audk/MdeModulePkg/Core/DxeIplPeim/Ia32/DxeLoadFunc.c

462 lines
15 KiB
C
Raw Normal View History

/** @file
Ia32-specific functionality for DxeLoad.
Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "DxeIpl.h"
#include "VirtualMemory.h"
#define IDT_ENTRY_COUNT 32
typedef struct _X64_IDT_TABLE {
//
// Reserved 4 bytes preceding PeiService and IdtTable,
// since IDT base address should be 8-byte alignment.
//
UINT32 Reserved;
CONST EFI_PEI_SERVICES **PeiService;
X64_IDT_GATE_DESCRIPTOR IdtTable[IDT_ENTRY_COUNT];
} X64_IDT_TABLE;
//
// Global Descriptor Table (GDT)
//
GLOBAL_REMOVE_IF_UNREFERENCED IA32_GDT gGdtEntries[] = {
/* selector { Global Segment Descriptor } */
/* 0x00 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, //null descriptor
/* 0x08 */ {{0xffff, 0, 0, 0x2, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //linear data segment descriptor
/* 0x10 */ {{0xffff, 0, 0, 0xf, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //linear code segment descriptor
/* 0x18 */ {{0xffff, 0, 0, 0x3, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //system data segment descriptor
/* 0x20 */ {{0xffff, 0, 0, 0xa, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //system code segment descriptor
/* 0x28 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, //spare segment descriptor
/* 0x30 */ {{0xffff, 0, 0, 0x2, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //system data segment descriptor
/* 0x38 */ {{0xffff, 0, 0, 0xa, 1, 0, 1, 0xf, 0, 1, 0, 1, 0}}, //system code segment descriptor
/* 0x40 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, //spare segment descriptor
};
//
// IA32 Gdt register
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST IA32_DESCRIPTOR gGdt = {
sizeof (gGdtEntries) - 1,
(UINTN) gGdtEntries
};
GLOBAL_REMOVE_IF_UNREFERENCED IA32_DESCRIPTOR gLidtDescriptor = {
sizeof (X64_IDT_GATE_DESCRIPTOR) * IDT_ENTRY_COUNT - 1,
0
};
/**
Allocates and fills in the Page Directory and Page Table Entries to
establish a 4G page table.
@param[in] StackBase Stack base address.
@param[in] StackSize Stack size.
@return The address of page table.
**/
UINTN
Create4GPageTablesIa32Pae (
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize
)
{
UINT8 PhysicalAddressBits;
EFI_PHYSICAL_ADDRESS PhysicalAddress;
UINTN IndexOfPdpEntries;
UINTN IndexOfPageDirectoryEntries;
UINT32 NumberOfPdpEntriesNeeded;
PAGE_MAP_AND_DIRECTORY_POINTER *PageMap;
PAGE_MAP_AND_DIRECTORY_POINTER *PageDirectoryPointerEntry;
PAGE_TABLE_ENTRY *PageDirectoryEntry;
UINTN TotalPagesNum;
UINTN PageAddress;
UINT64 AddressEncMask;
//
// Make sure AddressEncMask is contained to smallest supported address field
//
AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;
PhysicalAddressBits = 32;
//
// Calculate the table entries needed.
