mirror of https://github.com/acidanthera/audk.git
1860 lines
62 KiB
C
1860 lines
62 KiB
C
|
/** @file
|
||
|
Construct MP Services Protocol.
|
||
|
|
||
|
The MP Services Protocol provides a generalized way of performing following tasks:
|
||
|
- Retrieving information of multi-processor environment and MP-related status of
|
||
|
specific processors.
|
||
|
- Dispatching user-provided function to APs.
|
||
|
- Maintain MP-related processor status.
|
||
|
|
||
|
The MP Services Protocol must be produced on any system with more than one logical
|
||
|
processor.
|
||
|
|
||
|
The Protocol is available only during boot time.
|
||
|
|
||
|
MP Services Protocol is hardware-independent. Most of the logic of this protocol
|
||
|
is architecturally neutral. It abstracts the multi-processor environment and
|
||
|
status of processors, and provides interfaces to retrieve information, maintain,
|
||
|
and dispatch.
|
||
|
|
||
|
MP Services Protocol may be consumed by ACPI module. The ACPI module may use this
|
||
|
protocol to retrieve data that are needed for an MP platform and report them to OS.
|
||
|
MP Services Protocol may also be used to program and configure processors, such
|
||
|
as MTRR synchronization for memory space attributes setting in DXE Services.
|
||
|
MP Services Protocol may be used by non-CPU DXE drivers to speed up platform boot
|
||
|
by taking advantage of the processing capabilities of the APs, for example, using
|
||
|
APs to help test system memory in parallel with other device initialization.
|
||
|
Diagnostics applications may also use this protocol for multi-processor.
|
||
|
|
||
|
Copyright (c) 2022, Qualcomm Innovation Center, Inc. All rights reserved.<BR>
|
||
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
||
|
|
||
|
**/
|
||
|
|
||
|
#include <PiDxe.h>
|
||
|
|
||
|
#include <Library/ArmLib.h>
|
||
|
#include <Library/ArmMmuLib.h>
|
||
|
#include <Library/ArmPlatformLib.h>
|
||
|
#include <Library/ArmSmcLib.h>
|
||
|
#include <Library/BaseMemoryLib.h>
|
||
|
#include <Library/CacheMaintenanceLib.h>
|
||
|
#include <Library/CpuExceptionHandlerLib.h>
|
||
|
#include <Library/DebugLib.h>
|
||
|
#include <Library/HobLib.h>
|
||
|
#include <Library/MemoryAllocationLib.h>
|
||
|
#include <Library/UefiBootServicesTableLib.h>
|
||
|
#include <Library/UefiLib.h>
|
||
|
#include <IndustryStandard/ArmStdSmc.h>
|
||
|
#include <Ppi/ArmMpCoreInfo.h>
|
||
|
#include <Protocol/LoadedImage.h>
|
||
|
|
||
|
#include "MpServicesInternal.h"
|
||
|
|
||
|
#define POLL_INTERVAL_US 50000
|
||
|
|
||
|
STATIC CPU_MP_DATA mCpuMpData;
|
||
|
STATIC BOOLEAN mNonBlockingModeAllowed;
|
||
|
UINT64 *gApStacksBase;
|
||
|
UINT64 *gProcessorIDs;
|
||
|
CONST UINT64 gApStackSize = AP_STACK_SIZE;
|
||
|
VOID *gTtbr0;
|
||
|
UINTN gTcr;
|
||
|
UINTN gMair;
|
||
|
|
||
|
STATIC
|
||
|
BOOLEAN
|
||
|
IsCurrentProcessorBSP (
|
||
|
VOID
|
||
|
);
|
||
|
|
||
|
/** Turns on the specified core using PSCI and executes the user-supplied
|
||
|
function that's been configured via a previous call to SetApProcedure.
|
||
|
|
||
|
@param ProcessorIndex The index of the core to turn on.
|
||
|
|
||
|
@retval EFI_SUCCESS Success.
|
||
|
@retval EFI_DEVICE_ERROR The processor could not be turned on.
|
||
|
|
||
|
**/
|
||
|
STATIC
|
||
|
EFI_STATUS
|
||
|
EFIAPI
|
||
|
DispatchCpu (
|
||
|
IN UINTN ProcessorIndex
|
||
|
)
|
||
|
{
|
||
|
ARM_SMC_ARGS Args;
|
||
|
EFI_STATUS Status;
|
||
|
|
||
|
Status = EFI_SUCCESS;
|
||
|
|
||
|
mCpuMpData.CpuData[ProcessorIndex].State = CpuStateBusy;
|
||
|
|
||
|
/* Turn the AP on */
|
||
|
if (sizeof (Args.Arg0) == sizeof (UINT32)) {
|
||
|
Args.Arg0 = ARM_SMC_ID_PSCI_CPU_ON_AARCH32;
|
||
|
} else {
|
||
|
Args.Arg0 = ARM_SMC_ID_PSCI_CPU_ON_AARCH64;
|
||
|
}
|
||
|
|
||
|
Args.Arg1 = gProcessorIDs[ProcessorIndex];
|
||
|
Args.Arg2 = (UINTN)ApEntryPoint;
|
||
|
|
||
|
ArmCallSmc (&Args);
|
||
|
|
||
|
if (Args.Arg0 != ARM_SMC_PSCI_RET_SUCCESS) {
|
||
|
DEBUG ((DEBUG_ERROR, "PSCI_CPU_ON call failed: %d\n", Args.Arg0));
|
||
|
Status = EFI_DEVICE_ERROR;
|
||
|
}
|
||
|
|
||
|
return Status;
|
||
|
}
|
||
|
|
||
|
/** Returns whether the specified processor is the BSP.
|
||
|
|
||
|
@param[in] ProcessorIndex The index the processor to check.
|
||
|
|
||
|
@return TRUE if the processor is the BSP, FALSE otherwise.
|
||
|
**/
|
||
|
STATIC
|
||
|
BOOLEAN
|
||
|
IsProcessorBSP (
|
||
|
UINTN ProcessorIndex
|
||
|
)
|
||
|
{
|
||
|
EFI_PROCESSOR_INFORMATION *CpuInfo;
|
||
|
|
||
|
CpuInfo = &mCpuMpData.CpuData[ProcessorIndex].Info;
|
||
|
|
||
|
return (CpuInfo->StatusFlag & PROCESSOR_AS_BSP_BIT) != 0;
|
||
|
}
|
||
|
|
||
|
/** Get the Application Processors state.
|
||
|
|
||
|
@param[in] CpuData The pointer to CPU_AP_DATA of specified AP.
|
||
|
|
||
|
@return The AP status.
|
||
|
**/
|
||
|
CPU_STATE
|
||
|
GetApState (
|
||
|
IN CPU_AP_DATA *CpuData
|
||
|
)
|
||
|
{
|
||
|
return CpuData->State;
|
||
|
}
|
||
|
|
||
|
/** Configures the processor context with the user-supplied procedure and
|
||
|
argument.
|
||
|
|
||
|
@param CpuData The processor context.
|
||
|
@param Procedure The user-supplied procedure.
|
||
|
@param ProcedureArgument The user-supplied procedure argument.
|
||
|
|
||
|
**/
|
||
|
STATIC
|
||
|
VOID
|
||
|
SetApProcedure (
|
||
|
IN CPU_AP_DATA *CpuData,
|
||
|
IN EFI_AP_PROCEDURE Procedure,
|
||
|
IN VOID *ProcedureArgument
|
||
|
)
|
||
|
{
|
||
|
ASSERT (CpuData != NULL);
|
||
|
ASSERT (Procedure != NULL);
|
||
|
|
||
|
CpuData->Parameter = ProcedureArgument;
|
||
|
CpuData->Procedure = Procedure;
|
||
|
}
|
||
|
|
||
|
/** Returns the index of the next processor that is blocked.
|
||
|
|
||
|
@param[out] NextNumber The index of the next blocked processor.
|
||
|
|
||
|
@retval EFI_SUCCESS Successfully found the next blocked processor.
|
||
|
@retval EFI_NOT_FOUND There are no blocked processors.
|
||
|
|
||
|
**/
|
||
|
STATIC
|
||
|
EFI_STATUS
|
||
|
GetNextBlockedNumber (
|
||
|
OUT UINTN *NextNumber
|
||
|
)
|
||
|
{
|
||
|
UINTN Index;
|
||
|
CPU_STATE State;
|
||
|
CPU_AP_DATA *CpuData;
|
||
|
|
||
|
for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) {
|
||
|
CpuData = &mCpuMpData.CpuData[Index];
|
||
|
if (IsProcessorBSP (Index)) {
|
||
|
// Skip BSP
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
State = CpuData->State;
|
||
|
|
||
|
if (State == CpuStateBlocked) {
|
||
|
*NextNumber = Index;
|
||
|
return EFI_SUCCESS;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return EFI_NOT_FOUND;
|
||
|
}
|
||
|
|
||
|
/** Stalls the BSP for the minimum of POLL_INTERVAL_US and Timeout.
|
||
|
|
||
|
@param[in] Timeout The time limit in microseconds remaining for
|
||
|
APs to return from Procedure.
|
||
|
|
||
|
@retval StallTime Time of execution stall.
|
||
|
**/
|
||
|
STATIC
|
||
|
UINTN
|
||
|
CalculateAndStallInterval (
|
||
|
IN UINTN Timeout
|
||
|
)
|
||
|
{
|
||
|
UINTN StallTime;
|
||
|
|
||
|
if ((Timeout < POLL_INTERVAL_US) && (Timeout != 0)) {
|
||
|
StallTime = Timeout;
|
||
|
} else {
|
||
|
StallTime = POLL_INTERVAL_US;
|
||
|
}
|
||
|
|
||
|
gBS->Stall (StallTime);
|
||
|
|
||
|
return StallTime;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
This service retrieves the number of logical processor in the platform
|
||
|
and the number of those logical processors that are enabled on this boot.
|
||
|
This service may only be called from the BSP.
|
||
|
|
||
|
This function is used to retrieve the following information:
|
||
|
- The number of logical processors that are present in the system.
