audk/MdeModulePkg/Core/Dxe/DxeMain/DxeMain.c

961 lines
36 KiB
C
Raw Normal View History

/** @file
DXE Core Main Entry Point
Copyright (c) 2006 - 2022, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "DxeMain.h"
//
// DXE Core Global Variables for Protocols from PEI
//
EFI_HANDLE mDecompressHandle = NULL;
//
// DXE Core globals for Architecture Protocols
//
EFI_SECURITY_ARCH_PROTOCOL *gSecurity = NULL;
EFI_SECURITY2_ARCH_PROTOCOL *gSecurity2 = NULL;
EFI_CPU_ARCH_PROTOCOL *gCpu = NULL;
EFI_METRONOME_ARCH_PROTOCOL *gMetronome = NULL;
EFI_TIMER_ARCH_PROTOCOL *gTimer = NULL;
EFI_BDS_ARCH_PROTOCOL *gBds = NULL;
EFI_WATCHDOG_TIMER_ARCH_PROTOCOL *gWatchdogTimer = NULL;
//
// DXE Core globals for optional protocol dependencies
//
EFI_SMM_BASE2_PROTOCOL *gSmmBase2 = NULL;
//
// DXE Core Global used to update core loaded image protocol handle
//
EFI_GUID *gDxeCoreFileName;
EFI_LOADED_IMAGE_PROTOCOL *gDxeCoreLoadedImage;
//
// DXE Core Module Variables
//
EFI_BOOT_SERVICES mBootServices = {
{
EFI_BOOT_SERVICES_SIGNATURE, // Signature
EFI_BOOT_SERVICES_REVISION, // Revision
sizeof (EFI_BOOT_SERVICES), // HeaderSize
0, // CRC32
0 // Reserved
},
(EFI_RAISE_TPL)CoreRaiseTpl, // RaiseTPL
(EFI_RESTORE_TPL)CoreRestoreTpl, // RestoreTPL
(EFI_ALLOCATE_PAGES)CoreAllocatePages, // AllocatePages
(EFI_FREE_PAGES)CoreFreePages, // FreePages
(EFI_GET_MEMORY_MAP)CoreGetMemoryMap, // GetMemoryMap
(EFI_ALLOCATE_POOL)CoreAllocatePool, // AllocatePool
(EFI_FREE_POOL)CoreFreePool, // FreePool
(EFI_CREATE_EVENT)CoreCreateEvent, // CreateEvent
(EFI_SET_TIMER)CoreSetTimer, // SetTimer
(EFI_WAIT_FOR_EVENT)CoreWaitForEvent, // WaitForEvent
(EFI_SIGNAL_EVENT)CoreSignalEvent, // SignalEvent
(EFI_CLOSE_EVENT)CoreCloseEvent, // CloseEvent
(EFI_CHECK_EVENT)CoreCheckEvent, // CheckEvent
(EFI_INSTALL_PROTOCOL_INTERFACE)CoreInstallProtocolInterface, // InstallProtocolInterface
(EFI_REINSTALL_PROTOCOL_INTERFACE)CoreReinstallProtocolInterface, // ReinstallProtocolInterface
(EFI_UNINSTALL_PROTOCOL_INTERFACE)CoreUninstallProtocolInterface, // UninstallProtocolInterface
(EFI_HANDLE_PROTOCOL)CoreHandleProtocol, // HandleProtocol
(VOID *)NULL, // Reserved
(EFI_REGISTER_PROTOCOL_NOTIFY)CoreRegisterProtocolNotify, // RegisterProtocolNotify
(EFI_LOCATE_HANDLE)CoreLocateHandle, // LocateHandle
(EFI_LOCATE_DEVICE_PATH)CoreLocateDevicePath, // LocateDevicePath
(EFI_INSTALL_CONFIGURATION_TABLE)CoreInstallConfigurationTable, // InstallConfigurationTable
(EFI_IMAGE_LOAD)CoreLoadImage, // LoadImage
(EFI_IMAGE_START)CoreStartImage, // StartImage
(EFI_EXIT)CoreExit, // Exit
(EFI_IMAGE_UNLOAD)CoreUnloadImage, // UnloadImage
(EFI_EXIT_BOOT_SERVICES)CoreExitBootServices, // ExitBootServices
(EFI_GET_NEXT_MONOTONIC_COUNT)CoreEfiNotAvailableYetArg1, // GetNextMonotonicCount
(EFI_STALL)CoreStall, // Stall
(EFI_SET_WATCHDOG_TIMER)CoreSetWatchdogTimer, // SetWatchdogTimer
(EFI_CONNECT_CONTROLLER)CoreConnectController, // ConnectController
(EFI_DISCONNECT_CONTROLLER)CoreDisconnectController, // DisconnectController
(EFI_OPEN_PROTOCOL)CoreOpenProtocol, // OpenProtocol
(EFI_CLOSE_PROTOCOL)CoreCloseProtocol, // CloseProtocol
(EFI_OPEN_PROTOCOL_INFORMATION)CoreOpenProtocolInformation, // OpenProtocolInformation
(EFI_PROTOCOLS_PER_HANDLE)CoreProtocolsPerHandle, // ProtocolsPerHandle
(EFI_LOCATE_HANDLE_BUFFER)CoreLocateHandleBuffer, // LocateHandleBuffer
(EFI_LOCATE_PROTOCOL)CoreLocateProtocol, // LocateProtocol
(EFI_INSTALL_MULTIPLE_PROTOCOL_INTERFACES)CoreInstallMultipleProtocolInterfaces, // InstallMultipleProtocolInterfaces
