audk/StandaloneMmPkg/Core/Dispatcher.c

906 lines
31 KiB
C
Raw Normal View History

StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
/** @file
MM Driver Dispatcher.
Step #1 - When a FV protocol is added to the system every driver in the FV
is added to the mDiscoveredList. The Before, and After Depex are
pre-processed as drivers are added to the mDiscoveredList. If an Apriori
file exists in the FV those drivers are addeded to the
mScheduledQueue. The mFvHandleList is used to make sure a
FV is only processed once.
Step #2 - Dispatch. Remove driver from the mScheduledQueue and load and
start it. After mScheduledQueue is drained check the
mDiscoveredList to see if any item has a Depex that is ready to
be placed on the mScheduledQueue.
Step #3 - Adding to the mScheduledQueue requires that you process Before
and After dependencies. This is done recursively as the call to add
to the mScheduledQueue checks for Before and recursively adds
all Befores. It then addes the item that was passed in and then
processess the After dependecies by recursively calling the routine.
Dispatcher Rules:
The rules for the dispatcher are similar to the DXE dispatcher.
The rules for DXE dispatcher are in chapter 10 of the DXE CIS. Figure 10-3
is the state diagram for the DXE dispatcher
Depex - Dependency Expresion.
Copyright (c) 2014, Hewlett-Packard Development Company, L.P.
Copyright (c) 2009 - 2014, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2016 - 2018, ARM Limited. All rights reserved.<BR>
This program and the accompanying materials are licensed and made available
under the terms and conditions of the BSD License which accompanies this
distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "StandaloneMmCore.h"
//
// MM Dispatcher Data structures
//
#define KNOWN_HANDLE_SIGNATURE SIGNATURE_32('k','n','o','w')
typedef struct {
UINTN Signature;
LIST_ENTRY Link; // mFvHandleList
EFI_HANDLE Handle;
} KNOWN_HANDLE;
//
// Function Prototypes
//
EFI_STATUS
MmCoreFfsFindMmDriver (
IN EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader
);
/**
Insert InsertedDriverEntry onto the mScheduledQueue. To do this you
must add any driver with a before dependency on InsertedDriverEntry first.
You do this by recursively calling this routine. After all the Befores are
processed you can add InsertedDriverEntry to the mScheduledQueue.
Then you can add any driver with an After dependency on InsertedDriverEntry
by recursively calling this routine.
@param InsertedDriverEntry The driver to insert on the ScheduledLink Queue
**/
VOID
MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (
IN EFI_MM_DRIVER_ENTRY *InsertedDriverEntry
);
//
// The Driver List contains one copy of every driver that has been discovered.
// Items are never removed from the driver list. List of EFI_MM_DRIVER_ENTRY
//
LIST_ENTRY mDiscoveredList = INITIALIZE_LIST_HEAD_VARIABLE (mDiscoveredList);
//
// Queue of drivers that are ready to dispatch. This queue is a subset of the
// mDiscoveredList.list of EFI_MM_DRIVER_ENTRY.
//
LIST_ENTRY mScheduledQueue = INITIALIZE_LIST_HEAD_VARIABLE (mScheduledQueue);
//
// List of handles who's Fv's have been parsed and added to the mFwDriverList.
//
LIST_ENTRY mFvHandleList = INITIALIZE_LIST_HEAD_VARIABLE (mFvHandleList);
//
// Flag for the MM Dispacher. TRUE if dispatcher is execuing.
//
BOOLEAN gDispatcherRunning = FALSE;
//
// Flag for the MM Dispacher. TRUE if there is one or more MM drivers ready to be dispatched
//
BOOLEAN gRequestDispatch = FALSE;
//
// The global variable is defined for Loading modules at fixed address feature to track the MM code
// memory range usage. It is a bit mapped array in which every bit indicates the correspoding
// memory page available or not.