|
||
|
- The number of enabled logical processors in the system at the instant
|
||
|
this call is made.
|
||
|
|
||
|
Because MP Service Protocol provides services to enable and disable processors
|
||
|
dynamically, the number of enabled logical processors may vary during the
|
||
|
course of a boot session.
|
||
|
|
||
|
If this service is called from an AP, then EFI_DEVICE_ERROR is returned.
|
||
|
If NumberOfProcessors or NumberOfEnabledProcessors is NULL, then
|
||
|
EFI_INVALID_PARAMETER is returned. Otherwise, the total number of processors
|
||
|
is returned in NumberOfProcessors, the number of currently enabled processor
|
||
|
is returned in NumberOfEnabledProcessors, and EFI_SUCCESS is returned.
|
||
|
|
||
|
@param[in] This A pointer to the
|
||
|
EFI_MP_SERVICES_PROTOCOL instance.
|
||
|
@param[out] NumberOfProcessors Pointer to the total number of logical
|
||
|
processors in the system, including
|
||
|
the BSP and disabled APs.
|
||
|
@param[out] NumberOfEnabledProcessors Pointer to the number of enabled
|
||
|
logical processors that exist in the
|
||
|
system, including the BSP.
|
||
|
|
||
|
@retval EFI_SUCCESS The number of logical processors and enabled
|
||
|
logical processors was retrieved.
|
||
|
@retval EFI_DEVICE_ERROR The calling processor is an AP.
|
||
|
@retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL.
|
||
|
@retval EFI_INVALID_PARAMETER NumberOfEnabledProcessors is NULL.
|
||
|
|
||
|
**/
|
||
|
STATIC
|
||
|
EFI_STATUS
|
||
|
EFIAPI
|
||
|
GetNumberOfProcessors (
|
||
|
IN EFI_MP_SERVICES_PROTOCOL *This,
|
||
|
OUT UINTN *NumberOfProcessors,
|
||
|
OUT UINTN *NumberOfEnabledProcessors
|
||
|
)
|
||
|
{
|
||
|
if ((NumberOfProcessors == NULL) || (NumberOfEnabledProcessors == NULL)) {
|
||
|
return EFI_INVALID_PARAMETER;
|
||
|
}
|
||
|
|
||
|
if (!IsCurrentProcessorBSP ()) {
|
||
|
return EFI_DEVICE_ERROR;
|
||
|
}
|
||
|
|
||
|
*NumberOfProcessors = mCpuMpData.NumberOfProcessors;
|
||
|
*NumberOfEnabledProcessors = mCpuMpData.NumberOfEnabledProcessors;
|
||
|
return EFI_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Gets detailed MP-related information on the requested processor at the
|
||
|
instant this call is made. This service may only be called from the BSP.
|
||
|
|
||
|
This service retrieves detailed MP-related information about any processor
|
||
|
on the platform. Note the following:
|
||
|
- The processor information may change during the course of a boot session.
|
||
|
- The information presented here is entirely MP related.
|
||
|
|
||
|
Information regarding the number of caches and their sizes, frequency of
|
||
|
operation, slot numbers is all considered platform-related information and is
|
||
|
not provided by this service.
|
||
|
|
||
|
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL
|
||
|
instance.
|
||
|
@param[in] ProcessorIndex The index of the processor.
|
||
|
@param[out] ProcessorInfoBuffer A pointer to the buffer where information
|
||
|
for the requested processor is deposited.
|
||
|
|
||
|
@retval EFI_SUCCESS Processor information was returned.
|
||
|
@retval EFI_DEVICE_ERROR The calling processor is an AP.
|
||
|
@retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.
|
||
|
@retval EFI_NOT_FOUND The processor with the handle specified by
|
||
|
ProcessorNumber does not exist in the platform.
|
||
|
|
||
|
**/
|
||
|
STATIC
|
||
|
EFI_STATUS
|
||
|
EFIAPI
|
||
|
GetProcessorInfo (
|
||
|
IN EFI_MP_SERVICES_PROTOCOL *This,
|
||
|
IN UINTN ProcessorIndex,
|
||
|
OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer
|
||
|
)
|
||
|
{
|
||
|
if (ProcessorInfoBuffer == NULL) {
|
||
|
return EFI_INVALID_PARAMETER;
|
||
|
}
|
||
|
|
||
|
if (!IsCurrentProcessorBSP ()) {
|
||
|
return EFI_DEVICE_ERROR;
|
||
|
}
|
||
|
|
||
|
ProcessorIndex &= ~CPU_V2_EXTENDED_TOPOLOGY;
|
||
|
|
||
|
if (ProcessorIndex >= mCpuMpData.NumberOfProcessors) {
|
||
|
return EFI_NOT_FOUND;
|
||
|
}
|
||
|
|
||
|
CopyMem (
|
||
|
ProcessorInfoBuffer,
|
||
|
&mCpuMpData.CpuData[ProcessorIndex],
|
||
|
sizeof (EFI_PROCESSOR_INFORMATION)
|
||
|
);
|
||
|
return EFI_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
This service executes a caller provided function on all enabled APs. APs can
|
||
|
run either simultaneously or one at a time in sequence. This service supports
|
||
|
both blocking and non-blocking requests. The non-blocking requests use EFI
|
||
|
events so the BSP can detect when the APs have finished. This service may only
|
||
|
be called from the BSP.
|
||
|
|
||
|
This function is used to dispatch all the enabled APs to the function
|
||
|
specified by Procedure. If any enabled AP is busy, then EFI_NOT_READY is
|
||
|
returned immediately and Procedure is not started on any AP.
|
||
|
|
||
|
If SingleThread is TRUE, all the enabled APs execute the function specified by
|
||
|
Procedure one by one, in ascending order of processor handle number.
|
||
|
Otherwise, all the enabled APs execute the function specified by Procedure
|
||
|
simultaneously.
|
||
|
|
||
|
If WaitEvent is NULL, execution is in blocking mode. The BSP waits until all
|
||
|
APs finish or TimeoutInMicroseconds expires. Otherwise, execution is in
|
||
|
non-blocking mode, and the BSP returns from this service without waiting for
|
||
|
APs. If a non-blocking mode is requested after the UEFI Event
|
||
|
EFI_EVENT_GROUP_READY_TO_BOOT is signaled, then EFI_UNSUPPORTED must be
|
||
|
returned.
|
||
|
|
||
|
If the timeout specified by TimeoutInMicroseconds expires before all APs
|
||
|
return from Procedure, then Procedure on the failed APs is terminated.
|
||
|
All enabled APs are always available for further calls to
|
||
|
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and
|
||
|
EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If FailedCpuList is not NULL, its
|
||
|
content points to the list of processor handle numbers in which Procedure was
|
||
|
terminated.
|
||
|
|
||
|
Note: It is the responsibility of the consumer of the
|
||
|
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() to make sure that the nature of the
|
||
|
code that is executed on the BSP and the dispatched APs is well controlled.
|
||
|
The MP Services Protocol does not guarantee that the Procedure function is
|
||
|
MP-safe. Hence, the tasks that can be run in parallel are limited to certain
|
||
|
independent tasks and well-controlled exclusive code. EFI services and
|
||
|
protocols may not be called by APs unless otherwise specified.
|
||
|
|
||
|
In blocking execution mode, BSP waits until all APs finish or
|
||
|
TimeoutInMicroseconds expires.
|
||
|
|
||
|
In non-blocking execution mode, BSP is freed to return to the caller and then
|
||
|
proceed to the next task without having to wait for APs. The following
|
||
|
sequence needs to occur in a non-blocking execution mode:
|
||
|
|
||
|
-# The caller that intends to use this MP Services Protocol in non-blocking
|
||
|
mode creates WaitEvent by calling the EFI CreateEvent() service. The
|
||
|
caller invokes EFI_MP_SERVICES_PROTOCOL.StartupAllAPs(). If the parameter
|
||
|
WaitEvent is not NULL, then StartupAllAPs() executes in non-blocking
|
||
|
mode. It requests the function specified by Procedure to be started on
|
||
|
all the enabled APs, and releases the BSP to continue with other tasks.
|
||
|
-# The caller can use the CheckEvent() and WaitForEvent() services to check
|
||
|
the state of the WaitEvent created in step 1.
|
||
|
-# When the APs complete their task or TimeoutInMicroSecondss expires, the
|
||
|
MP Service signals WaitEvent by calling the EFI SignalEvent() function.
|
||
|
If FailedCpuList is not NULL, its content is available when WaitEvent is
|
||
|
signaled. If all APs returned from Procedure prior to the timeout, then
|
||
|
FailedCpuList is set to NULL. If not all APs return from Procedure before
|
||
|
the timeout, then FailedCpuList is filled in with the list of the failed
|
||
|
APs. The buffer is allocated by MP Service Protocol using AllocatePool().
|
||
|
It is the caller's responsibility to free the buffer with FreePool()
|
||
|
service.
|
||
|
-# This invocation of SignalEvent() function informs the caller that invoked
|
||
|
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() that either all the APs
|
||
|
completed the specified task or a timeout occurred. The contents of
|
||
|
FailedCpuList can be examined to determine which APs did not complete the
|
||
|
specified task prior to the timeout.
|
||
|
|
||
|
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL
|
||
|
instance.
|
||
|
@param[in] Procedure A pointer to the function to be run on
|
||
|
enabled APs of the system. See type
|
||
|
EFI_AP_PROCEDURE.
|
||
|
@param[in] SingleThread If TRUE, then all the enabled APs execute
|
||
|
the function specified by Procedure one by
|
||
|
one, in ascending order of processor
|
||
|
handle number. If FALSE, then all the
|
||
|
enabled APs execute the function specified
|
||
|
by Procedure simultaneously.