(EFI_UNINSTALL_MULTIPLE_PROTOCOL_INTERFACES)CoreUninstallMultipleProtocolInterfaces, // UninstallMultipleProtocolInterfaces
(EFI_CALCULATE_CRC32)CoreEfiNotAvailableYetArg3, // CalculateCrc32
(EFI_COPY_MEM)CopyMem, // CopyMem
(EFI_SET_MEM)SetMem, // SetMem
(EFI_CREATE_EVENT_EX)CoreCreateEventEx // CreateEventEx
};
EFI_DXE_SERVICES mDxeServices = {
{
DXE_SERVICES_SIGNATURE, // Signature
DXE_SERVICES_REVISION, // Revision
sizeof (DXE_SERVICES), // HeaderSize
0, // CRC32
0 // Reserved
},
(EFI_ADD_MEMORY_SPACE)CoreAddMemorySpace, // AddMemorySpace
(EFI_ALLOCATE_MEMORY_SPACE)CoreAllocateMemorySpace, // AllocateMemorySpace
(EFI_FREE_MEMORY_SPACE)CoreFreeMemorySpace, // FreeMemorySpace
(EFI_REMOVE_MEMORY_SPACE)CoreRemoveMemorySpace, // RemoveMemorySpace
(EFI_GET_MEMORY_SPACE_DESCRIPTOR)CoreGetMemorySpaceDescriptor, // GetMemorySpaceDescriptor
(EFI_SET_MEMORY_SPACE_ATTRIBUTES)CoreSetMemorySpaceAttributes, // SetMemorySpaceAttributes
(EFI_GET_MEMORY_SPACE_MAP)CoreGetMemorySpaceMap, // GetMemorySpaceMap
(EFI_ADD_IO_SPACE)CoreAddIoSpace, // AddIoSpace
(EFI_ALLOCATE_IO_SPACE)CoreAllocateIoSpace, // AllocateIoSpace
(EFI_FREE_IO_SPACE)CoreFreeIoSpace, // FreeIoSpace
(EFI_REMOVE_IO_SPACE)CoreRemoveIoSpace, // RemoveIoSpace
(EFI_GET_IO_SPACE_DESCRIPTOR)CoreGetIoSpaceDescriptor, // GetIoSpaceDescriptor
(EFI_GET_IO_SPACE_MAP)CoreGetIoSpaceMap, // GetIoSpaceMap
(EFI_DISPATCH)CoreDispatcher, // Dispatch
(EFI_SCHEDULE)CoreSchedule, // Schedule
(EFI_TRUST)CoreTrust, // Trust
(EFI_PROCESS_FIRMWARE_VOLUME)CoreProcessFirmwareVolume, // ProcessFirmwareVolume
(EFI_SET_MEMORY_SPACE_CAPABILITIES)CoreSetMemorySpaceCapabilities, // SetMemorySpaceCapabilities
};
EFI_SYSTEM_TABLE mEfiSystemTableTemplate = {
{
EFI_SYSTEM_TABLE_SIGNATURE, // Signature
EFI_SYSTEM_TABLE_REVISION, // Revision
sizeof (EFI_SYSTEM_TABLE), // HeaderSize
0, // CRC32
0 // Reserved
},
NULL, // FirmwareVendor
0, // FirmwareRevision
NULL, // ConsoleInHandle
NULL, // ConIn
NULL, // ConsoleOutHandle
NULL, // ConOut
NULL, // StandardErrorHandle
NULL, // StdErr
NULL, // RuntimeServices
&mBootServices, // BootServices
0, // NumberOfConfigurationTableEntries
NULL // ConfigurationTable
};
EFI_RUNTIME_SERVICES mEfiRuntimeServicesTableTemplate = {
{
EFI_RUNTIME_SERVICES_SIGNATURE, // Signature
EFI_RUNTIME_SERVICES_REVISION, // Revision
sizeof (EFI_RUNTIME_SERVICES), // HeaderSize
0, // CRC32
0 // Reserved
},
(EFI_GET_TIME)CoreEfiNotAvailableYetArg2, // GetTime
(EFI_SET_TIME)CoreEfiNotAvailableYetArg1, // SetTime
(EFI_GET_WAKEUP_TIME)CoreEfiNotAvailableYetArg3, // GetWakeupTime
(EFI_SET_WAKEUP_TIME)CoreEfiNotAvailableYetArg2, // SetWakeupTime
(EFI_SET_VIRTUAL_ADDRESS_MAP)CoreEfiNotAvailableYetArg4, // SetVirtualAddressMap
(EFI_CONVERT_POINTER)CoreEfiNotAvailableYetArg2, // ConvertPointer
(EFI_GET_VARIABLE)CoreEfiNotAvailableYetArg5, // GetVariable
(EFI_GET_NEXT_VARIABLE_NAME)CoreEfiNotAvailableYetArg3, // GetNextVariableName
(EFI_SET_VARIABLE)CoreEfiNotAvailableYetArg5, // SetVariable
(EFI_GET_NEXT_HIGH_MONO_COUNT)CoreEfiNotAvailableYetArg1, // GetNextHighMonotonicCount
(EFI_RESET_SYSTEM)CoreEfiNotAvailableYetArg4, // ResetSystem
(EFI_UPDATE_CAPSULE)CoreEfiNotAvailableYetArg3, // UpdateCapsule
(EFI_QUERY_CAPSULE_CAPABILITIES)CoreEfiNotAvailableYetArg4, // QueryCapsuleCapabilities
(EFI_QUERY_VARIABLE_INFO)CoreEfiNotAvailableYetArg4 // QueryVariableInfo
};
EFI_RUNTIME_ARCH_PROTOCOL gRuntimeTemplate = {
INITIALIZE_LIST_HEAD_VARIABLE (gRuntimeTemplate.ImageHead),
INITIALIZE_LIST_HEAD_VARIABLE (gRuntimeTemplate.EventHead),
//
// Make sure Size != sizeof (EFI_MEMORY_DESCRIPTOR). This will
// prevent people from having pointer math bugs in their code.