//
NumberOfPdpEntriesNeeded = (UINT32) LShiftU64 (1, (PhysicalAddressBits - 30));
TotalPagesNum = NumberOfPdpEntriesNeeded + 1;
MdeModulePkg/DxeIpl: Mark page table as read-only This patch will set the memory pages used for page table as read-only memory after the paging is setup. CR0.WP must set to let it take into effect. A simple page table memory management mechanism, page table pool concept, is introduced to simplify the page table memory allocation and protection. It will also help to reduce the potential recursive "split" action during updating memory paging attributes. The basic idea is to allocate a bunch of continuous pages of memory in advance as one or more page table pools, and all future page tables consumption will happen in those pool instead of system memory. If the page pool is reserved at the boundary of 2MB page and with same size of 2MB page, there's no page granularity "split" operation will be needed, because the memory of new page tables (if needed) will be usually in the same page as target page table you're working on. And since we have centralized page tables (a few 2MB pages), it's easier to protect them by changing their attributes to be read-only once and for all. There's no need to apply the protection for new page tables any more as long as the pool has free pages available. Once current page table pool has been used up, one can allocate another 2MB memory pool and just set this new 2MB memory block to be read-only instead of setting the new page tables one page by one page. Two new PCDs PcdPageTablePoolUnitSize and PcdPageTablePoolAlignment are used to specify the size and alignment for page table pool. For IA32 processor 0x200000 (2MB) is the only choice for both of them to meet the requirement of page table pool. Laszlo (lersek@redhat.com) did a regression test on QEMU virtual platform with one middle version of this series patch. The details can be found at https://lists.01.org/pipermail/edk2-devel/2017-December/018625.html There're a few changes after his work. Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Star Zeng <star.zeng@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2017-11-28 14:49:31 +01:00
PageAddress = (UINTN) AllocatePageTableMemory (TotalPagesNum);
ASSERT (PageAddress != 0);
PageMap = (VOID *) PageAddress;
PageAddress += SIZE_4KB;
PageDirectoryPointerEntry = PageMap;
PhysicalAddress = 0;
for (IndexOfPdpEntries = 0; IndexOfPdpEntries < NumberOfPdpEntriesNeeded; IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
//
// Each Directory Pointer entries points to a page of Page Directory entires.
// So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop.
//
PageDirectoryEntry = (VOID *) PageAddress;
PageAddress += SIZE_4KB;
//
// Fill in a Page Directory Pointer Entries
//
PageDirectoryPointerEntry->Uint64 = (UINT64) (UINTN) PageDirectoryEntry | AddressEncMask;
PageDirectoryPointerEntry->Bits.Present = 1;
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PhysicalAddress += SIZE_2MB) {
if ((IsNullDetectionEnabled () && PhysicalAddress == 0)
|| ((PhysicalAddress < StackBase + StackSize)
&& ((PhysicalAddress + SIZE_2MB) > StackBase))) {
//
// Need to split this 2M page that covers stack range.
//
Split2MPageTo4K (PhysicalAddress, (UINT64 *) PageDirectoryEntry, StackBase, StackSize);
} else {
//
// Fill in the Page Directory entries
//
PageDirectoryEntry->Uint64 = (UINT64) PhysicalAddress | AddressEncMask;
PageDirectoryEntry->Bits.ReadWrite = 1;
PageDirectoryEntry->Bits.Present = 1;
PageDirectoryEntry->Bits.MustBe1 = 1;
}
}
}
for (; IndexOfPdpEntries < 512; IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
ZeroMem (
PageDirectoryPointerEntry,
sizeof (PAGE_MAP_AND_DIRECTORY_POINTER)
);
}
MdeModulePkg/DxeIpl: Mark page table as read-only This patch will set the memory pages used for page table as read-only memory after the paging is setup. CR0.WP must set to let it take into effect. A simple page table memory management mechanism, page table pool concept, is introduced to simplify the page table memory allocation and protection. It will also help to reduce the potential recursive "split" action during updating memory paging attributes. The basic idea is to allocate a bunch of continuous pages of memory in advance as one or more page table pools, and all future page tables consumption will happen in those pool instead of system memory. If the page pool is reserved at the boundary of 2MB page and with same size of 2MB page, there's no page granularity "split" operation will be needed, because the memory of new page tables (if needed) will be usually in the same page as target page table you're working on. And since we have centralized page tables (a few 2MB pages), it's easier to protect them by changing their attributes to be read-only once and for all. There's no need to apply the protection for new page tables any more as long as the pool has free pages available. Once current page table pool has been used up, one can allocate another 2MB memory pool and just set this new 2MB memory block to be read-only instead of setting the new page tables one page by one page. Two new PCDs PcdPageTablePoolUnitSize and PcdPageTablePoolAlignment are used to specify the size and alignment for page table pool. For IA32 processor 0x200000 (2MB) is the only choice for both of them to meet the requirement of page table pool. Laszlo (lersek@redhat.com) did a regression test on QEMU virtual platform with one middle version of this series patch. The details can be found at https://lists.01.org/pipermail/edk2-devel/2017-December/018625.html There're a few changes after his work. Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Star Zeng <star.zeng@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2017-11-28 14:49:31 +01:00
//
// Protect the page table by marking the memory used for page table to be
// read-only.