|
||
|
@param[in] WaitEvent The event created by the caller with
|
||
|
CreateEvent() service. If it is NULL,
|
||
|
then execute in blocking mode. BSP waits
|
||
|
until all APs finish or
|
||
|
TimeoutInMicroseconds expires. If it's
|
||
|
not NULL, then execute in non-blocking
|
||
|
mode. BSP requests the function specified
|
||
|
by Procedure to be started on all the
|
||
|
enabled APs, and go on executing
|
||
|
immediately. If all return from Procedure,
|
||
|
or TimeoutInMicroseconds expires, this
|
||
|
event is signaled. The BSP can use the
|
||
|
CheckEvent() or WaitForEvent()
|
||
|
services to check the state of event. Type
|
||
|
EFI_EVENT is defined in CreateEvent() in
|
||
|
the Unified Extensible Firmware Interface
|
||
|
Specification.
|
||
|
@param[in] TimeoutInMicroseconds Indicates the time limit in microseconds
|
||
|
for APs to return from Procedure, either
|
||
|
for blocking or non-blocking mode. Zero
|
||
|
means infinity. If the timeout expires
|
||
|
before all APs return from Procedure, then
|
||
|
Procedure on the failed APs is terminated.
|
||
|
All enabled APs are available for next
|
||
|
function assigned by
|
||
|
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
|
||
|
or EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
|
||
|
If the timeout expires in blocking mode,
|
||
|
BSP returns EFI_TIMEOUT. If the timeout
|
||
|
expires in non-blocking mode, WaitEvent
|
||
|
is signaled with SignalEvent().
|
||
|
@param[in] ProcedureArgument The parameter passed into Procedure for
|
||
|
all APs.
|
||
|
@param[out] FailedCpuList If NULL, this parameter is ignored.
|
||
|
Otherwise, if all APs finish successfully,
|
||
|
then its content is set to NULL. If not
|
||
|
all APs finish before timeout expires,
|
||
|
then its content is set to address of the
|
||
|
buffer holding handle numbers of the
|
||
|
failed APs.
|
||
|
The buffer is allocated by MP Service
|
||
|
Protocol, and it's the caller's
|
||
|
responsibility to free the buffer with
|
||
|
FreePool() service.
|
||
|
In blocking mode, it is ready for
|
||
|
consumption when the call returns. In
|
||
|
non-blocking mode, it is ready when
|
||
|
WaitEvent is signaled. The list of failed
|
||
|
CPU is terminated by END_OF_CPU_LIST.
|
||
|
|
||
|
@retval EFI_SUCCESS In blocking mode, all APs have finished before
|
||
|
the timeout expired.
|
||
|
@retval EFI_SUCCESS In non-blocking mode, function has been
|
||
|
dispatched to all enabled APs.
|
||
|
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the
|
||
|
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
|
||
|
signaled.
|
||
|
@retval EFI_DEVICE_ERROR Caller processor is AP.
|
||
|
@retval EFI_NOT_STARTED No enabled APs exist in the system.
|
||
|
@retval EFI_NOT_READY Any enabled APs are busy.
|
||
|
@retval EFI_TIMEOUT In blocking mode, the timeout expired before
|
||
|
all enabled APs have finished.
|
||
|
@retval EFI_INVALID_PARAMETER Procedure is NULL.
|
||
|
|
||
|
**/
|
||
|
STATIC
|
||
|
EFI_STATUS
|
||
|
EFIAPI
|
||
|
StartupAllAPs (
|
||
|
IN EFI_MP_SERVICES_PROTOCOL *This,
|
||
|
IN EFI_AP_PROCEDURE Procedure,
|
||
|
IN BOOLEAN SingleThread,
|
||
|
IN EFI_EVENT WaitEvent OPTIONAL,
|
||
|
IN UINTN TimeoutInMicroseconds,
|
||
|
IN VOID *ProcedureArgument OPTIONAL,
|
||
|
OUT UINTN **FailedCpuList OPTIONAL
|
||
|
)
|
||
|
{
|
||
|
EFI_STATUS Status;
|
||
|
|
||
|
if (!IsCurrentProcessorBSP ()) {
|
||
|
return EFI_DEVICE_ERROR;
|
||
|
}
|
||
|
|
||
|
if ((mCpuMpData.NumberOfProcessors == 1) || (mCpuMpData.NumberOfEnabledProcessors == 1)) {
|
||
|
return EFI_NOT_STARTED;
|
||
|
}
|
||
|
|
||
|
if (Procedure == NULL) {
|
||
|
return EFI_INVALID_PARAMETER;
|
||
|
}
|
||
|
|
||
|
if ((WaitEvent != NULL) && !mNonBlockingModeAllowed) {
|
||
|
return EFI_UNSUPPORTED;
|
||
|
}
|
||
|
|
||
|
if (FailedCpuList != NULL) {
|
||
|
mCpuMpData.FailedList = AllocateZeroPool (
|
||
|
(mCpuMpData.NumberOfProcessors + 1) *
|
||
|
sizeof (UINTN)
|
||
|
);
|
||
|
if (mCpuMpData.FailedList == NULL) {
|
||
|
return EFI_OUT_OF_RESOURCES;
|
||
|
}
|
||
|
|
||
|
SetMemN (
|
||
|
mCpuMpData.FailedList,
|
||
|
(mCpuMpData.NumberOfProcessors + 1) *
|
||
|
sizeof (UINTN),
|
||
|
END_OF_CPU_LIST
|
||
|
);
|
||
|
mCpuMpData.FailedListIndex = 0;
|
||
|
*FailedCpuList = mCpuMpData.FailedList;
|
||
|
}
|
||
|
|
||
|
StartupAllAPsPrepareState (SingleThread);
|
||
|
|
||
|
// If any enabled APs are busy (ignoring the BSP), return EFI_NOT_READY
|
||
|
if (mCpuMpData.StartCount != (mCpuMpData.NumberOfEnabledProcessors - 1)) {
|
||
|
return EFI_NOT_READY;
|
||
|
}
|
||
|
|
||
|
if (WaitEvent != NULL) {
|
||
|
Status = StartupAllAPsWithWaitEvent (
|
||
|
Procedure,
|
||
|
ProcedureArgument,
|
||
|
WaitEvent,
|
||
|
TimeoutInMicroseconds,
|
||
|
SingleThread,
|
||
|
FailedCpuList
|
||
|
);
|
||
|
|
||
|
if (EFI_ERROR (Status) && (FailedCpuList != NULL)) {
|
||
|
if (mCpuMpData.FailedListIndex == 0) {
|
||
|
FreePool (*FailedCpuList);
|
||
|
*FailedCpuList = NULL;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
Status = StartupAllAPsNoWaitEvent (
|
||
|
Procedure,
|
||
|
ProcedureArgument,
|
||
|
TimeoutInMicroseconds,
|
||
|
SingleThread,
|
||
|
FailedCpuList
|
||
|
);
|
||
|
|
||
|
if (FailedCpuList != NULL) {
|
||
|
if (mCpuMpData.FailedListIndex == 0) {
|
||
|
FreePool (*FailedCpuList);
|
||
|
*FailedCpuList = NULL;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
This service lets the caller get one enabled AP to execute a caller-provided
|
||
|
function. The caller can request the BSP to either wait for the completion
|
||
|
of the AP or just proceed with the next task by using the EFI event mechanism.
|
||
|
See EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() for more details on non-blocking
|
||
|
execution support. This service may only be called from the BSP.
|
||
|
|
||
|
This function is used to dispatch one enabled AP to the function specified by
|
||
|
Procedure passing in the argument specified by ProcedureArgument. If WaitEvent
|
||
|
is NULL, execution is in blocking mode. The BSP waits until the AP finishes or
|
||
|
TimeoutInMicroSecondss expires. Otherwise, execution is in non-blocking mode.
|
||
|
BSP proceeds to the next task without waiting for the AP. If a non-blocking mode
|
||
|
is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled,
|
||
|
then EFI_UNSUPPORTED must be returned.
|
||
|
|
||
|
If the timeout specified by TimeoutInMicroseconds expires before the AP returns
|
||
|
from Procedure, then execution of Procedure by the AP is terminated. The AP is
|
||
|
available for subsequent calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and
|
||
|
EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
|
||
|
|
||
|
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL
|
||
|
instance.
|
||
|
@param[in] Procedure A pointer to the function to be run on
|
||
|
enabled APs of the system. See type
|
||
|
EFI_AP_PROCEDURE.
|
||
|
@param[in] ProcessorNumber The handle number of the AP. The range is
|
||
|
from 0 to the total number of logical
|
||
|
processors minus 1. The total number of
|
||
|
logical processors can be retrieved by
|
||
|
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
|
||
|
@param[in] WaitEvent The event created by the caller with CreateEvent()
|
||
|
service. If it is NULL, then execute in
|
||
|
blocking mode. BSP waits until all APs finish
|
||
|
or TimeoutInMicroseconds expires. If it's
|
||
|
not NULL, then execute in non-blocking mode.
|
||
|
BSP requests the function specified by
|
||
|
Procedure to be started on all the enabled
|
||
|
APs, and go on executing immediately. If
|
||
|
all return from Procedure or TimeoutInMicroseconds
|
||
|
expires, this event is signaled. The BSP
|
||
|
can use the CheckEvent() or WaitForEvent()
|
||
|
services to check the state of event. Type
|
||
|
EFI_EVENT is defined in CreateEvent() in
|
||
|
the Unified Extensible Firmware Interface
|
||
|
Specification.
|
||
|
@param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
|
||
|
APs to return from Procedure, either for
|
||
|
blocking or non-blocking mode. Zero means
|
||
|
infinity. If the timeout expires before
|
||
|
all APs return from Procedure, then Procedure
|
||
|
on the failed APs is terminated. All enabled
|
||
|
APs are available for next function assigned
|
||
|
by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
|
||
|
or EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
|
||
|
If the timeout expires in blocking mode,
|
||
|
BSP returns EFI_TIMEOUT. If the timeout
|
||
|
expires in non-blocking mode, WaitEvent
|
||
|
is signaled with SignalEvent().
|
||
|
@param[in] ProcedureArgument The parameter passed into Procedure for
|
||
|
all APs.
