audk/StandaloneMmPkg/Core/Locate.c

491 lines
13 KiB
C
Raw Normal View History

StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
/** @file
Locate handle functions
Copyright (c) 2009 - 2017, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2016 - 2021, Arm Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
**/
#include "StandaloneMmCore.h"
//
// ProtocolRequest - Last LocateHandle request ID
//
UINTN mEfiLocateHandleRequest = 0;
//
// Internal prototypes
//
typedef struct {
EFI_GUID *Protocol;
VOID *SearchKey;
LIST_ENTRY *Position;
PROTOCOL_ENTRY *ProtEntry;
} LOCATE_POSITION;
typedef
IHANDLE *
(* CORE_GET_NEXT) (
IN OUT LOCATE_POSITION *Position,
OUT VOID **Interface
);
/**
Routine to get the next Handle, when you are searching for all handles.
@param Position Information about which Handle to seach for.
@param Interface Return the interface structure for the matching
protocol.
@return An pointer to IHANDLE if the next Position is not the end of the list.
Otherwise,NULL is returned.
**/
IHANDLE *
MmGetNextLocateAllHandles (
IN OUT LOCATE_POSITION *Position,
OUT VOID **Interface
)
{
IHANDLE *Handle;
//
// Next handle
//
Position->Position = Position->Position->ForwardLink;
//
// If not at the end of the list, get the handle
//
Handle = NULL;
*Interface = NULL;
if (Position->Position != &gHandleList) {
Handle = CR (Position->Position, IHANDLE, AllHandles, EFI_HANDLE_SIGNATURE);
}
return Handle;
}
/**
Routine to get the next Handle, when you are searching for register protocol
notifies.
@param Position Information about which Handle to seach for.
@param Interface Return the interface structure for the matching
protocol.
@return An pointer to IHANDLE if the next Position is not the end of the list.
Otherwise,NULL is returned.
**/
IHANDLE *
MmGetNextLocateByRegisterNotify (
IN OUT LOCATE_POSITION *Position,
OUT VOID **Interface
)
{
IHANDLE *Handle;
PROTOCOL_NOTIFY *ProtNotify;
PROTOCOL_INTERFACE *Prot;
LIST_ENTRY *Link;
Handle = NULL;
*Interface = NULL;
ProtNotify = Position->SearchKey;
//
// If this is the first request, get the next handle
//
if (ProtNotify != NULL) {
ASSERT (ProtNotify->Signature == PROTOCOL_NOTIFY_SIGNATURE);
Position->SearchKey = NULL;
//
// If not at the end of the list, get the next handle
//
Link = ProtNotify->Position->ForwardLink;
if (Link != &ProtNotify->Protocol->Protocols) {
Prot = CR (Link, PROTOCOL_INTERFACE, ByProtocol, PROTOCOL_INTERFACE_SIGNATURE);
Handle = Prot->Handle;
*Interface = Prot->Interface;
}
}
return Handle;
}
/**
Routine to get the next Handle, when you are searching for a given protocol.
@param Position Information about which Handle to seach for.
@param Interface Return the interface structure for the matching
protocol.
@return An pointer to IHANDLE if the next Position is not the end of the list.
Otherwise,NULL is returned.
**/
IHANDLE *
MmGetNextLocateByProtocol (
IN OUT LOCATE_POSITION *Position,
OUT VOID **Interface
)
{
IHANDLE *Handle;
LIST_ENTRY *Link;
PROTOCOL_INTERFACE *Prot;
Handle = NULL;
*Interface = NULL;
for (; ;) {
//
// Next entry
//
Link = Position->Position->ForwardLink;
Position->Position = Link;
//
// If not at the end, return the handle
//
if (Link == &Position->ProtEntry->Protocols) {
Handle = NULL;
break;
}
//
// Get the handle
//
Prot = CR (Link, PROTOCOL_INTERFACE, ByProtocol, PROTOCOL_INTERFACE_SIGNATURE);
Handle = Prot->Handle;
*Interface = Prot->Interface;
//
// If this handle has not been returned this request, then
// return it now
//
if (Handle->LocateRequest != mEfiLocateHandleRequest) {
Handle->LocateRequest = mEfiLocateHandleRequest;
break;
}
}
return Handle;
}
/**
Return the first Protocol Interface that matches the Protocol GUID. If
Registration is passed in return a Protocol Instance that was just add
to the system. If Registration is NULL return the first Protocol Interface
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
you find.