// now you have to use *DescriptorSize to make things work.
//
sizeof (EFI_MEMORY_DESCRIPTOR) + sizeof (UINT64) - (sizeof (EFI_MEMORY_DESCRIPTOR) % sizeof (UINT64)),
EFI_MEMORY_DESCRIPTOR_VERSION,
0,
NULL,
NULL,
FALSE,
FALSE
};
EFI_RUNTIME_ARCH_PROTOCOL *gRuntime = &gRuntimeTemplate;
//
// DXE Core Global Variables for the EFI System Table, Boot Services Table,
// DXE Services Table, and Runtime Services Table
//
EFI_DXE_SERVICES *gDxeCoreDS = &mDxeServices;
EFI_SYSTEM_TABLE *gDxeCoreST = NULL;
//
// For debug initialize gDxeCoreRT to template. gDxeCoreRT must be allocated from RT memory
// but gDxeCoreRT is used for ASSERT () and DEBUG () type macros so lets give it
// a value that will not cause debug infrastructure to crash early on.
//
EFI_RUNTIME_SERVICES *gDxeCoreRT = &mEfiRuntimeServicesTableTemplate;
EFI_HANDLE gDxeCoreImageHandle = NULL;
BOOLEAN gMemoryMapTerminated = FALSE;
//
// EFI Decompress Protocol
//
EFI_DECOMPRESS_PROTOCOL gEfiDecompress = {
DxeMainUefiDecompressGetInfo,
DxeMainUefiDecompress
};
//
// For Loading modules at fixed address feature, the configuration table is to cache the top address below which to load
// Runtime code&boot time code
//
GLOBAL_REMOVE_IF_UNREFERENCED EFI_LOAD_FIXED_ADDRESS_CONFIGURATION_TABLE gLoadModuleAtFixAddressConfigurationTable = { 0, 0 };
// Main entry point to the DXE Core
//
/**
Main entry point to DXE Core.
@param HobStart Pointer to the beginning of the HOB List from PEI.
@return This function should never return.
**/
VOID
EFIAPI
DxeMain (
IN VOID *HobStart
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS MemoryBaseAddress;
UINT64 MemoryLength;
PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
UINTN Index;
EFI_HOB_GUID_TYPE *GuidHob;
EFI_VECTOR_HANDOFF_INFO *VectorInfoList;
EFI_VECTOR_HANDOFF_INFO *VectorInfo;
VOID *EntryPoint;
//
// Setup the default exception handlers
//
VectorInfoList = NULL;
GuidHob = GetNextGuidHob (&gEfiVectorHandoffInfoPpiGuid, HobStart);
if (GuidHob != NULL) {
VectorInfoList = (EFI_VECTOR_HANDOFF_INFO *)(GET_GUID_HOB_DATA (GuidHob));
}
CpuException: Add InitializeSeparateExceptionStacks Today InitializeCpuExceptionHandlersEx is called from three modules: 1. DxeCore (links to DxeCpuExceptionHandlerLib) DxeCore expects it initializes the IDT entries as well as assigning separate stacks for #DF and #PF. 2. CpuMpPei (links to PeiCpuExceptionHandlerLib) and CpuDxe (links to DxeCpuExceptionHandlerLib) It's called for each thread for only assigning separate stacks for #DF and #PF. The IDT entries initialization is skipped because caller sets InitData->X64.InitDefaultHandlers to FALSE. Additionally, SecPeiCpuExceptionHandlerLib, SmmCpuExceptionHandlerLib also implement such API and the behavior of the API is simply to initialize IDT entries only. Because it mixes the IDT entries initialization and separate stacks assignment for certain exception handlers together, in order to know whether the function call only initializes IDT entries, or assigns stacks, we need to check: 1. value of InitData->X64.InitDefaultHandlers 2. library instance This patch cleans up the code to separate the stack assignment to a new API: InitializeSeparateExceptionStacks(). Only when caller calls the new API, the separate stacks are assigned. With this change, the SecPei and Smm instance can return unsupported which gives caller a very clear status. The old API InitializeCpuExceptionHandlersEx() is removed in this patch. Because no platform module is consuming the old API, the impact is none. Signed-off-by: Ray Ni <ray.ni@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Jian J Wang <jian.j.wang@intel.com>
2022-05-20 13:12:35 +02:00
Status = InitializeCpuExceptionHandlers (VectorInfoList);
ASSERT_EFI_ERROR (Status);
//
// Setup Stack Guard
//
if (PcdGetBool (PcdCpuStackGuard)) {
Status = InitializeSeparateExceptionStacks (NULL, NULL);
ASSERT_EFI_ERROR (Status);
}
//
// Initialize Debug Agent to support source level debug in DXE phase
//
InitializeDebugAgent (DEBUG_AGENT_INIT_DXE_CORE, HobStart, NULL);
//
// Initialize Memory Services
//
CoreInitializeMemoryServices (&HobStart, &MemoryBaseAddress, &MemoryLength);
MemoryProfileInit (HobStart);
//
// Allocate the EFI System Table and EFI Runtime Service Table from EfiRuntimeServicesData
// Use the templates to initialize the contents of the EFI System Table and EFI Runtime Services Table
//
gDxeCoreST = AllocateRuntimeCopyPool (sizeof (EFI_SYSTEM_TABLE), &mEfiSystemTableTemplate);
ASSERT (gDxeCoreST != NULL);
gDxeCoreRT = AllocateRuntimeCopyPool (sizeof (EFI_RUNTIME_SERVICES), &mEfiRuntimeServicesTableTemplate);
ASSERT (gDxeCoreRT != NULL);
gDxeCoreST->RuntimeServices = gDxeCoreRT;
//
// Start the Image Services.