|
||
|
@param[out] Finished If NULL, this parameter is ignored. In
|
||
|
blocking mode, this parameter is ignored.
|
||
|
In non-blocking mode, if AP returns from
|
||
|
Procedure before the timeout expires, its
|
||
|
content is set to TRUE. Otherwise, the
|
||
|
value is set to FALSE. The caller can
|
||
|
determine if the AP returned from Procedure
|
||
|
by evaluating this value.
|
||
|
|
||
|
@retval EFI_SUCCESS In blocking mode, specified AP finished before
|
||
|
the timeout expires.
|
||
|
@retval EFI_SUCCESS In non-blocking mode, the function has been
|
||
|
dispatched to specified AP.
|
||
|
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the
|
||
|
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
|
||
|
signaled.
|
||
|
@retval EFI_DEVICE_ERROR The calling processor is an AP.
|
||
|
@retval EFI_TIMEOUT In blocking mode, the timeout expired before
|
||
|
the specified AP has finished.
|
||
|
@retval EFI_NOT_READY The specified AP is busy.
|
||
|
@retval EFI_NOT_FOUND The processor with the handle specified by
|
||
|
ProcessorNumber does not exist.
|
||
|
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.
|
||
|
@retval EFI_INVALID_PARAMETER Procedure is NULL.
|
||
|
|
||
|
**/
|
||
|
STATIC
|
||
|
EFI_STATUS
|
||
|
EFIAPI
|
||
|
StartupThisAP (
|
||
|
IN EFI_MP_SERVICES_PROTOCOL *This,
|
||
|
IN EFI_AP_PROCEDURE Procedure,
|
||
|
IN UINTN ProcessorNumber,
|
||
|
IN EFI_EVENT WaitEvent OPTIONAL,
|
||
|
IN UINTN TimeoutInMicroseconds,
|
||
|
IN VOID *ProcedureArgument OPTIONAL,
|
||
|
OUT BOOLEAN *Finished OPTIONAL
|
||
|
)
|
||
|
{
|
||
|
EFI_STATUS Status;
|
||
|
UINTN Timeout;
|
||
|
CPU_AP_DATA *CpuData;
|
||
|
|
||
|
if (!IsCurrentProcessorBSP ()) {
|
||
|
return EFI_DEVICE_ERROR;
|
||
|
}
|
||
|
|
||
|
if (Procedure == NULL) {
|
||
|
return EFI_INVALID_PARAMETER;
|
||
|
}
|
||
|
|
||
|
if (ProcessorNumber >= mCpuMpData.NumberOfProcessors) {
|
||
|
return EFI_NOT_FOUND;
|
||
|
}
|
||
|
|
||
|
CpuData = &mCpuMpData.CpuData[ProcessorNumber];
|
||
|
|
||
|
if (IsProcessorBSP (ProcessorNumber)) {
|
||
|
return EFI_INVALID_PARAMETER;
|
||
|
}
|
||
|
|
||
|
if (!IsProcessorEnabled (ProcessorNumber)) {
|
||
|
return EFI_INVALID_PARAMETER;
|
||
|
}
|
||
|
|
||
|
if ((GetApState (CpuData) != CpuStateIdle) &&
|
||
|
(GetApState (CpuData) != CpuStateFinished))
|
||
|
{
|
||
|
return EFI_NOT_READY;
|
||
|
}
|
||
|
|
||
|
if ((WaitEvent != NULL) && !mNonBlockingModeAllowed) {
|
||
|
return EFI_UNSUPPORTED;
|
||
|
}
|
||
|
|
||
|
Timeout = TimeoutInMicroseconds;
|
||
|
|
||
|
CpuData->Timeout = TimeoutInMicroseconds;
|
||
|
CpuData->TimeTaken = 0;
|
||
|
CpuData->TimeoutActive = (BOOLEAN)(TimeoutInMicroseconds != 0);
|
||
|
|
||
|
SetApProcedure (
|
||
|
CpuData,
|
||
|
Procedure,
|
||
|
ProcedureArgument
|
||
|
);
|
||
|
|
||
|
Status = DispatchCpu (ProcessorNumber);
|
||
|
if (EFI_ERROR (Status)) {
|
||
|
CpuData->State = CpuStateIdle;
|
||
|
return EFI_NOT_READY;
|
||
|
}
|
||
|
|
||
|
if (WaitEvent != NULL) {
|
||
|
// Non Blocking
|
||
|
if (Finished != NULL) {
|
||
|
CpuData->SingleApFinished = Finished;
|
||
|
*Finished = FALSE;
|
||
|
}
|
||
|
|
||
|
CpuData->WaitEvent = WaitEvent;
|
||
|
Status = gBS->SetTimer (
|
||
|
CpuData->CheckThisAPEvent,
|
||
|
TimerPeriodic,
|
||
|
POLL_INTERVAL_US
|
||
|
);
|
||
|
|
||
|
return EFI_SUCCESS;
|
||
|
}
|
||
|
|
||
|
// Blocking
|
||
|
while (TRUE) {
|
||
|
if (GetApState (CpuData) == CpuStateFinished) {
|
||
|
CpuData->State = CpuStateIdle;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if ((TimeoutInMicroseconds != 0) && (Timeout == 0)) {
|
||
|
return EFI_TIMEOUT;
|
||
|
}
|
||
|
|
||
|
Timeout -= CalculateAndStallInterval (Timeout);
|
||
|
}
|
||
|
|
||
|
return EFI_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
This service switches the requested AP to be the BSP from that point onward.
|
||
|
This service changes the BSP for all purposes. This call can only be
|
||
|
performed by the current BSP.
|
||
|
|
||
|
This service switches the requested AP to be the BSP from that point onward.
|
||
|
This service changes the BSP for all purposes. The new BSP can take over the
|
||
|
execution of the old BSP and continue seamlessly from where the old one left
|
||
|
off. This service may not be supported after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT
|
||
|
is signaled.
|
||
|
|
||
|
If the BSP cannot be switched prior to the return from this service, then
|
||
|
EFI_UNSUPPORTED must be returned.
|
||
|
|
||
|
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
|
||
|
@param[in] ProcessorNumber The handle number of AP that is to become the new
|
||
|
BSP. The range is from 0 to the total number of
|
||
|
logical processors minus 1. The total number of
|
||
|
logical processors can be retrieved by
|
||
|
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
|
||
|
@param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
|
||
|
enabled AP. Otherwise, it will be disabled.
|
||
|
|
||
|
@retval EFI_SUCCESS BSP successfully switched.
|
||
|
@retval EFI_UNSUPPORTED Switching the BSP cannot be completed prior to
|
||
|
this service returning.
|
||
|
@retval EFI_UNSUPPORTED Switching the BSP is not supported.
|
||
|
@retval EFI_SUCCESS The calling processor is an AP.
|
||
|
@retval EFI_NOT_FOUND The processor with the handle specified by
|
||
|
ProcessorNumber does not exist.
|
||
|
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or
|
||
|
a disabled AP.
|
||
|
@retval EFI_NOT_READY The specified AP is busy.
|
||
|
|
||
|
**/
|
||
|
STATIC
|
||
|
EFI_STATUS
|
||
|
EFIAPI
|
||
|
SwitchBSP (
|
||
|
IN EFI_MP_SERVICES_PROTOCOL *This,
|
||
|
IN UINTN ProcessorNumber,
|
||
|
IN BOOLEAN EnableOldBSP
|
||
|
)
|
||
|
{
|
||
|
return EFI_UNSUPPORTED;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
This service lets the caller enable or disable an AP from this point onward.
|
||
|
This service may only be called from the BSP.
|
||
|
|
||
|
This service allows the caller enable or disable an AP from this point onward.
|
||
|
The caller can optionally specify the health status of the AP by Health. If
|
||
|
an AP is being disabled, then the state of the disabled AP is implementation
|
||
|
dependent. If an AP is enabled, then the implementation must guarantee that a
|
||
|
complete initialization sequence is performed on the AP, so the AP is in a state
|
||
|
that is compatible with an MP operating system. This service may not be supported
|
||
|
after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled.
|
||
|
|
||
|
If the enable or disable AP operation cannot be completed prior to the return
|
||
|
from this service, then EFI_UNSUPPORTED must be returned.
|
||
|
|
||
|
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
|
||
|
@param[in] ProcessorNumber The handle number of AP that is to become the new
|
||
|
BSP. The range is from 0 to the total number of
|
||
|
logical processors minus 1. The total number of
|
||
|
logical processors can be retrieved by
|
||
|
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
|
||
|
@param[in] EnableAP Specifies the new state for the processor for
|
||
|
enabled, FALSE for disabled.
|
||
|
@param[in] HealthFlag If not NULL, a pointer to a value that specifies
|
||
|
the new health status of the AP. This flag
|
||
|
corresponds to StatusFlag defined in
|
||
|
EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only
|
||
|
the PROCESSOR_HEALTH_STATUS_BIT is used. All other
|
||
|
bits are ignored. If it is NULL, this parameter
|
||
|
is ignored.
|
||
|
|
||
|
@retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
|
||
|
@retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed
|
||
|
prior to this service returning.
|
||
|
@retval EFI_UNSUPPORTED Enabling or disabling an AP is not supported.
|
||
|
@retval EFI_DEVICE_ERROR The calling processor is an AP.
|
||
|
@retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber
|
||
|
does not exist.
|
||
|
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP.
