunicationFvDispatchData = CommBuffer;
|
||
|
|
||
|
DEBUG ((DEBUG_INFO, " Dispatch - 0x%016lx - 0x%016lx\n", CommunicationFvDispatchData->Address,
|
||
|
CommunicationFvDispatchData->Size));
|
||
|
|
||
|
FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)CommunicationFvDispatchData->Address;
|
||
|
|
||
|
MmCoreFfsFindMmDriver (FwVolHeader);
|
||
|
|
||
|
//
|
||
|
// Execute the MM Dispatcher on any newly discovered FVs and previously
|
||
|
// discovered MM drivers that have been discovered but not dispatched.
|
||
|
//
|
||
|
Status = MmDispatcher ();
|
||
|
|
||
|
return Status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Traverse the discovered list for any drivers that were discovered but not loaded
|
||
|
because the dependency experessions evaluated to false.
|
||
|
|
||
|
**/
|
||
|
VOID
|
||
|
MmDisplayDiscoveredNotDispatched (
|
||
|
VOID
|
||
|
)
|
||
|
{
|
||
|
LIST_ENTRY *Link;
|
||
|
EFI_MM_DRIVER_ENTRY *DriverEntry;
|
||
|
|
||
|
for (Link = mDiscoveredList.ForwardLink;Link !=&mDiscoveredList; Link = Link->ForwardLink) {
|
||
|
DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
|
||
|
if (DriverEntry->Dependent) {
|
||
|
DEBUG ((DEBUG_LOAD, "MM Driver %g was discovered but not loaded!!\n", &DriverEntry->FileName));
|
||
|
}
|
||
|
}
|
||
|
}
|