//
GLOBAL_REMOVE_IF_UNREFERENCED UINT64 *mMmCodeMemoryRangeUsageBitMap=NULL;
/**
To check memory usage bit map array to figure out if the memory range in which the image will be loaded
is available or not. If memory range is avaliable, the function will mark the correponding bits to 1
which indicates the memory range is used. The function is only invoked when load modules at fixed address
feature is enabled.
@param ImageBase The base addres the image will be loaded at.
@param ImageSize The size of the image
@retval EFI_SUCCESS The memory range the image will be loaded in is available
@retval EFI_NOT_FOUND The memory range the image will be loaded in is not available
**/
EFI_STATUS
CheckAndMarkFixLoadingMemoryUsageBitMap (
IN EFI_PHYSICAL_ADDRESS ImageBase,
IN UINTN ImageSize
)
{
UINT32 MmCodePageNumber;
UINT64 MmCodeSize;
EFI_PHYSICAL_ADDRESS MmCodeBase;
UINTN BaseOffsetPageNumber;
UINTN TopOffsetPageNumber;
UINTN Index;
//
// Build tool will calculate the smm code size and then patch the PcdLoadFixAddressMmCodePageNumber
//
MmCodePageNumber = 0;
MmCodeSize = EFI_PAGES_TO_SIZE (MmCodePageNumber);
MmCodeBase = gLoadModuleAtFixAddressMmramBase;
//
// If the memory usage bit map is not initialized, do it. Every bit in the array
// indicate the status of the corresponding memory page, available or not
//
if (mMmCodeMemoryRangeUsageBitMap == NULL) {
mMmCodeMemoryRangeUsageBitMap = AllocateZeroPool (((MmCodePageNumber / 64) + 1) * sizeof (UINT64));
}
//
// If the Dxe code memory range is not allocated or the bit map array allocation failed, return EFI_NOT_FOUND
//
if (mMmCodeMemoryRangeUsageBitMap == NULL) {
return EFI_NOT_FOUND;
}
//
// see if the memory range for loading the image is in the MM code range.
//
if (MmCodeBase + MmCodeSize < ImageBase + ImageSize || MmCodeBase > ImageBase) {
return EFI_NOT_FOUND;
}
//
// Test if the memory is avalaible or not.
//
BaseOffsetPageNumber = (UINTN)EFI_SIZE_TO_PAGES ((UINT32)(ImageBase - MmCodeBase));
TopOffsetPageNumber = (UINTN)EFI_SIZE_TO_PAGES ((UINT32)(ImageBase + ImageSize - MmCodeBase));
for (Index = BaseOffsetPageNumber; Index < TopOffsetPageNumber; Index ++) {
if ((mMmCodeMemoryRangeUsageBitMap[Index / 64] & LShiftU64 (1, (Index % 64))) != 0) {
//
// This page is already used.
//
return EFI_NOT_FOUND;
}
}
//
// Being here means the memory range is available. So mark the bits for the memory range
//
for (Index = BaseOffsetPageNumber; Index < TopOffsetPageNumber; Index ++) {
mMmCodeMemoryRangeUsageBitMap[Index / 64] |= LShiftU64 (1, (Index % 64));
}
return EFI_SUCCESS;
}
/**
Get the fixed loading address from image header assigned by build tool. This function only be called
when Loading module at Fixed address feature enabled.
@param ImageContext Pointer to the image context structure that describes the PE/COFF
image that needs to be examined by this function.
@retval EFI_SUCCESS An fixed loading address is assigned to this image by build tools .
@retval EFI_NOT_FOUND The image has no assigned fixed loadding address.