|
||
|
|
||
|
**/
|
||
|
STATIC
|
||
|
EFI_STATUS
|
||
|
EFIAPI
|
||
|
EnableDisableAP (
|
||
|
IN EFI_MP_SERVICES_PROTOCOL *This,
|
||
|
IN UINTN ProcessorNumber,
|
||
|
IN BOOLEAN EnableAP,
|
||
|
IN UINT32 *HealthFlag OPTIONAL
|
||
|
)
|
||
|
{
|
||
|
UINTN StatusFlag;
|
||
|
CPU_AP_DATA *CpuData;
|
||
|
|
||
|
StatusFlag = mCpuMpData.CpuData[ProcessorNumber].Info.StatusFlag;
|
||
|
CpuData = &mCpuMpData.CpuData[ProcessorNumber];
|
||
|
|
||
|
if (!IsCurrentProcessorBSP ()) {
|
||
|
return EFI_DEVICE_ERROR;
|
||
|
}
|
||
|
|
||
|
if (ProcessorNumber >= mCpuMpData.NumberOfProcessors) {
|
||
|
return EFI_NOT_FOUND;
|
||
|
}
|
||
|
|
||
|
if (IsProcessorBSP (ProcessorNumber)) {
|
||
|
return EFI_INVALID_PARAMETER;
|
||
|
}
|
||
|
|
||
|
if (GetApState (CpuData) != CpuStateIdle) {
|
||
|
return EFI_UNSUPPORTED;
|
||
|
}
|
||
|
|
||
|
if (EnableAP) {
|
||
|
if (!IsProcessorEnabled (ProcessorNumber)) {
|
||
|
mCpuMpData.NumberOfEnabledProcessors++;
|
||
|
}
|
||
|
|
||
|
StatusFlag |= PROCESSOR_ENABLED_BIT;
|
||
|
} else {
|
||
|
if (IsProcessorEnabled (ProcessorNumber) && !IsProcessorBSP (ProcessorNumber)) {
|
||
|
mCpuMpData.NumberOfEnabledProcessors--;
|
||
|
}
|
||
|
|
||
|
StatusFlag &= ~PROCESSOR_ENABLED_BIT;
|
||
|
}
|
||
|
|
||
|
if ((HealthFlag != NULL) && !IsProcessorBSP (ProcessorNumber)) {
|
||
|
StatusFlag &= ~PROCESSOR_HEALTH_STATUS_BIT;
|
||
|
StatusFlag |= (*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT);
|
||
|
}
|
||
|
|
||
|
mCpuMpData.CpuData[ProcessorNumber].Info.StatusFlag = StatusFlag;
|
||
|
return EFI_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
This return the handle number for the calling processor. This service may be
|
||
|
called from the BSP and APs.
|
||
|
|
||
|
This service returns the processor handle number for the calling processor.
|
||
|
The returned value is in the range from 0 to the total number of logical
|
||
|
processors minus 1. The total number of logical processors can be retrieved
|
||
|
with EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). This service may be
|
||
|
called from the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID_PARAMETER
|
||
|
is returned. Otherwise, the current processors handle number is returned in
|
||
|
ProcessorNumber, and EFI_SUCCESS is returned.
|
||
|
|
||
|
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
|
||
|
@param[out] ProcessorNumber The handle number of AP that is to become the new
|
||
|
BSP. The range is from 0 to the total number of
|
||
|
logical processors minus 1. The total number of
|
||
|
logical processors can be retrieved by
|
||
|
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
|
||
|
|
||
|
@retval EFI_SUCCESS The current processor handle number was returned
|
||
|
in ProcessorNumber.
|
||
|
@retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
|
||
|
|
||
|
**/
|
||
|
STATIC
|
||
|
EFI_STATUS
|
||
|
EFIAPI
|
||
|
WhoAmI (
|
||
|
IN EFI_MP_SERVICES_PROTOCOL *This,
|
||
|
OUT UINTN *ProcessorNumber
|
||
|
)
|
||
|
{
|
||
|
UINTN Index;
|
||
|
UINT64 ProcessorId;
|
||
|
|
||
|
if (ProcessorNumber == NULL) {
|
||
|
return EFI_INVALID_PARAMETER;
|
||
|
}
|
||
|
|
||
|
ProcessorId = GET_MPIDR_AFFINITY_BITS (ArmReadMpidr ());
|
||
|
for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) {
|
||
|
if (ProcessorId == gProcessorIDs[Index]) {
|
||
|
*ProcessorNumber = Index;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return EFI_SUCCESS;
|
||
|
}
|
||
|
|
||
|
STATIC EFI_MP_SERVICES_PROTOCOL mMpServicesProtocol = {
|
||
|
GetNumberOfProcessors,
|
||
|
GetProcessorInfo,
|
||
|
StartupAllAPs,
|
||
|
StartupThisAP,
|
||
|
SwitchBSP,
|
||
|
EnableDisableAP,
|
||
|
WhoAmI
|
||
|
};
|
||
|
|
||
|
/** Adds the specified processor the list of failed processors.
|
||
|
|
||
|
@param ProcessorIndex The processor index to add.
|
||
|
@param ApState Processor state.
|
||
|
|
||
|
**/
|
||
|
STATIC
|
||
|
VOID
|
||
|
AddProcessorToFailedList (
|
||
|
UINTN ProcessorIndex,
|
||
|
CPU_STATE ApState
|
||
|
)
|
||
|
{
|
||
|
UINTN Index;
|
||
|
BOOLEAN Found;
|
||
|
|
||
|
Found = FALSE;
|
||
|
|
||
|
if ((mCpuMpData.FailedList == NULL) ||
|
||
|
(ApState == CpuStateIdle) ||
|
||
|
(ApState == CpuStateFinished) ||
|
||
|
IsProcessorBSP (ProcessorIndex))
|
||
|
{
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// If we are retrying make sure we don't double count
|
||
|
for (Index = 0; Index < mCpuMpData.FailedListIndex; Index++) {
|
||
|
if (mCpuMpData.FailedList[Index] == ProcessorIndex) {
|
||
|
Found = TRUE;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* If the CPU isn't already in the FailedList, add it */
|
||
|
if (!Found) {
|
||
|
mCpuMpData.FailedList[mCpuMpData.FailedListIndex++] = ProcessorIndex;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/** Handles the StartupAllAPs case where the timeout has occurred.
|
||
|
|
||
|
**/
|
||
|
STATIC
|
||
|
VOID
|
||
|
ProcessStartupAllAPsTimeout (
|
||
|
VOID
|
||
|
)
|
||
|
{
|
||
|
CPU_AP_DATA *CpuData;
|
||
|
UINTN Index;
|
||
|
|
||
|
if (mCpuMpData.FailedList == NULL) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) {
|
||
|
CpuData = &mCpuMpData.CpuData[Index];
|
||
|
if (IsProcessorBSP (Index)) {
|
||
|
// Skip BSP
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (!IsProcessorEnabled (Index)) {
|
||
|
// Skip Disabled processors
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
CpuData = &mCpuMpData.CpuData[Index];
|
||
|
AddProcessorToFailedList (Index, GetApState (CpuData));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/** Updates the status of the APs.
|
||
|
|
||
|
@param[in] ProcessorIndex The index of the AP to update.
|
||
|
**/
|
||
|
STATIC
|
||
|
VOID
|
||
|
UpdateApStatus (
|
||
|
IN UINTN ProcessorIndex
|
||
|
)
|
||
|
{
|
||
|
EFI_STATUS Status;
|
||
|
CPU_AP_DATA *CpuData;
|
||
|
CPU_AP_DATA *NextCpuData;
|
||
|
CPU_STATE State;
|
||
|
UINTN NextNumber;
|
||
|
|
||
|
CpuData = &mCpuMpData.CpuData[ProcessorIndex];
|
||
|
|
||
|
if (IsProcessorBSP (ProcessorIndex)) {
|
||
|
// Skip BSP
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (!IsProcessorEnabled (ProcessorIndex)) {
|
||
|
// Skip Disabled processors
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
State = GetApState (CpuData);
|
||
|
|
||
|
switch (State) {
|
||
|
case CpuStateFinished:
|
||
|
if (mCpuMpData.SingleThread) {
|
||
|
Status = GetNextBlockedNumber (&NextNumber);
|
||
|
if (!EFI_ERROR (Status)) {
|
||
|
NextCpuData = &mCpuMpData.CpuData[NextNumber];
|
||
|
|
||
|
NextCpuData->State = CpuStateReady;
|
||
|
|
||
|
SetApProcedure (
|
||
|
NextCpuData,
|
||
|
mCpuMpData.Procedure,
|
||
|
mCpuMpData.ProcedureArgument
|
||
|
);
|
||
|
|
||
|
Status = DispatchCpu (NextNumber);
|
||
|
if (!EFI_ERROR (Status)) {
|
||
|
mCpuMpData.StartCount++;
|
||
|
} else {
|
||
|
AddProcessorToFailedList (NextNumber, NextCpuData->State);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CpuData->State = CpuStateIdle;
|
||
|
mCpuMpData.FinishCount++;
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
If a timeout is specified in StartupAllAps(), a timer is set, which invokes
|
||
|
this procedure periodically to check whether all APs have finished.
|
||
|
|
||
|
@param[in] Event The WaitEvent the user supplied.
|
||
|
@param[in] Context The event context.
|
||
|
**/
|
||
|
STATIC
|
||
|
VOID
|
||
|
EFIAPI
|
||
|
CheckAllAPsStatus (
|
||
|
IN EFI_EVENT Event,
|
||
|
IN VOID *Context
|
||
|
)
|
||
|
{
|
||
|
EFI_STATUS Status;
|
||
|
UINTN Index;
|
||
|
|
||
|
mCpuMpData.AllTimeTaken += POLL_INTERVAL_US;
|
||
|
|
||
|
for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) {
|
||
|
UpdateApStatus (Index);
|
||
|
}
|
||
|
|
||
|
if (mCpuMpData.AllTimeoutActive && (mCpuMpData.AllTimeTaken > mCpuMpData.AllTimeout)) {
|
||
|
ProcessStartupAllAPsTimeout ();
|
||
|
|
||
|
// Force terminal exit
|
||
|
mCpuMpData.FinishCount = mCpuMpData.StartCount;
|
||
|
}
|
||
|
|
||
|
if (mCpuMpData.FinishCount != mCpuMpData.StartCount) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
gBS->SetTimer (
|
||
|
mCpuMpData.CheckAllAPsEvent,
|
||
|
TimerCancel,
|
||
|
0
|
||
|
);
|
||
|
|
||
|
if (mCpuMpData.FailedListIndex == 0) {
|
||
|
if (mCpuMpData.FailedList != NULL) {
|
||
|
// Since we don't have the original `FailedCpuList`
|
||
|
// pointer here to set to NULL, don't free the
|
||
|
// memory.