@param Protocol The protocol to search for
@param Registration Optional Registration Key returned from
RegisterProtocolNotify()
@param Interface Return the Protocol interface (instance).
@retval EFI_SUCCESS If a valid Interface is returned
@retval EFI_INVALID_PARAMETER Invalid parameter
@retval EFI_NOT_FOUND Protocol interface not found
**/
EFI_STATUS
EFIAPI
MmLocateProtocol (
IN EFI_GUID *Protocol,
IN VOID *Registration OPTIONAL,
OUT VOID **Interface
)
{
EFI_STATUS Status;
LOCATE_POSITION Position;
PROTOCOL_NOTIFY *ProtNotify;
IHANDLE *Handle;
if ((Interface == NULL) || (Protocol == NULL)) {
return EFI_INVALID_PARAMETER;
}
*Interface = NULL;
Status = EFI_SUCCESS;
//
// Set initial position
//
Position.Protocol = Protocol;
Position.SearchKey = Registration;
Position.Position = &gHandleList;
mEfiLocateHandleRequest += 1;
if (Registration == NULL) {
//
// Look up the protocol entry and set the head pointer
//
Position.ProtEntry = MmFindProtocolEntry (Protocol, FALSE);
if (Position.ProtEntry == NULL) {
return EFI_NOT_FOUND;
}
Position.Position = &Position.ProtEntry->Protocols;
Handle = MmGetNextLocateByProtocol (&Position, Interface);
} else {
Handle = MmGetNextLocateByRegisterNotify (&Position, Interface);
}
if (Handle == NULL) {
Status = EFI_NOT_FOUND;
} else if (Registration != NULL) {
//
// If this is a search by register notify and a handle was
// returned, update the register notification position
//
ProtNotify = Registration;
ProtNotify->Position = ProtNotify->Position->ForwardLink;
}
return Status;
}
/**
Locates the requested handle(s) and returns them in Buffer.
@param SearchType The type of search to perform to locate the
handles
@param Protocol The protocol to search for
@param SearchKey Dependant on SearchType
@param BufferSize On input the size of Buffer. On output the
size of data returned.
@param Buffer The buffer to return the results in
@retval EFI_BUFFER_TOO_SMALL Buffer too small, required buffer size is
returned in BufferSize.
@retval EFI_INVALID_PARAMETER Invalid parameter
@retval EFI_SUCCESS Successfully found the requested handle(s) and
returns them in Buffer.
**/
EFI_STATUS
EFIAPI
MmLocateHandle (
IN EFI_LOCATE_SEARCH_TYPE SearchType,
IN EFI_GUID *Protocol OPTIONAL,
IN VOID *SearchKey OPTIONAL,
IN OUT UINTN *BufferSize,
OUT EFI_HANDLE *Buffer
)
{
EFI_STATUS Status;
LOCATE_POSITION Position;
PROTOCOL_NOTIFY *ProtNotify;
CORE_GET_NEXT GetNext;
UINTN ResultSize;
IHANDLE *Handle;
IHANDLE **ResultBuffer;
VOID *Interface;
if (BufferSize == NULL) {
return EFI_INVALID_PARAMETER;
}
if ((*BufferSize > 0) && (Buffer == NULL)) {
return EFI_INVALID_PARAMETER;
}
GetNext = NULL;
//
// Set initial position
//
Position.Protocol = Protocol;
Position.SearchKey = SearchKey;
Position.Position = &gHandleList;
ResultSize = 0;
ResultBuffer = (IHANDLE **) Buffer;
Status = EFI_SUCCESS;
//
// Get the search function based on type
//
switch (SearchType) {
case AllHandles:
GetNext = MmGetNextLocateAllHandles;
break;
case ByRegisterNotify:
GetNext = MmGetNextLocateByRegisterNotify;
//
// Must have SearchKey for locate ByRegisterNotify
//
if (SearchKey == NULL) {
Status = EFI_INVALID_PARAMETER;
}
break;
case ByProtocol:
GetNext = MmGetNextLocateByProtocol;
if (Protocol == NULL) {
Status = EFI_INVALID_PARAMETER;
break;
}
//