**/
EFI_STATUS
GetPeCoffImageFixLoadingAssignedAddress(
IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
)
{
UINTN SectionHeaderOffset;
EFI_STATUS Status;
EFI_IMAGE_SECTION_HEADER SectionHeader;
EFI_IMAGE_OPTIONAL_HEADER_UNION *ImgHdr;
EFI_PHYSICAL_ADDRESS FixLoadingAddress;
UINT16 Index;
UINTN Size;
UINT16 NumberOfSections;
UINT64 ValueInSectionHeader;
FixLoadingAddress = 0;
Status = EFI_NOT_FOUND;
//
// Get PeHeader pointer
//
ImgHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)((CHAR8* )ImageContext->Handle + ImageContext->PeCoffHeaderOffset);
SectionHeaderOffset = ImageContext->PeCoffHeaderOffset + sizeof (UINT32) + sizeof (EFI_IMAGE_FILE_HEADER) +
ImgHdr->Pe32.FileHeader.SizeOfOptionalHeader;
NumberOfSections = ImgHdr->Pe32.FileHeader.NumberOfSections;
//
// Get base address from the first section header that doesn't point to code section.
//
for (Index = 0; Index < NumberOfSections; Index++) {
//
// Read section header from file
//
Size = sizeof (EFI_IMAGE_SECTION_HEADER);
Status = ImageContext->ImageRead (
ImageContext->Handle,
SectionHeaderOffset,
&Size,
&SectionHeader
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = EFI_NOT_FOUND;
if ((SectionHeader.Characteristics & EFI_IMAGE_SCN_CNT_CODE) == 0) {
//
// Build tool will save the address in PointerToRelocations & PointerToLineNumbers fields
// in the first section header that doesn't point to code section in image header. So there
// is an assumption that when the feature is enabled, if a module with a loading address
// assigned by tools, the PointerToRelocations & PointerToLineNumbers fields should not be
// Zero, or else, these 2 fields should be set to Zero
//
ValueInSectionHeader = ReadUnaligned64 ((UINT64*)&SectionHeader.PointerToRelocations);
if (ValueInSectionHeader != 0) {
//
// Found first section header that doesn't point to code section in which build tool saves the
// offset to SMRAM base as image base in PointerToRelocations & PointerToLineNumbers fields
//
FixLoadingAddress = (EFI_PHYSICAL_ADDRESS)(gLoadModuleAtFixAddressMmramBase + (INT64)ValueInSectionHeader);
//
// Check if the memory range is available.
//
Status = CheckAndMarkFixLoadingMemoryUsageBitMap (FixLoadingAddress, (UINTN)(ImageContext->ImageSize + ImageContext->SectionAlignment));
if (!EFI_ERROR(Status)) {
//
// The assigned address is valid. Return the specified loading address
//
ImageContext->ImageAddress = FixLoadingAddress;
}
}
break;
}
SectionHeaderOffset += sizeof (EFI_IMAGE_SECTION_HEADER);
}
DEBUG ((DEBUG_INFO|DEBUG_LOAD, "LOADING MODULE FIXED INFO: Loading module at fixed address %x, Status = %r\n",
FixLoadingAddress, Status));
return Status;
}
/**
Loads an EFI image into SMRAM.