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Status = gBS->SignalEvent (mCpuMpData.AllWaitEvent);
|
||
|
ASSERT_EFI_ERROR (Status);
|
||
|
mCpuMpData.AllWaitEvent = NULL;
|
||
|
}
|
||
|
|
||
|
/** Invoked periodically via a timer to check the state of the processor.
|
||
|
|
||
|
@param Event The event supplied by the timer expiration.
|
||
|
@param Context The processor context.
|
||
|
|
||
|
**/
|
||
|
STATIC
|
||
|
VOID
|
||
|
EFIAPI
|
||
|
CheckThisAPStatus (
|
||
|
IN EFI_EVENT Event,
|
||
|
IN VOID *Context
|
||
|
)
|
||
|
{
|
||
|
EFI_STATUS Status;
|
||
|
CPU_AP_DATA *CpuData;
|
||
|
CPU_STATE State;
|
||
|
|
||
|
CpuData = Context;
|
||
|
|
||
|
CpuData->TimeTaken += POLL_INTERVAL_US;
|
||
|
|
||
|
State = GetApState (CpuData);
|
||
|
|
||
|
if (State == CpuStateFinished) {
|
||
|
Status = gBS->SetTimer (CpuData->CheckThisAPEvent, TimerCancel, 0);
|
||
|
ASSERT_EFI_ERROR (Status);
|
||
|
|
||
|
if (CpuData->SingleApFinished != NULL) {
|
||
|
*(CpuData->SingleApFinished) = TRUE;
|
||
|
}
|
||
|
|
||
|
if (CpuData->WaitEvent != NULL) {
|
||
|
Status = gBS->SignalEvent (CpuData->WaitEvent);
|
||
|
ASSERT_EFI_ERROR (Status);
|
||
|
}
|
||
|
|
||
|
CpuData->State = CpuStateIdle;
|
||
|
}
|
||
|
|
||
|
if (CpuData->TimeoutActive && (CpuData->TimeTaken > CpuData->Timeout)) {
|
||
|
Status = gBS->SetTimer (CpuData->CheckThisAPEvent, TimerCancel, 0);
|
||
|
if (CpuData->WaitEvent != NULL) {
|
||
|
Status = gBS->SignalEvent (CpuData->WaitEvent);
|
||
|
ASSERT_EFI_ERROR (Status);
|
||
|
CpuData->WaitEvent = NULL;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
This function is called by all processors (both BSP and AP) once and collects
|
||
|
MP related data.
|
||
|
|
||
|
@param BSP TRUE if the processor is the BSP.
|
||
|
@param Mpidr The MPIDR for the specified processor. This should be
|
||
|
the full MPIDR and not only the affinity bits.
|
||
|
@param ProcessorIndex The index of the processor.
|
||
|
|
||
|
@return EFI_SUCCESS if the data for the processor collected and filled in.
|
||
|
|
||
|
**/
|
||
|
STATIC
|
||
|
EFI_STATUS
|
||
|
FillInProcessorInformation (
|
||
|
IN BOOLEAN BSP,
|
||
|
IN UINTN Mpidr,
|
||
|
IN UINTN ProcessorIndex
|
||
|
)
|
||
|
{
|
||
|
EFI_PROCESSOR_INFORMATION *CpuInfo;
|
||
|
|
||
|
CpuInfo = &mCpuMpData.CpuData[ProcessorIndex].Info;
|
||
|
|
||
|
CpuInfo->ProcessorId = GET_MPIDR_AFFINITY_BITS (Mpidr);
|
||
|
CpuInfo->StatusFlag = PROCESSOR_ENABLED_BIT | PROCESSOR_HEALTH_STATUS_BIT;
|
||
|
|
||
|
if (BSP) {
|
||
|
CpuInfo->StatusFlag |= PROCESSOR_AS_BSP_BIT;
|
||
|
}
|
||
|
|
||
|
if ((Mpidr & MPIDR_MT_BIT) > 0) {
|
||
|
CpuInfo->Location.Package = GET_MPIDR_AFF2 (Mpidr);
|
||
|
CpuInfo->Location.Core = GET_MPIDR_AFF1 (Mpidr);
|
||
|
CpuInfo->Location.Thread = GET_MPIDR_AFF0 (Mpidr);
|
||
|
|
||
|
CpuInfo->ExtendedInformation.Location2.Package = GET_MPIDR_AFF3 (Mpidr);
|
||
|
CpuInfo->ExtendedInformation.Location2.Die = GET_MPIDR_AFF2 (Mpidr);
|
||
|
CpuInfo->ExtendedInformation.Location2.Core = GET_MPIDR_AFF1 (Mpidr);
|
||
|
CpuInfo->ExtendedInformation.Location2.Thread = GET_MPIDR_AFF0 (Mpidr);
|
||
|
} else {
|
||
|
CpuInfo->Location.Package = GET_MPIDR_AFF1 (Mpidr);
|
||
|
CpuInfo->Location.Core = GET_MPIDR_AFF0 (Mpidr);
|
||
|
CpuInfo->Location.Thread = 0;
|
||
|
|
||
|
CpuInfo->ExtendedInformation.Location2.Package = GET_MPIDR_AFF2 (Mpidr);
|
||
|
CpuInfo->ExtendedInformation.Location2.Die = GET_MPIDR_AFF1 (Mpidr);
|
||
|
CpuInfo->ExtendedInformation.Location2.Core = GET_MPIDR_AFF0 (Mpidr);
|
||
|
CpuInfo->ExtendedInformation.Location2.Thread = 0;
|
||
|
}
|
||
|
|
||
|
mCpuMpData.CpuData[ProcessorIndex].State = BSP ? CpuStateBusy : CpuStateIdle;
|
||
|
|
||
|
mCpuMpData.CpuData[ProcessorIndex].Procedure = NULL;
|
||
|
mCpuMpData.CpuData[ProcessorIndex].Parameter = NULL;
|
||
|
|
||
|
return EFI_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/** Initializes the MP Services system data
|
||
|
|
||
|
@param NumberOfProcessors The number of processors, both BSP and AP.
|
||
|
@param CoreInfo CPU information gathered earlier during boot.
|
||
|
|
||
|
**/
|
||
|
STATIC
|
||
|
EFI_STATUS
|
||
|
MpServicesInitialize (
|
||
|
IN UINTN NumberOfProcessors,
|
||
|
IN CONST ARM_CORE_INFO *CoreInfo
|
||
|
)
|
||
|
{
|
||
|
EFI_STATUS Status;
|
||
|
UINTN Index;
|
||
|
EFI_EVENT ReadyToBootEvent;
|
||
|
BOOLEAN IsBsp;
|
||
|
|
||
|
//
|
||
|
// Clear the data structure area first.
|
||
|
//
|
||
|
ZeroMem (&mCpuMpData, sizeof (CPU_MP_DATA));
|
||
|
//
|
||
|
// First BSP fills and inits all known values, including its own records.
|
||
|
//
|
||
|
mCpuMpData.NumberOfProcessors = NumberOfProcessors;
|
||
|
mCpuMpData.NumberOfEnabledProcessors = NumberOfProcessors;
|
||
|
|
||
|
mCpuMpData.CpuData = AllocateZeroPool (
|
||
|
mCpuMpData.NumberOfProcessors * sizeof (CPU_AP_DATA)
|
||
|
);
|
||
|
|
||
|
if (mCpuMpData.CpuData == NULL) {
|
||
|
return EFI_OUT_OF_RESOURCES;
|
||
|
}
|
||
|
|
||
|
/* Allocate one extra for the sentinel entry at the end */
|
||
|
gProcessorIDs = AllocateZeroPool ((mCpuMpData.NumberOfProcessors + 1) * sizeof (UINT64));
|
||
|
ASSERT (gProcessorIDs != NULL);
|
||
|
|
||
|
Status = gBS->CreateEvent (
|
||
|
EVT_TIMER | EVT_NOTIFY_SIGNAL,
|
||
|
TPL_CALLBACK,
|
||
|
CheckAllAPsStatus,
|
||
|
NULL,
|
||
|
&mCpuMpData.CheckAllAPsEvent
|
||
|
);
|
||
|
ASSERT_EFI_ERROR (Status);
|
||
|
|
||
|
gApStacksBase = AllocatePages (
|
||
|
EFI_SIZE_TO_PAGES (
|
||
|
mCpuMpData.NumberOfProcessors *
|
||
|
gApStackSize
|
||
|
)
|
||
|
);
|
||
|
ASSERT (gApStacksBase != NULL);
|
||
|
|
||
|
for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) {
|
||
|
if (GET_MPIDR_AFFINITY_BITS (ArmReadMpidr ()) == CoreInfo[Index].Mpidr) {
|
||
|
IsBsp = TRUE;
|
||
|
} else {
|
||
|
IsBsp = FALSE;
|
||
|
}
|
||
|
|
||
|
FillInProcessorInformation (IsBsp, CoreInfo[Index].Mpidr, Index);
|
||
|
|
||
|
gProcessorIDs[Index] = mCpuMpData.CpuData[Index].Info.ProcessorId;
|
||
|
|
||
|
Status = gBS->CreateEvent (
|
||
|
EVT_TIMER | EVT_NOTIFY_SIGNAL,
|
||
|
TPL_CALLBACK,
|
||
|
CheckThisAPStatus,
|
||
|
(VOID *)&mCpuMpData.CpuData[Index],
|
||
|
&mCpuMpData.CpuData[Index].CheckThisAPEvent
|
||
|
);
|
||
|
ASSERT_EFI_ERROR (Status);
|
||
|
}
|
||
|
|
||
|
gProcessorIDs[Index] = MAX_UINT64;
|
||
|
|
||
|
gTcr = ArmGetTCR ();
|
||
|
gMair = ArmGetMAIR ();
|
||
|
gTtbr0 = ArmGetTTBR0BaseAddress ();
|
||
|
|
||
|
//
|
||
|
// The global pointer variables as well as the gProcessorIDs array contents
|
||
|
// are accessed by the other cores so we must clean them to the PoC
|
||
|
//
|
||
|
WriteBackDataCacheRange (&gProcessorIDs, sizeof (UINT64 *));
|
||
|
WriteBackDataCacheRange (&gApStacksBase, sizeof (UINT64 *));
|
||
|
|
||
|
WriteBackDataCacheRange (
|
||
|
gProcessorIDs,
|
||
|
(mCpuMpData.NumberOfProcessors + 1) * sizeof (UINT64)
|
||
|
);
|
||
|
|
||
|
mNonBlockingModeAllowed = TRUE;
|
||
|
|
||
|
Status = EfiCreateEventReadyToBootEx (
|
||
|
TPL_CALLBACK,
|
||
|
ReadyToBootSignaled,
|
||
|
NULL,
|
||
|
&ReadyToBootEvent
|
||
|
);
|
||
|
ASSERT_EFI_ERROR (Status);
|
||
|
|
||
|
return EFI_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Event notification function called when the EFI_EVENT_GROUP_READY_TO_BOOT is
|
||
|
signaled. After this point, non-blocking mode is no longer allowed.