//
Status = CoreInitializeImageServices (HobStart);
ASSERT_EFI_ERROR (Status);
//
// Initialize the Global Coherency Domain Services
//
Status = CoreInitializeGcdServices (&HobStart, MemoryBaseAddress, MemoryLength);
ASSERT_EFI_ERROR (Status);
//
// Call constructor for all libraries
//
ProcessLibraryConstructorList (gDxeCoreImageHandle, gDxeCoreST);
PERF_CROSSMODULE_END ("PEI");
PERF_CROSSMODULE_BEGIN ("DXE");
MdeModulePkg/Core/Dxe: log memory base and length, after lib ctors again CoreInitializeMemoryServices() logs "BaseAddress" and "Length" with DEBUG() before DxeMain() calls ProcessLibraryConstructorList() explicitly. (Library construction is not an automatic part of the DXE Core entry point.) So those DEBUG()s in CoreInitializeMemoryServices() are issued against an un-constructed DebugLib, and also against a -- possibly underlying -- un-constructed SerialPortLib. Some DebugLib instances can deal with this (see for example commit 91a5b1365075, "OvmfPkg/PlatformDebugLibIoPort: fix port detection for use in the DXE Core", 2018-08-06), while some others can't (see for example the DebugLib instance "MdePkg/Library/BaseDebugLibSerialPort/BaseDebugLibSerialPort.inf" coupled with the SerialPortLib instance "ArmVirtPkg/Library/FdtPL011SerialPortLib/FdtPL011SerialPortLib.inf"). Addressing this issue in a SerialPortLib instance that underlies BaseDebugLibSerialPort seems wrong; either the DebugLib instance should cope directly with being called un-constructed (see again commit 91a5b1365075), or the DXE Core should log relevant information *at least* after library instances have been constructed. This patch implements the latter (only for the "BaseAddress" and "Length" values calculated by CoreInitializeMemoryServices()). Cc: Ard Biesheuvel <ard.biesheuvel@arm.com> Cc: Dandan Bi <dandan.bi@intel.com> Cc: Hao A Wu <hao.a.wu@intel.com> Cc: Jeff Brasen <jbrasen@nvidia.com> Cc: Jian J Wang <jian.j.wang@intel.com> Cc: Leif Lindholm <leif@nuviainc.com> Cc: Liming Gao <gaoliming@byosoft.com.cn> Cc: Philippe Mathieu-Daudé <philmd@redhat.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Message-Id: <20201103161557.30621-1-lersek@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Liming Gao <gaoliming@byosoft.com.cn>
2020-11-03 17:15:57 +01:00
//
// Log MemoryBaseAddress and MemoryLength again (from
// CoreInitializeMemoryServices()), now that library constructors have
// executed.
//
DEBUG ((
DEBUG_INFO,
"%a: MemoryBaseAddress=0x%Lx MemoryLength=0x%Lx\n",
__FUNCTION__,
MemoryBaseAddress,
MemoryLength
));
MdeModulePkg/Core/Dxe: log memory base and length, after lib ctors again CoreInitializeMemoryServices() logs "BaseAddress" and "Length" with DEBUG() before DxeMain() calls ProcessLibraryConstructorList() explicitly. (Library construction is not an automatic part of the DXE Core entry point.) So those DEBUG()s in CoreInitializeMemoryServices() are issued against an un-constructed DebugLib, and also against a -- possibly underlying -- un-constructed SerialPortLib. Some DebugLib instances can deal with this (see for example commit 91a5b1365075, "OvmfPkg/PlatformDebugLibIoPort: fix port detection for use in the DXE Core", 2018-08-06), while some others can't (see for example the DebugLib instance "MdePkg/Library/BaseDebugLibSerialPort/BaseDebugLibSerialPort.inf" coupled with the SerialPortLib instance "ArmVirtPkg/Library/FdtPL011SerialPortLib/FdtPL011SerialPortLib.inf"). Addressing this issue in a SerialPortLib instance that underlies BaseDebugLibSerialPort seems wrong; either the DebugLib instance should cope directly with being called un-constructed (see again commit 91a5b1365075), or the DXE Core should log relevant information *at least* after library instances have been constructed. This patch implements the latter (only for the "BaseAddress" and "Length" values calculated by CoreInitializeMemoryServices()). Cc: Ard Biesheuvel <ard.biesheuvel@arm.com> Cc: Dandan Bi <dandan.bi@intel.com> Cc: Hao A Wu <hao.a.wu@intel.com> Cc: Jeff Brasen <jbrasen@nvidia.com> Cc: Jian J Wang <jian.j.wang@intel.com> Cc: Leif Lindholm <leif@nuviainc.com> Cc: Liming Gao <gaoliming@byosoft.com.cn> Cc: Philippe Mathieu-Daudé <philmd@redhat.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Message-Id: <20201103161557.30621-1-lersek@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Liming Gao <gaoliming@byosoft.com.cn>
2020-11-03 17:15:57 +01:00
//
// Report DXE Core image information to the PE/COFF Extra Action Library
//
ZeroMem (&ImageContext, sizeof (ImageContext));
ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)gDxeCoreLoadedImage->ImageBase;