//
EnablePageTableProtection ((UINTN)PageMap, FALSE);
return (UINTN) PageMap;
}
/**
The function will check if IA32 PAE is supported.
@retval TRUE IA32 PAE is supported.
@retval FALSE IA32 PAE is not supported.
**/
BOOLEAN
IsIa32PaeSupport (
VOID
)
{
UINT32 RegEax;
UINT32 RegEdx;
BOOLEAN Ia32PaeSupport;
Ia32PaeSupport = FALSE;
AsmCpuid (0x0, &RegEax, NULL, NULL, NULL);
if (RegEax >= 0x1) {
AsmCpuid (0x1, NULL, NULL, NULL, &RegEdx);
if ((RegEdx & BIT6) != 0) {
Ia32PaeSupport = TRUE;
}
}
return Ia32PaeSupport;
}
/**
The function will check if page table should be setup or not.
@retval TRUE Page table should be created.
@retval FALSE Page table should not be created.
**/
BOOLEAN
ToBuildPageTable (
VOID
)
{
if (!IsIa32PaeSupport ()) {
return FALSE;
}
if (IsNullDetectionEnabled ()) {
return TRUE;
}
if (PcdGet8 (PcdHeapGuardPropertyMask) != 0) {
return TRUE;
}
if (PcdGetBool (PcdCpuStackGuard)) {
return TRUE;
}
if (IsEnableNonExecNeeded ()) {
return TRUE;
}
return FALSE;
}
/**
Transfers control to DxeCore.
This function performs a CPU architecture specific operations to execute
the entry point of DxeCore with the parameters of HobList.
It also installs EFI_END_OF_PEI_PPI to signal the end of PEI phase.
@param DxeCoreEntryPoint The entry point of DxeCore.
@param HobList The start of HobList passed to DxeCore.
**/
VOID
HandOffToDxeCore (
IN EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint,
IN EFI_PEI_HOB_POINTERS HobList
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS BaseOfStack;
EFI_PHYSICAL_ADDRESS TopOfStack;
UINTN PageTables;
X64_IDT_GATE_DESCRIPTOR *IdtTable;
UINTN SizeOfTemplate;
VOID *TemplateBase;
EFI_PHYSICAL_ADDRESS VectorAddress;
UINT32 Index;
X64_IDT_TABLE *IdtTableForX64;
EFI_VECTOR_HANDOFF_INFO *VectorInfo;
EFI_PEI_VECTOR_HANDOFF_INFO_PPI *VectorHandoffInfoPpi;
BOOLEAN BuildPageTablesIa32Pae;
if (IsNullDetectionEnabled ()) {
ClearFirst4KPage (HobList.Raw);
}
Status = PeiServicesAllocatePages (EfiBootServicesData, EFI_SIZE_TO_PAGES (STACK_SIZE), &BaseOfStack);
ASSERT_EFI_ERROR (Status);
if (FeaturePcdGet(PcdDxeIplSwitchToLongMode)) {
//
// Compute the top of the stack we were allocated, which is used to load X64 dxe core.
// Pre-allocate a 32 bytes which confroms to x64 calling convention.
//
// The first four parameters to a function are passed in rcx, rdx, r8 and r9.