|
||
|
|
||
|
@param Event Event whose notification function is being invoked.
|
||
|
@param Context The pointer to the notification function's context,
|
||
|
which is implementation-dependent.
|
||
|
|
||
|
**/
|
||
|
STATIC
|
||
|
VOID
|
||
|
EFIAPI
|
||
|
ReadyToBootSignaled (
|
||
|
IN EFI_EVENT Event,
|
||
|
IN VOID *Context
|
||
|
)
|
||
|
{
|
||
|
mNonBlockingModeAllowed = FALSE;
|
||
|
}
|
||
|
|
||
|
/** Initialize multi-processor support.
|
||
|
|
||
|
@param ImageHandle Image handle.
|
||
|
@param SystemTable System table.
|
||
|
|
||
|
@return EFI_SUCCESS on success, or an error code.
|
||
|
|
||
|
**/
|
||
|
EFI_STATUS
|
||
|
EFIAPI
|
||
|
ArmPsciMpServicesDxeInitialize (
|
||
|
IN EFI_HANDLE ImageHandle,
|
||
|
IN EFI_SYSTEM_TABLE *SystemTable
|
||
|
)
|
||
|
{
|
||
|
EFI_STATUS Status;
|
||
|
EFI_HANDLE Handle;
|
||
|
UINTN MaxCpus;
|
||
|
EFI_LOADED_IMAGE_PROTOCOL *Image;
|
||
|
EFI_HOB_GENERIC_HEADER *Hob;
|
||
|
VOID *HobData;
|
||
|
UINTN HobDataSize;
|
||
|
CONST ARM_CORE_INFO *CoreInfo;
|
||
|
|
||
|
MaxCpus = 1;
|
||
|
|
||
|
Status = gBS->HandleProtocol (
|
||
|
ImageHandle,
|
||
|
&gEfiLoadedImageProtocolGuid,
|
||
|
(VOID **)&Image
|
||
|
);
|
||
|
ASSERT_EFI_ERROR (Status);
|
||
|
|
||
|
//
|
||
|
// Parts of the code in this driver may be executed by other cores running
|
||
|
// with the MMU off so we need to ensure that everything is clean to the
|
||
|
// point of coherency (PoC)
|
||
|
//
|
||
|
WriteBackDataCacheRange (Image->ImageBase, Image->ImageSize);
|
||
|
|
||
|
Hob = GetFirstGuidHob (&gArmMpCoreInfoGuid);
|
||
|
if (Hob != NULL) {
|
||
|
HobData = GET_GUID_HOB_DATA (Hob);
|
||
|
HobDataSize = GET_GUID_HOB_DATA_SIZE (Hob);
|
||
|
CoreInfo = (ARM_CORE_INFO *)HobData;
|
||
|
MaxCpus = HobDataSize / sizeof (ARM_CORE_INFO);
|
||
|
}
|
||
|
|
||
|
if (MaxCpus == 1) {
|
||
|
DEBUG ((DEBUG_WARN, "Trying to use EFI_MP_SERVICES_PROTOCOL on a UP system"));
|
||
|
// We are not MP so nothing to do
|
||
|
return EFI_NOT_FOUND;
|
||
|
}
|
||
|
|
||
|
Status = MpServicesInitialize (MaxCpus, CoreInfo);
|
||
|
if (Status != EFI_SUCCESS) {
|
||
|
ASSERT_EFI_ERROR (Status);
|
||
|
return Status;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Now install the MP services protocol.
|
||
|
//
|
||
|
Handle = NULL;
|
||
|
Status = gBS->InstallMultipleProtocolInterfaces (
|
||
|
&Handle,
|
||
|
&gEfiMpServiceProtocolGuid,
|
||
|
&mMpServicesProtocol,
|
||
|
NULL
|
||
|
);
|
||
|
ASSERT_EFI_ERROR (Status);
|
||
|
|
||
|
return Status;
|
||
|
}
|
||
|
|
||
|
/** AP exception handler.
|
||
|
|
||
|
@param InterruptType The AArch64 CPU exception type.
|
||
|
@param SystemContext System context.
|
||
|
|
||
|
**/
|
||
|
STATIC
|
||
|
VOID
|
||
|
EFIAPI
|
||
|
ApExceptionHandler (
|
||
|
IN CONST EFI_EXCEPTION_TYPE InterruptType,
|
||
|
IN CONST EFI_SYSTEM_CONTEXT SystemContext
|
||
|
)
|
||
|
{
|
||
|
ARM_SMC_ARGS Args;
|
||
|
UINT64 Mpidr;
|
||
|
UINTN Index;
|
||
|
UINTN ProcessorIndex;
|
||
|
|
||
|
Mpidr = GET_MPIDR_AFFINITY_BITS (ArmReadMpidr ());
|
||
|
|
||
|
Index = 0;
|
||
|
ProcessorIndex = MAX_UINT64;
|
||
|
|
||
|
do {
|
||
|
if (gProcessorIDs[Index] == Mpidr) {
|
||
|
ProcessorIndex = Index;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
Index++;
|
||
|
} while (gProcessorIDs[Index] != MAX_UINT64);
|
||
|
|
||
|
if (ProcessorIndex != MAX_UINT64) {
|
||
|
mCpuMpData.CpuData[ProcessorIndex].State = CpuStateFinished;
|
||
|
ArmDataMemoryBarrier ();
|
||
|
}
|
||
|
|
||
|
Args.Arg0 = ARM_SMC_ID_PSCI_CPU_OFF;
|
||
|
ArmCallSmc (&Args);
|
||
|
|
||
|
/* Should never be reached */
|
||
|
ASSERT (FALSE);
|
||
|
CpuDeadLoop ();
|
||
|
}
|
||
|
|
||
|
/** C entry-point for the AP.
|
||
|
This function gets called from the assembly function ApEntryPoint.
|
||
|
|
||
|
**/
|
||
|
VOID
|
||
|
ApProcedure (
|
||
|
VOID
|
||
|
)
|
||
|
{
|
||
|
ARM_SMC_ARGS Args;
|
||
|
EFI_AP_PROCEDURE UserApProcedure;
|
||
|
VOID *UserApParameter;
|
||
|
UINTN ProcessorIndex;
|
||
|
|
||
|
ProcessorIndex = 0;
|
||
|
|
||
|
WhoAmI (&mMpServicesProtocol, &ProcessorIndex);
|
||
|
|
||
|
/* Fetch the user-supplied procedure and parameter to execute */
|
||
|
UserApProcedure = mCpuMpData.CpuData[ProcessorIndex].Procedure;
|
||
|
UserApParameter = mCpuMpData.CpuData[ProcessorIndex].Parameter;
|
||
|
|
||
|
InitializeCpuExceptionHandlers (NULL);
|
||
|
RegisterCpuInterruptHandler (EXCEPT_AARCH64_SYNCHRONOUS_EXCEPTIONS, ApExceptionHandler);
|
||
|
RegisterCpuInterruptHandler (EXCEPT_AARCH64_IRQ, ApExceptionHandler);
|
||
|
RegisterCpuInterruptHandler (EXCEPT_AARCH64_FIQ, ApExceptionHandler);
|
||
|
RegisterCpuInterruptHandler (EXCEPT_AARCH64_SERROR, ApExceptionHandler);
|
||
|
|
||
|
UserApProcedure (UserApParameter);
|
||
|
|
||
|
mCpuMpData.CpuData[ProcessorIndex].State = CpuStateFinished;
|
||
|
|
||
|
ArmDataMemoryBarrier ();
|
||
|
|
||
|
/* Since we're finished with this AP, turn it off */
|
||
|
Args.Arg0 = ARM_SMC_ID_PSCI_CPU_OFF;
|
||
|
ArmCallSmc (&Args);
|
||
|
|
||
|
/* Should never be reached */
|
||
|
ASSERT (FALSE);
|
||
|
CpuDeadLoop ();
|
||
|
}
|
||
|
|
||
|
/** Returns whether the processor executing this function is the BSP.
|
||
|
|
||
|
@return Whether the current processor is the BSP.
|
||
|
**/
|
||
|
STATIC
|
||
|
BOOLEAN
|
||
|
IsCurrentProcessorBSP (
|
||
|
VOID
|
||
|
)
|
||
|
{
|
||
|
EFI_STATUS Status;
|
||
|
UINTN ProcessorIndex;
|
||
|
|
||
|
Status = WhoAmI (&mMpServicesProtocol, &ProcessorIndex);
|
||
|
if (EFI_ERROR (Status)) {
|
||
|
ASSERT_EFI_ERROR (Status);
|
||
|
return FALSE;
|
||
|
}
|
||
|
|
||
|
return IsProcessorBSP (ProcessorIndex);
|
||
|
}
|
||
|
|
||
|
/** Returns whether the specified processor is enabled.