ImageContext.PdbPointer = PeCoffLoaderGetPdbPointer ((VOID *)(UINTN)ImageContext.ImageAddress);
ImageContext.SizeOfHeaders = PeCoffGetSizeOfHeaders ((VOID *)(UINTN)ImageContext.ImageAddress);
Status = PeCoffLoaderGetEntryPoint ((VOID *)(UINTN)ImageContext.ImageAddress, &EntryPoint);
if (Status == EFI_SUCCESS) {
ImageContext.EntryPoint = (EFI_PHYSICAL_ADDRESS)(UINTN)EntryPoint;
}
ImageContext.Handle = (VOID *)(UINTN)gDxeCoreLoadedImage->ImageBase;
ImageContext.ImageRead = PeCoffLoaderImageReadFromMemory;
PeCoffLoaderRelocateImageExtraAction (&ImageContext);
//
// Install the DXE Services Table into the EFI System Tables's Configuration Table
//
Status = CoreInstallConfigurationTable (&gEfiDxeServicesTableGuid, gDxeCoreDS);
ASSERT_EFI_ERROR (Status);
//
// Install the HOB List into the EFI System Tables's Configuration Table
//
Status = CoreInstallConfigurationTable (&gEfiHobListGuid, HobStart);
ASSERT_EFI_ERROR (Status);
//
// Install Memory Type Information Table into the EFI System Tables's Configuration Table
//
Status = CoreInstallConfigurationTable (&gEfiMemoryTypeInformationGuid, &gMemoryTypeInformation);
ASSERT_EFI_ERROR (Status);
//
// If Loading modules At fixed address feature is enabled, install Load moduels at fixed address
// Configuration Table so that user could easily to retrieve the top address to load Dxe and PEI
// Code and Tseg base to load SMM driver.
//
if (PcdGet64 (PcdLoadModuleAtFixAddressEnable) != 0) {
Status = CoreInstallConfigurationTable (&gLoadFixedAddressConfigurationTableGuid, &gLoadModuleAtFixAddressConfigurationTable);
ASSERT_EFI_ERROR (Status);
}
//
// Report Status Code here for DXE_ENTRY_POINT once it is available
//
REPORT_STATUS_CODE (
EFI_PROGRESS_CODE,
(EFI_SOFTWARE_DXE_CORE | EFI_SW_DXE_CORE_PC_ENTRY_POINT)
);
//
// Create the aligned system table pointer structure that is used by external
// debuggers to locate the system table... Also, install debug image info
// configuration table.
//
CoreInitializeDebugImageInfoTable ();
CoreNewDebugImageInfoEntry (
EFI_DEBUG_IMAGE_INFO_TYPE_NORMAL,
gDxeCoreLoadedImage,
gDxeCoreImageHandle
);
DEBUG ((DEBUG_INFO | DEBUG_LOAD, "HOBLIST address in DXE = 0x%p\n", HobStart));
DEBUG_CODE_BEGIN ();
EFI_PEI_HOB_POINTERS Hob;
for (Hob.Raw = HobStart; !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) {
if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_MEMORY_ALLOCATION) {
DEBUG ((
DEBUG_INFO | DEBUG_LOAD,
"Memory Allocation 0x%08x 0x%0lx - 0x%0lx\n", \
Hob.MemoryAllocation->AllocDescriptor.MemoryType, \
Hob.MemoryAllocation->AllocDescriptor.MemoryBaseAddress, \
Hob.MemoryAllocation->AllocDescriptor.MemoryBaseAddress + Hob.MemoryAllocation->AllocDescriptor.MemoryLength - 1
));
}
}
for (Hob.Raw = HobStart; !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) {
if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_FV) {
DEBUG ((
DEBUG_INFO | DEBUG_LOAD,
"FV Hob 0x%0lx - 0x%0lx\n",
Hob.FirmwareVolume->BaseAddress,
Hob.FirmwareVolume->BaseAddress + Hob.FirmwareVolume->Length - 1
));
} else if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_FV2) {
DEBUG ((
DEBUG_INFO | DEBUG_LOAD,
"FV2 Hob 0x%0lx - 0x%0lx\n",
Hob.FirmwareVolume2->BaseAddress,
Hob.FirmwareVolume2->BaseAddress + Hob.FirmwareVolume2->Length - 1
));
DEBUG ((
DEBUG_INFO | DEBUG_LOAD,
" %g - %g\n",
&Hob.FirmwareVolume2->FvName,
&Hob.FirmwareVolume2->FileName
));
} else if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_FV3) {
DEBUG ((
DEBUG_INFO | DEBUG_LOAD,
"FV3 Hob 0x%0lx - 0x%0lx - 0x%x - 0x%x\n",
Hob.FirmwareVolume3->BaseAddress,
Hob.FirmwareVolume3->BaseAddress + Hob.FirmwareVolume3->Length - 1,
Hob.FirmwareVolume3->AuthenticationStatus,
Hob.FirmwareVolume3->ExtractedFv
));
if (Hob.FirmwareVolume3->ExtractedFv) {
DEBUG ((
DEBUG_INFO | DEBUG_LOAD,
" %g - %g\n",
&Hob.FirmwareVolume3->FvName,
&Hob.FirmwareVolume3->FileName
));
}
}
}
DEBUG_CODE_END ();
//
// Initialize the Event Services
//
Status = CoreInitializeEventServices ();
ASSERT_EFI_ERROR (Status);
MemoryProfileInstallProtocol ();
CoreInitializeMemoryAttributesTable ();