@param DriverEntry EFI_MM_DRIVER_ENTRY instance
@return EFI_STATUS
**/
EFI_STATUS
EFIAPI
MmLoadImage (
IN OUT EFI_MM_DRIVER_ENTRY *DriverEntry
)
{
UINTN PageCount;
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS DstBuffer;
PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
DEBUG ((DEBUG_INFO, "MmLoadImage - %g\n", &DriverEntry->FileName));
Status = EFI_SUCCESS;
//
// Initialize ImageContext
//
ImageContext.Handle = DriverEntry->Pe32Data;
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
ImageContext.ImageRead = PeCoffLoaderImageReadFromMemory;
//
// Get information about the image being loaded
//
Status = PeCoffLoaderGetImageInfo (&ImageContext);
if (EFI_ERROR (Status)) {
return Status;
}
PageCount = (UINTN)EFI_SIZE_TO_PAGES ((UINTN)ImageContext.ImageSize + ImageContext.SectionAlignment);
DstBuffer = (UINTN)(-1);
Status = MmAllocatePages (
AllocateMaxAddress,
EfiRuntimeServicesCode,
PageCount,
&DstBuffer
);
if (EFI_ERROR (Status)) {
return Status;
}
ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)DstBuffer;
//
// Align buffer on section boundry
//
ImageContext.ImageAddress += ImageContext.SectionAlignment - 1;
ImageContext.ImageAddress &= ~((EFI_PHYSICAL_ADDRESS)(ImageContext.SectionAlignment - 1));
//
// Load the image to our new buffer
//
Status = PeCoffLoaderLoadImage (&ImageContext);
if (EFI_ERROR (Status)) {
MmFreePages (DstBuffer, PageCount);
return Status;
}
//
// Relocate the image in our new buffer
//
Status = PeCoffLoaderRelocateImage (&ImageContext);
if (EFI_ERROR (Status)) {
MmFreePages (DstBuffer, PageCount);
return Status;
}
//
// Flush the instruction cache so the image data are written before we execute it
//
InvalidateInstructionCacheRange ((VOID *)(UINTN) ImageContext.ImageAddress, (UINTN) ImageContext.ImageSize);
//
// Save Image EntryPoint in DriverEntry
//
DriverEntry->ImageEntryPoint = ImageContext.EntryPoint;
DriverEntry->ImageBuffer = DstBuffer;
DriverEntry->NumberOfPage = PageCount;
if (mEfiSystemTable != NULL) {
Status = mEfiSystemTable->BootServices->AllocatePool (
EfiBootServicesData,
sizeof (EFI_LOADED_IMAGE_PROTOCOL),
(VOID **)&DriverEntry->LoadedImage
);
if (EFI_ERROR (Status)) {
MmFreePages (DstBuffer, PageCount);
return Status;
}
ZeroMem (DriverEntry->LoadedImage, sizeof (EFI_LOADED_IMAGE_PROTOCOL));
//
// Fill in the remaining fields of the Loaded Image Protocol instance.
// Note: ImageBase is an SMRAM address that can not be accessed outside of SMRAM if SMRAM window is closed.
//
DriverEntry->LoadedImage->Revision = EFI_LOADED_IMAGE_PROTOCOL_REVISION;
DriverEntry->LoadedImage->ParentHandle = NULL;
DriverEntry->LoadedImage->SystemTable = mEfiSystemTable;
DriverEntry->LoadedImage->DeviceHandle = NULL;
DriverEntry->LoadedImage->FilePath = NULL;
DriverEntry->LoadedImage->ImageBase = (VOID *)(UINTN)DriverEntry->ImageBuffer;
DriverEntry->LoadedImage->ImageSize = ImageContext.ImageSize;
DriverEntry->LoadedImage->ImageCodeType = EfiRuntimeServicesCode;
DriverEntry->LoadedImage->ImageDataType = EfiRuntimeServicesData;
//
// Create a new image handle in the UEFI handle database for the MM Driver
//
DriverEntry->ImageHandle = NULL;
Status = mEfiSystemTable->BootServices->InstallMultipleProtocolInterfaces (
&DriverEntry->ImageHandle,
&gEfiLoadedImageProtocolGuid,
DriverEntry->LoadedImage,
NULL
);
}
//
// Print the load address and the PDB file name if it is available
//
DEBUG_CODE_BEGIN ();
UINTN Index;
UINTN StartIndex;
CHAR8 EfiFileName[256];
DEBUG ((DEBUG_INFO | DEBUG_LOAD,
"Loading MM driver at 0x%11p EntryPoint=0x%11p ",
(VOID *)(UINTN) ImageContext.ImageAddress,
FUNCTION_ENTRY_POINT (ImageContext.EntryPoint)));
//
// Print Module Name by Pdb file path.
// Windows and Unix style file path are all trimmed correctly.
//
if (ImageContext.PdbPointer != NULL) {
StartIndex = 0;
for (Index = 0; ImageContext.PdbPointer[Index] != 0; Index++) {
if ((ImageContext.PdbPointer[Index] == '\\') || (ImageContext.PdbPointer[Index] == '/')) {
StartIndex = Index + 1;
}
}
//
// Copy the PDB file name to our temporary string, and replace .pdb with .efi
// The PDB file name is limited in the range of 0~255.