// Any further parameters are pushed on the stack. Furthermore, space (4 * 8bytes) for the
// register parameters is reserved on the stack, in case the called function
// wants to spill them; this is important if the function is variadic.
//
TopOfStack = BaseOfStack + EFI_SIZE_TO_PAGES (STACK_SIZE) * EFI_PAGE_SIZE - 32;
//
// x64 Calling Conventions requires that the stack must be aligned to 16 bytes
//
TopOfStack = (EFI_PHYSICAL_ADDRESS) (UINTN) ALIGN_POINTER (TopOfStack, 16);
//
// Load the GDT of Go64. Since the GDT of 32-bit Tiano locates in the BS_DATA
// memory, it may be corrupted when copying FV to high-end memory
//
AsmWriteGdtr (&gGdt);
//
// Create page table and save PageMapLevel4 to CR3
//
PageTables = CreateIdentityMappingPageTables (BaseOfStack, STACK_SIZE);
//
// End of PEI phase signal
//
PERF_EVENT_SIGNAL_BEGIN (gEndOfPeiSignalPpi.Guid);
Status = PeiServicesInstallPpi (&gEndOfPeiSignalPpi);
PERF_EVENT_SIGNAL_END (gEndOfPeiSignalPpi.Guid);
ASSERT_EFI_ERROR (Status);
//
// Paging might be already enabled. To avoid conflict configuration,
// disable paging first anyway.
//
AsmWriteCr0 (AsmReadCr0 () & (~BIT31));
AsmWriteCr3 (PageTables);
//
// Update the contents of BSP stack HOB to reflect the real stack info passed to DxeCore.
//
UpdateStackHob (BaseOfStack, STACK_SIZE);
SizeOfTemplate = AsmGetVectorTemplatInfo (&TemplateBase);
Status = PeiServicesAllocatePages (
EfiBootServicesData,
EFI_SIZE_TO_PAGES(sizeof (X64_IDT_TABLE) + SizeOfTemplate * IDT_ENTRY_COUNT),
&VectorAddress
);
ASSERT_EFI_ERROR (Status);
//
// Store EFI_PEI_SERVICES** in the 4 bytes immediately preceding IDT to avoid that
// it may not be gotten correctly after IDT register is re-written.
//
IdtTableForX64 = (X64_IDT_TABLE *) (UINTN) VectorAddress;
IdtTableForX64->PeiService = GetPeiServicesTablePointer ();
VectorAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) (IdtTableForX64 + 1);
IdtTable = IdtTableForX64->IdtTable;
for (Index = 0; Index < IDT_ENTRY_COUNT; Index++) {
IdtTable[Index].Ia32IdtEntry.Bits.GateType = 0x8e;
IdtTable[Index].Ia32IdtEntry.Bits.Reserved_0 = 0;
IdtTable[Index].Ia32IdtEntry.Bits.Selector = SYS_CODE64_SEL;
IdtTable[Index].Ia32IdtEntry.Bits.OffsetLow = (UINT16) VectorAddress;
IdtTable[Index].Ia32IdtEntry.Bits.OffsetHigh = (UINT16) (RShiftU64 (VectorAddress, 16));
IdtTable[Index].Offset32To63 = (UINT32) (RShiftU64 (VectorAddress, 32));
IdtTable[Index].Reserved = 0;
CopyMem ((VOID *) (UINTN) VectorAddress, TemplateBase, SizeOfTemplate);
AsmVectorFixup ((VOID *) (UINTN) VectorAddress, (UINT8) Index);
VectorAddress += SizeOfTemplate;
}
gLidtDescriptor.Base = (UINTN) IdtTable;
//
// Disable interrupt of Debug timer, since new IDT table cannot handle it.
//
SaveAndSetDebugTimerInterrupt (FALSE);
AsmWriteIdtr (&gLidtDescriptor);
DEBUG ((
DEBUG_INFO,
"%a() Stack Base: 0x%lx, Stack Size: 0x%x\n",
__FUNCTION__,
BaseOfStack,
STACK_SIZE
));
//
// Go to Long Mode and transfer control to DxeCore.