MdeModulePkg/DxeCore: Add UEFI image protection. If the UEFI image is page aligned, the image code section is set to read only and the image data section is set to non-executable. 1) This policy is applied for all UEFI image including boot service driver, runtime driver or application. 2) This policy is applied only if the UEFI image meets the page alignment requirement. 3) This policy is applied only if the Source UEFI image matches the PcdImageProtectionPolicy definition. 4) This policy is not applied to the non-PE image region. The DxeCore calls CpuArchProtocol->SetMemoryAttributes() to protect the image. If the CpuArch protocol is not installed yet, the DxeCore enqueues the protection request. Once the CpuArch is installed, the DxeCore dequeues the protection request and applies policy. Once the image is unloaded, the protection is removed automatically. The UEFI runtime image protection is teared down at ExitBootServices(), the runtime image code relocation need write code segment at SetVirtualAddressMap(). We cannot assume OS/Loader has taken over page table at that time. NOTE: It is per-requisite that code section and data section should not be not merged. That is same criteria for SMM/runtime driver. We are not able to detect during BIOS boot, because we can only get LINK warning below: "LINK : warning LNK4254: section '.data' (C0000040) merged into '.text' (60000020) with different attributes" But final attribute in PE code section is same. Cc: Star Zeng <star.zeng@intel.com> Cc: Feng Tian <feng.tian@intel.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Jiewen Yao <jiewen.yao@intel.com> Reviewed-by: Jeff Fan <jeff.fan@intel.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2017-01-14 08:04:10 +01:00
CoreInitializeMemoryProtection ();
//
// Get persisted vector hand-off info from GUIDeed HOB again due to HobStart may be updated,
// and install configuration table
//
GuidHob = GetNextGuidHob (&gEfiVectorHandoffInfoPpiGuid, HobStart);
if (GuidHob != NULL) {
VectorInfoList = (EFI_VECTOR_HANDOFF_INFO *)(GET_GUID_HOB_DATA (GuidHob));
VectorInfo = VectorInfoList;
Index = 1;
while (VectorInfo->Attribute != EFI_VECTOR_HANDOFF_LAST_ENTRY) {
VectorInfo++;
Index++;
}
VectorInfo = AllocateCopyPool (sizeof (EFI_VECTOR_HANDOFF_INFO) * Index, (VOID *)VectorInfoList);
ASSERT (VectorInfo != NULL);
Status = CoreInstallConfigurationTable (&gEfiVectorHandoffTableGuid, (VOID *)VectorInfo);
ASSERT_EFI_ERROR (Status);
}
//
// Get the Protocols that were passed in from PEI to DXE through GUIDed HOBs
//
// These Protocols are not architectural. This implementation is sharing code between
// PEI and DXE in order to save FLASH space. These Protocols could also be implemented
// as part of the DXE Core. However, that would also require the DXE Core to be ported
// each time a different CPU is used, a different Decompression algorithm is used, or a
// different Image type is used. By placing these Protocols in PEI, the DXE Core remains
// generic, and only PEI and the Arch Protocols need to be ported from Platform to Platform,
// and from CPU to CPU.
//
//
// Publish the EFI, Tiano, and Custom Decompress protocols for use by other DXE components
//
Status = CoreInstallMultipleProtocolInterfaces (
&mDecompressHandle,
&gEfiDecompressProtocolGuid,
&gEfiDecompress,
NULL
);
ASSERT_EFI_ERROR (Status);
//
// Register for the GUIDs of the Architectural Protocols, so the rest of the
// EFI Boot Services and EFI Runtime Services tables can be filled in.
// Also register for the GUIDs of optional protocols.
//
CoreNotifyOnProtocolInstallation ();
//
// Produce Firmware Volume Protocols, one for each FV in the HOB list.
//
Status = FwVolBlockDriverInit (gDxeCoreImageHandle, gDxeCoreST);
ASSERT_EFI_ERROR (Status);
Status = FwVolDriverInit (gDxeCoreImageHandle, gDxeCoreST);
ASSERT_EFI_ERROR (Status);
//
// Produce the Section Extraction Protocol
//
Status = InitializeSectionExtraction (gDxeCoreImageHandle, gDxeCoreST);
ASSERT_EFI_ERROR (Status);
//
// Initialize the DXE Dispatcher
//
CoreInitializeDispatcher ();
//
// Invoke the DXE Dispatcher
//
CoreDispatcher ();
//
// Display Architectural protocols that were not loaded if this is DEBUG build
//
DEBUG_CODE_BEGIN ();
CoreDisplayMissingArchProtocols ();
DEBUG_CODE_END ();
//
// Display any drivers that were not dispatched because dependency expression
// evaluated to false if this is a debug build
//
DEBUG_CODE_BEGIN ();
CoreDisplayDiscoveredNotDispatched ();
DEBUG_CODE_END ();
//
// Assert if the Architectural Protocols are not present.
//
Status = CoreAllEfiServicesAvailable ();
if (EFI_ERROR (Status)) {
//
// Report Status code that some Architectural Protocols are not present.
//
REPORT_STATUS_CODE (
EFI_ERROR_CODE | EFI_ERROR_MAJOR,
(EFI_SOFTWARE_DXE_CORE | EFI_SW_DXE_CORE_EC_NO_ARCH)
);
}
ASSERT_EFI_ERROR (Status);
//
// Report Status code before transfer control to BDS
//
REPORT_STATUS_CODE (
EFI_PROGRESS_CODE,
(EFI_SOFTWARE_DXE_CORE | EFI_SW_DXE_CORE_PC_HANDOFF_TO_NEXT)
);
//
// Transfer control to the BDS Architectural Protocol
//
gBds->Entry (gBds);
//
// BDS should never return
//
ASSERT (FALSE);
CpuDeadLoop ();
UNREACHABLE ();
}
/**
Place holder function until all the Boot Services and Runtime Services are
available.