// If the length is bigger than 255, trim the redudant characters to avoid overflow in array boundary.
//
for (Index = 0; Index < sizeof (EfiFileName) - 4; Index++) {
EfiFileName[Index] = ImageContext.PdbPointer[Index + StartIndex];
if (EfiFileName[Index] == 0) {
EfiFileName[Index] = '.';
}
if (EfiFileName[Index] == '.') {
EfiFileName[Index + 1] = 'e';
EfiFileName[Index + 2] = 'f';
EfiFileName[Index + 3] = 'i';
EfiFileName[Index + 4] = 0;
break;
}
}
if (Index == sizeof (EfiFileName) - 4) {
EfiFileName[Index] = 0;
}
DEBUG ((DEBUG_INFO | DEBUG_LOAD, "%a", EfiFileName));
}
DEBUG ((DEBUG_INFO | DEBUG_LOAD, "\n"));
DEBUG_CODE_END ();
return Status;
}
/**
Preprocess dependency expression and update DriverEntry to reflect the
state of Before and After dependencies. If DriverEntry->Before
or DriverEntry->After is set it will never be cleared.
@param DriverEntry DriverEntry element to update .
@retval EFI_SUCCESS It always works.
**/
EFI_STATUS
MmPreProcessDepex (
IN EFI_MM_DRIVER_ENTRY *DriverEntry
)
{
UINT8 *Iterator;
Iterator = DriverEntry->Depex;
DriverEntry->Dependent = TRUE;
if (*Iterator == EFI_DEP_BEFORE) {
DriverEntry->Before = TRUE;
} else if (*Iterator == EFI_DEP_AFTER) {
DriverEntry->After = TRUE;
}
if (DriverEntry->Before || DriverEntry->After) {
CopyMem (&DriverEntry->BeforeAfterGuid, Iterator + 1, sizeof (EFI_GUID));
}
return EFI_SUCCESS;
}
/**
Read Depex and pre-process the Depex for Before and After. If Section Extraction
protocol returns an error via ReadSection defer the reading of the Depex.
@param DriverEntry Driver to work on.
@retval EFI_SUCCESS Depex read and preprossesed
@retval EFI_PROTOCOL_ERROR The section extraction protocol returned an error
and Depex reading needs to be retried.
@retval Error DEPEX not found.
**/
EFI_STATUS
MmGetDepexSectionAndPreProccess (
IN EFI_MM_DRIVER_ENTRY *DriverEntry
)
{
EFI_STATUS Status;
//
// Data already read
//
if (DriverEntry->Depex == NULL) {
Status = EFI_NOT_FOUND;
} else {
Status = EFI_SUCCESS;
}
if (EFI_ERROR (Status)) {
if (Status == EFI_PROTOCOL_ERROR) {
//
// The section extraction protocol failed so set protocol error flag
//
DriverEntry->DepexProtocolError = TRUE;
} else {
//
// If no Depex assume depend on all architectural protocols
//
DriverEntry->Depex = NULL;
DriverEntry->Dependent = TRUE;
DriverEntry->DepexProtocolError = FALSE;
}
} else {
//
// Set Before and After state information based on Depex
// Driver will be put in Dependent state
//
MmPreProcessDepex (DriverEntry);
DriverEntry->DepexProtocolError = FALSE;
}
return Status;
}
/**
This is the main Dispatcher for MM and it exits when there are no more
drivers to run. Drain the mScheduledQueue and load and start a PE
image for each driver. Search the mDiscoveredList to see if any driver can
be placed on the mScheduledQueue. If no drivers are placed on the
mScheduledQueue exit the function.
@retval EFI_SUCCESS All of the MM Drivers that could be dispatched
have been run and the MM Entry Point has been
registered.