// Look up the protocol entry and set the head pointer
//
Position.ProtEntry = MmFindProtocolEntry (Protocol, FALSE);
if (Position.ProtEntry == NULL) {
Status = EFI_NOT_FOUND;
break;
}
Position.Position = &Position.ProtEntry->Protocols;
break;
default:
Status = EFI_INVALID_PARAMETER;
break;
}
if (EFI_ERROR (Status)) {
return Status;
}
//
// Enumerate out the matching handles
//
mEfiLocateHandleRequest += 1;
for (; ;) {
//
// Get the next handle. If no more handles, stop
//
Handle = GetNext (&Position, &Interface);
if (NULL == Handle) {
break;
}
//
// Increase the resulting buffer size, and if this handle
// fits return it
//
ResultSize += sizeof (Handle);
if (ResultSize <= *BufferSize) {
*ResultBuffer = Handle;
ResultBuffer += 1;
}
}
//
// If the result is a zero length buffer, then there were no
// matching handles
//
if (ResultSize == 0) {
Status = EFI_NOT_FOUND;
} else {
//
// Return the resulting buffer size. If it's larger than what
// was passed, then set the error code
//
if (ResultSize > *BufferSize) {
Status = EFI_BUFFER_TOO_SMALL;
}
*BufferSize = ResultSize;
if (SearchType == ByRegisterNotify && !EFI_ERROR (Status)) {
ASSERT (SearchKey != NULL);
//
// If this is a search by register notify and a handle was
// returned, update the register notification position
//
ProtNotify = SearchKey;
ProtNotify->Position = ProtNotify->Position->ForwardLink;
}
}
return Status;
}
/**
Function returns an array of handles that support the requested protocol
in a buffer allocated from pool. This is a version of MmLocateHandle()
that allocates a buffer for the caller.
@param SearchType Specifies which handle(s) are to be returned.
@param Protocol Provides the protocol to search by. This
parameter is only valid for SearchType
ByProtocol.
@param SearchKey Supplies the search key depending on the
SearchType.
@param NumberHandles The number of handles returned in Buffer.
@param Buffer A pointer to the buffer to return the requested
array of handles that support Protocol.
@retval EFI_SUCCESS The result array of handles was returned.
@retval EFI_NOT_FOUND No handles match the search.
@retval EFI_OUT_OF_RESOURCES There is not enough pool memory to store the
matching results.
@retval EFI_INVALID_PARAMETER One or more parameters are not valid.
**/
EFI_STATUS
EFIAPI
MmLocateHandleBuffer (
IN EFI_LOCATE_SEARCH_TYPE SearchType,
IN EFI_GUID *Protocol OPTIONAL,
IN VOID *SearchKey OPTIONAL,
IN OUT UINTN *NumberHandles,
OUT EFI_HANDLE **Buffer
)
{
EFI_STATUS Status;
UINTN BufferSize;
if (NumberHandles == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
BufferSize = 0;
*NumberHandles = 0;
*Buffer = NULL;
Status = MmLocateHandle (
SearchType,
Protocol,
SearchKey,
&BufferSize,
*Buffer
);
//
// LocateHandleBuffer() returns incorrect status code if SearchType is
// invalid.
//
// Add code to correctly handle expected errors from MmLocateHandle().
//
if (EFI_ERROR (Status) && Status != EFI_BUFFER_TOO_SMALL) {
if (Status != EFI_INVALID_PARAMETER) {
Status = EFI_NOT_FOUND;
}
return Status;
}
*Buffer = AllocatePool (BufferSize);
if (*Buffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Status = MmLocateHandle (
SearchType,
Protocol,
SearchKey,
&BufferSize,
*Buffer
);
*NumberHandles = BufferSize / sizeof(EFI_HANDLE);
if (EFI_ERROR (Status)) {
*NumberHandles = 0;
}
return Status;
}