@param Arg1 Undefined
@return EFI_NOT_AVAILABLE_YET
**/
EFI_STATUS
EFIAPI
CoreEfiNotAvailableYetArg1 (
UINTN Arg1
)
{
//
// This function should never be executed. If it does, then the architectural protocols
// have not been designed correctly. The CpuBreakpoint () is commented out for now until the
// DXE Core and all the Architectural Protocols are complete.
//
return EFI_NOT_AVAILABLE_YET;
}
/**
Place holder function until all the Boot Services and Runtime Services are available.
@param Arg1 Undefined
@param Arg2 Undefined
@return EFI_NOT_AVAILABLE_YET
**/
EFI_STATUS
EFIAPI
CoreEfiNotAvailableYetArg2 (
UINTN Arg1,
UINTN Arg2
)
{
//
// This function should never be executed. If it does, then the architectural protocols
// have not been designed correctly. The CpuBreakpoint () is commented out for now until the
// DXE Core and all the Architectural Protocols are complete.
//
return EFI_NOT_AVAILABLE_YET;
}
/**
Place holder function until all the Boot Services and Runtime Services are available.
@param Arg1 Undefined
@param Arg2 Undefined
@param Arg3 Undefined
@return EFI_NOT_AVAILABLE_YET
**/
EFI_STATUS
EFIAPI
CoreEfiNotAvailableYetArg3 (
UINTN Arg1,
UINTN Arg2,
UINTN Arg3
)
{
//
// This function should never be executed. If it does, then the architectural protocols
// have not been designed correctly. The CpuBreakpoint () is commented out for now until the
// DXE Core and all the Architectural Protocols are complete.
//
return EFI_NOT_AVAILABLE_YET;
}
/**
Place holder function until all the Boot Services and Runtime Services are available.
@param Arg1 Undefined
@param Arg2 Undefined
@param Arg3 Undefined
@param Arg4 Undefined
@return EFI_NOT_AVAILABLE_YET
**/
EFI_STATUS
EFIAPI
CoreEfiNotAvailableYetArg4 (
UINTN Arg1,
UINTN Arg2,
UINTN Arg3,
UINTN Arg4
)
{
//
// This function should never be executed. If it does, then the architectural protocols
// have not been designed correctly. The CpuBreakpoint () is commented out for now until the
// DXE Core and all the Architectural Protocols are complete.
//
return EFI_NOT_AVAILABLE_YET;
}
/**
Place holder function until all the Boot Services and Runtime Services are available.
@param Arg1 Undefined
@param Arg2 Undefined
@param Arg3 Undefined
@param Arg4 Undefined
@param Arg5 Undefined
@return EFI_NOT_AVAILABLE_YET
**/
EFI_STATUS
EFIAPI
CoreEfiNotAvailableYetArg5 (
UINTN Arg1,
UINTN Arg2,
UINTN Arg3,
UINTN Arg4,
UINTN Arg5
)
{
//
// This function should never be executed. If it does, then the architectural protocols
// have not been designed correctly. The CpuBreakpoint () is commented out for now until the
// DXE Core and all the Architectural Protocols are complete.
//
return EFI_NOT_AVAILABLE_YET;
}
/**
Calcualte the 32-bit CRC in a EFI table using the service provided by the
gRuntime service.
@param Hdr Pointer to an EFI standard header
**/
VOID
CalculateEfiHdrCrc (
IN OUT EFI_TABLE_HEADER *Hdr
)
{
UINT32 Crc;
Hdr->CRC32 = 0;
//
// If gBS->CalculateCrce32 () == CoreEfiNotAvailableYet () then
// Crc will come back as zero if we set it to zero here
//
Crc = 0;
gBS->CalculateCrc32 ((UINT8 *)Hdr, Hdr->HeaderSize, &Crc);
Hdr->CRC32 = Crc;
}
/**
Terminates all boot services.
@param ImageHandle Handle that identifies the exiting image.
@param MapKey Key to the latest memory map.
@retval EFI_SUCCESS Boot Services terminated
@retval EFI_INVALID_PARAMETER MapKey is incorrect.
**/
EFI_STATUS
EFIAPI
CoreExitBootServices (
IN EFI_HANDLE ImageHandle,
IN UINTN MapKey
)
{
EFI_STATUS Status;
//
// Disable Timer
//
gTimer->SetTimerPeriod (gTimer, 0);
//
// Terminate memory services if the MapKey matches
//
Status = CoreTerminateMemoryMap (MapKey);
if (EFI_ERROR (Status)) {
//
// Notify other drivers that ExitBootServices fail
//
CoreNotifySignalList (&gEventExitBootServicesFailedGuid);
return Status;
}
gMemoryMapTerminated = TRUE;
//
// Notify other drivers that we are exiting boot services.
//
CoreNotifySignalList (&gEfiEventExitBootServicesGuid);
//
// Report that ExitBootServices() has been called
//
REPORT_STATUS_CODE (
EFI_PROGRESS_CODE,
(EFI_SOFTWARE_EFI_BOOT_SERVICE | EFI_SW_BS_PC_EXIT_BOOT_SERVICES)
);
MemoryProtectionExitBootServicesCallback ();
//
// Disable interrupt of Debug timer.