@retval EFI_NOT_READY The MM Driver that registered the MM Entry Point
was just dispatched.
@retval EFI_NOT_FOUND There are no MM Drivers available to be dispatched.
@retval EFI_ALREADY_STARTED The MM Dispatcher is already running
**/
EFI_STATUS
MmDispatcher (
VOID
)
{
EFI_STATUS Status;
LIST_ENTRY *Link;
EFI_MM_DRIVER_ENTRY *DriverEntry;
BOOLEAN ReadyToRun;
DEBUG ((DEBUG_INFO, "MmDispatcher\n"));
if (!gRequestDispatch) {
DEBUG ((DEBUG_INFO, " !gRequestDispatch\n"));
return EFI_NOT_FOUND;
}
if (gDispatcherRunning) {
DEBUG ((DEBUG_INFO, " gDispatcherRunning\n"));
//
// If the dispatcher is running don't let it be restarted.
//
return EFI_ALREADY_STARTED;
}
gDispatcherRunning = TRUE;
do {
//
// Drain the Scheduled Queue
//
DEBUG ((DEBUG_INFO, " Drain the Scheduled Queue\n"));
while (!IsListEmpty (&mScheduledQueue)) {
DriverEntry = CR (
mScheduledQueue.ForwardLink,
EFI_MM_DRIVER_ENTRY,
ScheduledLink,
EFI_MM_DRIVER_ENTRY_SIGNATURE
);
DEBUG ((DEBUG_INFO, " DriverEntry (Scheduled) - %g\n", &DriverEntry->FileName));
//
// Load the MM Driver image into memory. If the Driver was transitioned from
// Untrused to Scheduled it would have already been loaded so we may need to
// skip the LoadImage
//
if (DriverEntry->ImageHandle == NULL) {
Status = MmLoadImage (DriverEntry);
//
// Update the driver state to reflect that it's been loaded
//
if (EFI_ERROR (Status)) {
//
// The MM Driver could not be loaded, and do not attempt to load or start it again.
// Take driver from Scheduled to Initialized.
//
DriverEntry->Initialized = TRUE;
DriverEntry->Scheduled = FALSE;
RemoveEntryList (&DriverEntry->ScheduledLink);
//
// If it's an error don't try the StartImage
//
continue;
}
}
DriverEntry->Scheduled = FALSE;
DriverEntry->Initialized = TRUE;
RemoveEntryList (&DriverEntry->ScheduledLink);
//
// For each MM driver, pass NULL as ImageHandle
//
if (mEfiSystemTable == NULL) {
DEBUG ((DEBUG_INFO, "StartImage - 0x%x (Standalone Mode)\n", DriverEntry->ImageEntryPoint));
Status = ((MM_IMAGE_ENTRY_POINT)(UINTN)DriverEntry->ImageEntryPoint) (DriverEntry->ImageHandle, &gMmCoreMmst);
} else {
DEBUG ((DEBUG_INFO, "StartImage - 0x%x (Tradition Mode)\n", DriverEntry->ImageEntryPoint));
Status = ((EFI_IMAGE_ENTRY_POINT)(UINTN)DriverEntry->ImageEntryPoint) (
DriverEntry->ImageHandle,
mEfiSystemTable
);
}
if (EFI_ERROR(Status)) {
DEBUG ((DEBUG_INFO, "StartImage Status - %r\n", Status));
MmFreePages(DriverEntry->ImageBuffer, DriverEntry->NumberOfPage);
}
}
//
// Search DriverList for items to place on Scheduled Queue
//
DEBUG ((DEBUG_INFO, " Search DriverList for items to place on Scheduled Queue\n"));
ReadyToRun = FALSE;
for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
DEBUG ((DEBUG_INFO, " DriverEntry (Discovered) - %g\n", &DriverEntry->FileName));
if (DriverEntry->DepexProtocolError) {
//
// If Section Extraction Protocol did not let the Depex be read before retry the read
//
Status = MmGetDepexSectionAndPreProccess (DriverEntry);
}
if (DriverEntry->Dependent) {
if (MmIsSchedulable (DriverEntry)) {
MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
ReadyToRun = TRUE;
}
}
}
} while (ReadyToRun);
//
// If there is no more MM driver to dispatch, stop the dispatch request
//
DEBUG ((DEBUG_INFO, " no more MM driver to dispatch, stop the dispatch request\n"));
gRequestDispatch = FALSE;
for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
DEBUG ((DEBUG_INFO, " DriverEntry (Discovered) - %g\n", &DriverEntry->FileName));
if (!DriverEntry->Initialized) {
//
// We have MM driver pending to dispatch
//
gRequestDispatch = TRUE;
break;
}
}
gDispatcherRunning = FALSE;
return EFI_SUCCESS;
}
/**
Insert InsertedDriverEntry onto the mScheduledQueue. To do this you
must add any driver with a before dependency on InsertedDriverEntry first.