|
||
|
|
||
|
@param[in] ProcessorIndex The index of the processor to check.
|
||
|
|
||
|
@return TRUE if the processor is enabled, FALSE otherwise.
|
||
|
**/
|
||
|
STATIC
|
||
|
BOOLEAN
|
||
|
IsProcessorEnabled (
|
||
|
UINTN ProcessorIndex
|
||
|
)
|
||
|
{
|
||
|
EFI_PROCESSOR_INFORMATION *CpuInfo;
|
||
|
|
||
|
CpuInfo = &mCpuMpData.CpuData[ProcessorIndex].Info;
|
||
|
|
||
|
return (CpuInfo->StatusFlag & PROCESSOR_ENABLED_BIT) != 0;
|
||
|
}
|
||
|
|
||
|
/** Sets up the state for the StartupAllAPs function.
|
||
|
|
||
|
@param SingleThread Whether the APs will execute sequentially.
|
||
|
|
||
|
**/
|
||
|
STATIC
|
||
|
VOID
|
||
|
StartupAllAPsPrepareState (
|
||
|
IN BOOLEAN SingleThread
|
||
|
)
|
||
|
{
|
||
|
UINTN Index;
|
||
|
CPU_STATE APInitialState;
|
||
|
CPU_AP_DATA *CpuData;
|
||
|
|
||
|
mCpuMpData.FinishCount = 0;
|
||
|
mCpuMpData.StartCount = 0;
|
||
|
mCpuMpData.SingleThread = SingleThread;
|
||
|
|
||
|
APInitialState = CpuStateReady;
|
||
|
|
||
|
for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) {
|
||
|
CpuData = &mCpuMpData.CpuData[Index];
|
||
|
|
||
|
//
|
||
|
// Get APs prepared, and put failing APs into FailedCpuList.
|
||
|
// If "SingleThread", only 1 AP will put into ready state, other AP will be
|
||
|
// put into ready state 1 by 1, until the previous 1 finished its task.
|
||
|
// If not "SingleThread", all APs are put into ready state from the
|
||
|
// beginning
|
||
|
//
|
||
|
|
||
|
if (IsProcessorBSP (Index)) {
|
||
|
// Skip BSP
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (!IsProcessorEnabled (Index)) {
|
||
|
// Skip Disabled processors
|
||
|
if (mCpuMpData.FailedList != NULL) {
|
||
|
mCpuMpData.FailedList[mCpuMpData.FailedListIndex++] = Index;
|
||
|
}
|
||
|
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// If any APs finished after timing out, reset state to Idle
|
||
|
if (GetApState (CpuData) == CpuStateFinished) {
|
||
|
CpuData->State = CpuStateIdle;
|
||
|
}
|
||
|
|
||
|
if (GetApState (CpuData) != CpuStateIdle) {
|
||
|
// Skip busy processors
|
||
|
if (mCpuMpData.FailedList != NULL) {
|
||
|
mCpuMpData.FailedList[mCpuMpData.FailedListIndex++] = Index;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CpuData->State = APInitialState;
|
||
|
|
||
|
mCpuMpData.StartCount++;
|
||
|
if (SingleThread) {
|
||
|
APInitialState = CpuStateBlocked;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/** Handles execution of StartupAllAPs when a WaitEvent has been specified.
|
||
|
|
||
|
@param Procedure The user-supplied procedure.
|
||
|
@param ProcedureArgument The user-supplied procedure argument.
|
||
|
@param WaitEvent The wait event to be signaled when the work is
|
||
|
complete or a timeout has occurred.
|
||
|
@param TimeoutInMicroseconds The timeout for the work to be completed. Zero
|
||
|
indicates an infinite timeout.
|
||
|
@param SingleThread Whether the APs will execute sequentially.
|
||
|
@param FailedCpuList User-supplied pointer for list of failed CPUs.
|
||
|
|
||
|
@return EFI_SUCCESS on success.
|
||
|
**/
|
||
|
STATIC
|
||
|
EFI_STATUS
|
||
|
StartupAllAPsWithWaitEvent (
|
||
|
IN EFI_AP_PROCEDURE Procedure,
|
||
|
IN VOID *ProcedureArgument,
|
||
|
IN EFI_EVENT WaitEvent,
|
||
|
IN UINTN TimeoutInMicroseconds,
|
||
|
IN BOOLEAN SingleThread,
|
||
|
IN UINTN **FailedCpuList
|
||
|
)
|
||
|
{
|
||
|
EFI_STATUS Status;
|
||
|
UINTN Index;
|
||
|
CPU_AP_DATA *CpuData;
|
||
|
|
||
|
for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) {
|
||
|
CpuData = &mCpuMpData.CpuData[Index];
|
||
|
if (IsProcessorBSP (Index)) {
|
||
|
// Skip BSP
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (!IsProcessorEnabled (Index)) {
|
||
|
// Skip Disabled processors
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (GetApState (CpuData) == CpuStateReady) {
|
||
|
SetApProcedure (CpuData, Procedure, ProcedureArgument);
|
||
|
if ((mCpuMpData.StartCount == 0) || !SingleThread) {
|
||
|
Status = DispatchCpu (Index);
|
||
|
if (EFI_ERROR (Status)) {
|
||
|
AddProcessorToFailedList (Index, CpuData->State);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (EFI_ERROR (Status)) {
|
||
|
return EFI_NOT_READY;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Save data into private data structure, and create timer to poll AP state
|
||
|
// before exiting
|
||
|
//
|
||
|
mCpuMpData.Procedure = Procedure;
|
||
|
mCpuMpData.ProcedureArgument = ProcedureArgument;
|
||
|
mCpuMpData.AllWaitEvent = WaitEvent;
|
||
|
mCpuMpData.AllTimeout = TimeoutInMicroseconds;
|
||
|
mCpuMpData.AllTimeTaken = 0;
|
||
|
mCpuMpData.AllTimeoutActive = (BOOLEAN)(TimeoutInMicroseconds != 0);
|
||
|
Status = gBS->SetTimer (
|
||
|
mCpuMpData.CheckAllAPsEvent,
|
||
|
TimerPeriodic,
|
||
|
POLL_INTERVAL_US
|
||
|
);
|
||
|
|
||
|
return Status;
|
||
|
}
|
||
|
|
||
|
/** Handles execution of StartupAllAPs when no wait event has been specified.
|
||
|
|
||
|
@param Procedure The user-supplied procedure.
|
||
|
@param ProcedureArgument The user-supplied procedure argument.
|
||
|
@param TimeoutInMicroseconds The timeout for the work to be completed. Zero
|
||
|
indicates an infinite timeout.
|
||
|
@param SingleThread Whether the APs will execute sequentially.
|
||
|
@param FailedCpuList User-supplied pointer for list of failed CPUs.
|
||
|
|
||
|
@return EFI_SUCCESS on success.
|
||
|
**/
|
||
|
STATIC
|
||
|
EFI_STATUS
|
||
|
StartupAllAPsNoWaitEvent (
|
||
|
IN EFI_AP_PROCEDURE Procedure,
|
||
|
IN VOID *ProcedureArgument,
|
||
|
IN UINTN TimeoutInMicroseconds,
|
||
|
IN BOOLEAN SingleThread,
|
||
|
IN UINTN **FailedCpuList
|
||
|
)
|
||
|
{
|
||
|
EFI_STATUS Status;
|
||
|
UINTN Index;
|
||
|
UINTN NextIndex;
|
||
|
UINTN Timeout;
|
||
|
CPU_AP_DATA *CpuData;
|
||
|
BOOLEAN DispatchError;
|
||
|
|
||
|
Timeout = TimeoutInMicroseconds;
|
||
|
DispatchError = FALSE;
|
||
|
|
||
|
while (TRUE) {
|
||
|
for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) {
|
||
|
CpuData = &mCpuMpData.CpuData[Index];
|
||
|
if (IsProcessorBSP (Index)) {
|
||
|
// Skip BSP
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (!IsProcessorEnabled (Index)) {
|
||
|
// Skip Disabled processors
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
switch (GetApState (CpuData)) {
|
||
|
case CpuStateReady:
|
||
|
SetApProcedure (CpuData, Procedure, ProcedureArgument);
|
||
|
Status = DispatchCpu (Index);
|
||
|
if (EFI_ERROR (Status)) {
|
||
|
AddProcessorToFailedList (Index, CpuData->State);
|
||
|
CpuData->State = CpuStateIdle;
|
||
|
mCpuMpData.StartCount--;
|
||
|
DispatchError = TRUE;
|
||
|
|
||
|
if (SingleThread) {
|
||
|
// Dispatch the next available AP
|
||
|
Status = GetNextBlockedNumber (&NextIndex);
|
||
|
if (!EFI_ERROR (Status)) {
|
||
|
mCpuMpData.CpuData[NextIndex].State = CpuStateReady;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
|
||
|
case CpuStateFinished:
|
||
|
mCpuMpData.FinishCount++;
|
||
|
if (SingleThread) {
|
||
|
Status = GetNextBlockedNumber (&NextIndex);
|
||
|
if (!EFI_ERROR (Status)) {
|
||
|
mCpuMpData.CpuData[NextIndex].State = CpuStateReady;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CpuData->State = CpuStateIdle;
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (mCpuMpData.FinishCount == mCpuMpData.StartCount) {
|
||
|
Status = EFI_SUCCESS;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if ((TimeoutInMicroseconds != 0) && (Timeout == 0)) {
|
||
|
Status = EFI_TIMEOUT;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
Timeout -= CalculateAndStallInterval (Timeout);
|
||
|
}
|
||
|
|
||
|
if (Status == EFI_TIMEOUT) {
|
||
|
// Add any remaining CPUs to the FailedCpuList
|
||
|
if (FailedCpuList != NULL) {
|
||
|
for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) {
|
||
|
AddProcessorToFailedList (Index, mCpuMpData.CpuData[Index].State);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (DispatchError) {
|
||
|
Status = EFI_NOT_READY;
|
||
|
}
|
||
|
|
||
|
return Status;
|
||
|
}
|