//
SaveAndSetDebugTimerInterrupt (FALSE);
//
// Disable CPU Interrupts
//
gCpu->DisableInterrupt (gCpu);
//
// Clear the non-runtime values of the EFI System Table
//
gDxeCoreST->BootServices = NULL;
gDxeCoreST->ConIn = NULL;
gDxeCoreST->ConsoleInHandle = NULL;
gDxeCoreST->ConOut = NULL;
gDxeCoreST->ConsoleOutHandle = NULL;
gDxeCoreST->StdErr = NULL;
gDxeCoreST->StandardErrorHandle = NULL;
//
// Recompute the 32-bit CRC of the EFI System Table
//
CalculateEfiHdrCrc (&gDxeCoreST->Hdr);
//
// Zero out the Boot Service Table
//
ZeroMem (gBS, sizeof (EFI_BOOT_SERVICES));
gBS = NULL;
//
// Update the AtRuntime field in Runtiem AP.
//
gRuntime->AtRuntime = TRUE;
return Status;
}
/**
Given a compressed source buffer, this function retrieves the size of the
uncompressed buffer and the size of the scratch buffer required to decompress
the compressed source buffer.
The GetInfo() function retrieves the size of the uncompressed buffer and the
temporary scratch buffer required to decompress the buffer specified by Source
and SourceSize. If the size of the uncompressed buffer or the size of the
scratch buffer cannot be determined from the compressed data specified by
Source and SourceData, then EFI_INVALID_PARAMETER is returned. Otherwise, the
size of the uncompressed buffer is returned in DestinationSize, the size of
the scratch buffer is returned in ScratchSize, and EFI_SUCCESS is returned.
The GetInfo() function does not have scratch buffer available to perform a
thorough checking of the validity of the source data. It just retrieves the
"Original Size" field from the beginning bytes of the source data and output
it as DestinationSize. And ScratchSize is specific to the decompression
implementation.
@param This A pointer to the EFI_DECOMPRESS_PROTOCOL instance.
@param Source The source buffer containing the compressed data.
@param SourceSize The size, in bytes, of the source buffer.
@param DestinationSize A pointer to the size, in bytes, of the
uncompressed buffer that will be generated when the
compressed buffer specified by Source and
SourceSize is decompressed.
@param ScratchSize A pointer to the size, in bytes, of the scratch
buffer that is required to decompress the
compressed buffer specified by Source and
SourceSize.
@retval EFI_SUCCESS The size of the uncompressed data was returned in
DestinationSize and the size of the scratch buffer
was returned in ScratchSize.
@retval EFI_INVALID_PARAMETER The size of the uncompressed data or the size of
the scratch buffer cannot be determined from the
compressed data specified by Source and
SourceSize.
**/
EFI_STATUS
EFIAPI
DxeMainUefiDecompressGetInfo (
IN EFI_DECOMPRESS_PROTOCOL *This,
IN VOID *Source,
IN UINT32 SourceSize,
OUT UINT32 *DestinationSize,
OUT UINT32 *ScratchSize
)
{
if ((Source == NULL) || (DestinationSize == NULL) || (ScratchSize == NULL)) {
return EFI_INVALID_PARAMETER;
}
return UefiDecompressGetInfo (Source, SourceSize, DestinationSize, ScratchSize);
}
/**
Decompresses a compressed source buffer.
The Decompress() function extracts decompressed data to its original form.
This protocol is designed so that the decompression algorithm can be
implemented without using any memory services. As a result, the Decompress()
Function is not allowed to call AllocatePool() or AllocatePages() in its
implementation. It is the caller's responsibility to allocate and free the
Destination and Scratch buffers.
If the compressed source data specified by Source and SourceSize is
successfully decompressed into Destination, then EFI_SUCCESS is returned. If
the compressed source data specified by Source and SourceSize is not in a
valid compressed data format, then EFI_INVALID_PARAMETER is returned.
@param This A pointer to the EFI_DECOMPRESS_PROTOCOL instance.
@param Source The source buffer containing the compressed data.
@param SourceSize SourceSizeThe size of source data.
@param Destination On output, the destination buffer that contains
the uncompressed data.
@param DestinationSize The size of the destination buffer. The size of
the destination buffer needed is obtained from
EFI_DECOMPRESS_PROTOCOL.GetInfo().
@param Scratch A temporary scratch buffer that is used to perform
the decompression.
@param ScratchSize The size of scratch buffer. The size of the
scratch buffer needed is obtained from GetInfo().
@retval EFI_SUCCESS Decompression completed successfully, and the
uncompressed buffer is returned in Destination.
@retval EFI_INVALID_PARAMETER The source buffer specified by Source and
SourceSize is corrupted (not in a valid
compressed format).
**/
EFI_STATUS
EFIAPI
DxeMainUefiDecompress (
IN EFI_DECOMPRESS_PROTOCOL *This,
IN VOID *Source,
IN UINT32 SourceSize,
IN OUT VOID *Destination,
IN UINT32 DestinationSize,
IN OUT VOID *Scratch,
IN UINT32 ScratchSize
)
{
EFI_STATUS Status;
UINT32 TestDestinationSize;
UINT32 TestScratchSize;
if ((Source == NULL) || (Destination == NULL) || (Scratch == NULL)) {
return EFI_INVALID_PARAMETER;
}
Status = UefiDecompressGetInfo (Source, SourceSize, &TestDestinationSize, &TestScratchSize);
if (EFI_ERROR (Status)) {
return Status;
}
if ((ScratchSize < TestScratchSize) || (DestinationSize < TestDestinationSize)) {
return RETURN_INVALID_PARAMETER;
}
return UefiDecompress (Source, Destination, Scratch);
}