You do this by recursively calling this routine. After all the Befores are
processed you can add InsertedDriverEntry to the mScheduledQueue.
Then you can add any driver with an After dependency on InsertedDriverEntry
by recursively calling this routine.
@param InsertedDriverEntry The driver to insert on the ScheduledLink Queue
**/
VOID
MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (
IN EFI_MM_DRIVER_ENTRY *InsertedDriverEntry
)
{
LIST_ENTRY *Link;
EFI_MM_DRIVER_ENTRY *DriverEntry;
//
// Process Before Dependency
//
for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
DriverEntry = CR(Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
if (DriverEntry->Before && DriverEntry->Dependent && DriverEntry != InsertedDriverEntry) {
DEBUG ((DEBUG_DISPATCH, "Evaluate MM DEPEX for FFS(%g)\n", &DriverEntry->FileName));
DEBUG ((DEBUG_DISPATCH, " BEFORE FFS(%g) = ", &DriverEntry->BeforeAfterGuid));
if (CompareGuid (&InsertedDriverEntry->FileName, &DriverEntry->BeforeAfterGuid)) {
//
// Recursively process BEFORE
//
DEBUG ((DEBUG_DISPATCH, "TRUE\n END\n RESULT = TRUE\n"));
MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
} else {
DEBUG ((DEBUG_DISPATCH, "FALSE\n END\n RESULT = FALSE\n"));
}
}
}
//
// Convert driver from Dependent to Scheduled state
//
InsertedDriverEntry->Dependent = FALSE;
InsertedDriverEntry->Scheduled = TRUE;
InsertTailList (&mScheduledQueue, &InsertedDriverEntry->ScheduledLink);
//
// Process After Dependency
//
for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
DriverEntry = CR(Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
if (DriverEntry->After && DriverEntry->Dependent && DriverEntry != InsertedDriverEntry) {
DEBUG ((DEBUG_DISPATCH, "Evaluate MM DEPEX for FFS(%g)\n", &DriverEntry->FileName));
DEBUG ((DEBUG_DISPATCH, " AFTER FFS(%g) = ", &DriverEntry->BeforeAfterGuid));
if (CompareGuid (&InsertedDriverEntry->FileName, &DriverEntry->BeforeAfterGuid)) {
//
// Recursively process AFTER
//
DEBUG ((DEBUG_DISPATCH, "TRUE\n END\n RESULT = TRUE\n"));
MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
} else {
DEBUG ((DEBUG_DISPATCH, "FALSE\n END\n RESULT = FALSE\n"));
}
}
}
}
/**
Return TRUE if the Fv has been processed, FALSE if not.