// Interrupts will not get turned on until the CPU AP is loaded.
// Call x64 drivers passing in single argument, a pointer to the HOBs.
//
AsmEnablePaging64 (
SYS_CODE64_SEL,
DxeCoreEntryPoint,
(EFI_PHYSICAL_ADDRESS)(UINTN)(HobList.Raw),
0,
TopOfStack
);
} else {
//
// Get Vector Hand-off Info PPI and build Guided HOB
//
Status = PeiServicesLocatePpi (
&gEfiVectorHandoffInfoPpiGuid,
0,
NULL,
(VOID **)&VectorHandoffInfoPpi
);
if (Status == EFI_SUCCESS) {
DEBUG ((EFI_D_INFO, "Vector Hand-off Info PPI is gotten, GUIDed HOB is created!\n"));
VectorInfo = VectorHandoffInfoPpi->Info;
Index = 1;
while (VectorInfo->Attribute != EFI_VECTOR_HANDOFF_LAST_ENTRY) {
VectorInfo ++;
Index ++;
}
BuildGuidDataHob (
&gEfiVectorHandoffInfoPpiGuid,
VectorHandoffInfoPpi->Info,
sizeof (EFI_VECTOR_HANDOFF_INFO) * Index
);
}
//
// Compute the top of the stack we were allocated. Pre-allocate a UINTN
// for safety.
//
TopOfStack = BaseOfStack + EFI_SIZE_TO_PAGES (STACK_SIZE) * EFI_PAGE_SIZE - CPU_STACK_ALIGNMENT;
TopOfStack = (EFI_PHYSICAL_ADDRESS) (UINTN) ALIGN_POINTER (TopOfStack, CPU_STACK_ALIGNMENT);
PageTables = 0;
BuildPageTablesIa32Pae = ToBuildPageTable ();
if (BuildPageTablesIa32Pae) {
PageTables = Create4GPageTablesIa32Pae (BaseOfStack, STACK_SIZE);
if (IsEnableNonExecNeeded ()) {
EnableExecuteDisableBit();
}
}
//
// End of PEI phase signal
//
PERF_EVENT_SIGNAL_BEGIN (gEndOfPeiSignalPpi.Guid);
Status = PeiServicesInstallPpi (&gEndOfPeiSignalPpi);
PERF_EVENT_SIGNAL_END (gEndOfPeiSignalPpi.Guid);
ASSERT_EFI_ERROR (Status);
if (BuildPageTablesIa32Pae) {
//
// Paging might be already enabled. To avoid conflict configuration,
// disable paging first anyway.
//
AsmWriteCr0 (AsmReadCr0 () & (~BIT31));
AsmWriteCr3 (PageTables);
//
// Set Physical Address Extension (bit 5 of CR4).
//
AsmWriteCr4 (AsmReadCr4 () | BIT5);
}
//
// Update the contents of BSP stack HOB to reflect the real stack info passed to DxeCore.
//
UpdateStackHob (BaseOfStack, STACK_SIZE);
DEBUG ((
DEBUG_INFO,
"%a() Stack Base: 0x%lx, Stack Size: 0x%x\n",
__FUNCTION__,
BaseOfStack,
STACK_SIZE
));
//
// Transfer the control to the entry point of DxeCore.
//
if (BuildPageTablesIa32Pae) {
AsmEnablePaging32 (
(SWITCH_STACK_ENTRY_POINT)(UINTN)DxeCoreEntryPoint,
HobList.Raw,
NULL,
(VOID *) (UINTN) TopOfStack
);
} else {
SwitchStack (
(SWITCH_STACK_ENTRY_POINT)(UINTN)DxeCoreEntryPoint,
HobList.Raw,
NULL,
(VOID *) (UINTN) TopOfStack
);
}
}
}