@param FvHandle The handle of a FV that's being tested
@retval TRUE Fv protocol on FvHandle has been processed
@retval FALSE Fv protocol on FvHandle has not yet been
processed
**/
BOOLEAN
FvHasBeenProcessed (
IN EFI_HANDLE FvHandle
)
{
LIST_ENTRY *Link;
KNOWN_HANDLE *KnownHandle;
for (Link = mFvHandleList.ForwardLink; Link != &mFvHandleList; Link = Link->ForwardLink) {
KnownHandle = CR (Link, KNOWN_HANDLE, Link, KNOWN_HANDLE_SIGNATURE);
if (KnownHandle->Handle == FvHandle) {
return TRUE;
}
}
return FALSE;
}
/**
Remember that Fv protocol on FvHandle has had it's drivers placed on the
mDiscoveredList. This fucntion adds entries on the mFvHandleList. Items are
never removed/freed from the mFvHandleList.
@param FvHandle The handle of a FV that has been processed
**/
VOID
FvIsBeingProcesssed (
IN EFI_HANDLE FvHandle
)
{
KNOWN_HANDLE *KnownHandle;
DEBUG ((DEBUG_INFO, "FvIsBeingProcesssed - 0x%08x\n", FvHandle));
KnownHandle = AllocatePool (sizeof (KNOWN_HANDLE));
ASSERT (KnownHandle != NULL);
KnownHandle->Signature = KNOWN_HANDLE_SIGNATURE;
KnownHandle->Handle = FvHandle;
InsertTailList (&mFvHandleList, &KnownHandle->Link);
}
/**
Add an entry to the mDiscoveredList. Allocate memory to store the DriverEntry,
and initilize any state variables. Read the Depex from the FV and store it
in DriverEntry. Pre-process the Depex to set the Before and After state.
The Discovered list is never free'ed and contains booleans that represent the
other possible MM driver states.
@param Fv Fv protocol, needed to read Depex info out of
FLASH.
@param FvHandle Handle for Fv, needed in the
EFI_MM_DRIVER_ENTRY so that the PE image can be
read out of the FV at a later time.
@param DriverName Name of driver to add to mDiscoveredList.
@retval EFI_SUCCESS If driver was added to the mDiscoveredList.
@retval EFI_ALREADY_STARTED The driver has already been started. Only one
DriverName may be active in the system at any one
time.
**/
EFI_STATUS
MmAddToDriverList (
IN EFI_HANDLE FvHandle,
IN VOID *Pe32Data,
IN UINTN Pe32DataSize,
IN VOID *Depex,
IN UINTN DepexSize,
IN EFI_GUID *DriverName
)
{
EFI_MM_DRIVER_ENTRY *DriverEntry;
DEBUG ((DEBUG_INFO, "MmAddToDriverList - %g (0x%08x)\n", DriverName, Pe32Data));
//
// Create the Driver Entry for the list. ZeroPool initializes lots of variables to
// NULL or FALSE.
//
DriverEntry = AllocateZeroPool (sizeof (EFI_MM_DRIVER_ENTRY));
ASSERT (DriverEntry != NULL);
DriverEntry->Signature = EFI_MM_DRIVER_ENTRY_SIGNATURE;
CopyGuid (&DriverEntry->FileName, DriverName);
DriverEntry->FvHandle = FvHandle;
DriverEntry->Pe32Data = Pe32Data;
DriverEntry->Pe32DataSize = Pe32DataSize;
DriverEntry->Depex = Depex;
DriverEntry->DepexSize = DepexSize;
MmGetDepexSectionAndPreProccess (DriverEntry);
InsertTailList (&mDiscoveredList, &DriverEntry->Link);
gRequestDispatch = TRUE;
return EFI_SUCCESS;
}
/**
Traverse the discovered list for any drivers that were discovered but not loaded
because the dependency experessions evaluated to false.
**/
VOID
MmDisplayDiscoveredNotDispatched (
VOID
)
{
LIST_ENTRY *Link;
EFI_MM_DRIVER_ENTRY *DriverEntry;
for (Link = mDiscoveredList.ForwardLink;Link !=&mDiscoveredList; Link = Link->ForwardLink) {
DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
if (DriverEntry->Dependent) {
DEBUG ((DEBUG_LOAD, "MM Driver %g was discovered but not loaded!!\n", &DriverEntry->FileName));
}
}
}