audk/MdeModulePkg/Bus/Pci/PciBusDxe/PciResourceSupport.c

2293 lines
58 KiB
C
Raw Normal View History

/** @file
PCI resources support functions implementation for PCI Bus module.
Copyright (c) 2006 - 2019, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "PciBus.h"
//
// The default policy for the PCI bus driver is NOT to reserve I/O ranges for both ISA aliases and VGA aliases.
//
BOOLEAN mReserveIsaAliases = FALSE;
BOOLEAN mReserveVgaAliases = FALSE;
BOOLEAN mPolicyDetermined = FALSE;
/**
The function is used to skip VGA range.
@param Start Returned start address including VGA range.
@param Length The length of VGA range.
**/
VOID
SkipVGAAperture (
OUT UINT64 *Start,
IN UINT64 Length
)
{
UINT64 Original;
UINT64 Mask;
UINT64 StartOffset;
UINT64 LimitOffset;
ASSERT (Start != NULL);
//
// For legacy VGA, bit 10 to bit 15 is not decoded
//
Mask = 0x3FF;
Original = *Start;
StartOffset = Original & Mask;
LimitOffset = ((*Start) + Length - 1) & Mask;
if (LimitOffset >= VGABASE1) {
*Start = *Start - StartOffset + VGALIMIT2 + 1;
}
}
/**
This function is used to skip ISA aliasing aperture.
@param Start Returned start address including ISA aliasing aperture.
@param Length The length of ISA aliasing aperture.
**/
VOID
SkipIsaAliasAperture (
OUT UINT64 *Start,
IN UINT64 Length
)
{
UINT64 Original;
UINT64 Mask;
UINT64 StartOffset;
UINT64 LimitOffset;
ASSERT (Start != NULL);
//
// For legacy ISA, bit 10 to bit 15 is not decoded
//
Mask = 0x3FF;
Original = *Start;
StartOffset = Original & Mask;
LimitOffset = ((*Start) + Length - 1) & Mask;
if (LimitOffset >= ISABASE) {
*Start = *Start - StartOffset + ISALIMIT + 1;
}
}
/**
This function inserts a resource node into the resource list.
The resource list is sorted in descend order.
@param Bridge PCI resource node for bridge.
@param ResNode Resource node want to be inserted.
**/
VOID
InsertResourceNode (
IN OUT PCI_RESOURCE_NODE *Bridge,
IN PCI_RESOURCE_NODE *ResNode
)
{
LIST_ENTRY *CurrentLink;
PCI_RESOURCE_NODE *Temp;
UINT64 ResNodeAlignRest;
UINT64 TempAlignRest;
ASSERT (Bridge != NULL);
ASSERT (ResNode != NULL);
InsertHeadList (&Bridge->ChildList, &ResNode->Link);
CurrentLink = Bridge->ChildList.ForwardLink->ForwardLink;
while (CurrentLink != &Bridge->ChildList) {
Temp = RESOURCE_NODE_FROM_LINK (CurrentLink);
if (ResNode->Alignment > Temp->Alignment) {
break;
} else if (ResNode->Alignment == Temp->Alignment) {
ResNodeAlignRest = ResNode->Length & ResNode->Alignment;
TempAlignRest = Temp->Length & Temp->Alignment;
if ((ResNodeAlignRest == 0) || (ResNodeAlignRest >= TempAlignRest)) {
break;
}
}
SwapListEntries (&ResNode->Link, CurrentLink);
CurrentLink = ResNode->Link.ForwardLink;
}
}
/**
This routine is used to merge two different resource trees in need of
resource degradation.
For example, if an upstream PPB doesn't support,
prefetchable memory decoding, the PCI bus driver will choose to call this function
to merge prefetchable memory resource list into normal memory list.
If the TypeMerge is TRUE, Res resource type is changed to the type of destination resource
type.
If Dst is NULL or Res is NULL, ASSERT ().
@param Dst Point to destination resource tree.
@param Res Point to source resource tree.
@param TypeMerge If the TypeMerge is TRUE, Res resource type is changed to the type of
destination resource type.
**/
VOID
MergeResourceTree (
IN PCI_RESOURCE_NODE *Dst,
IN PCI_RESOURCE_NODE *Res,
IN BOOLEAN TypeMerge
)
{
LIST_ENTRY *CurrentLink;
PCI_RESOURCE_NODE *Temp;
ASSERT (Dst != NULL);
ASSERT (Res != NULL);
while (!IsListEmpty (&Res->ChildList)) {
CurrentLink = Res->ChildList.ForwardLink;
Temp = RESOURCE_NODE_FROM_LINK (CurrentLink);
if (TypeMerge) {
Temp->ResType = Dst->ResType;
}
RemoveEntryList (CurrentLink);
InsertResourceNode (Dst, Temp);
}
}
/**
This function is used to calculate the IO16 aperture
for a bridge.
@param Bridge PCI resource node for bridge.
**/
VOID
CalculateApertureIo16 (
IN PCI_RESOURCE_NODE *Bridge
)
{
EFI_STATUS Status;
UINT64 Aperture;
LIST_ENTRY *CurrentLink;
PCI_RESOURCE_NODE *Node;
UINT64 Offset;
EFI_PCI_PLATFORM_POLICY PciPolicy;
UINT64 PaddingAperture;
if (!mPolicyDetermined) {
//
// Check PciPlatform policy
//
Status = EFI_NOT_FOUND;
PciPolicy = 0;
if (gPciPlatformProtocol != NULL) {
Status = gPciPlatformProtocol->GetPlatformPolicy (
gPciPlatformProtocol,
&PciPolicy
);
}
if (EFI_ERROR (Status) && gPciOverrideProtocol != NULL) {
Status = gPciOverrideProtocol->GetPlatformPolicy (
gPciOverrideProtocol,
&PciPolicy
);
}
if (!EFI_ERROR (Status)) {
if ((PciPolicy & EFI_RESERVE_ISA_IO_ALIAS) != 0) {
mReserveIsaAliases = TRUE;
}
if ((PciPolicy & EFI_RESERVE_VGA_IO_ALIAS) != 0) {
mReserveVgaAliases = TRUE;
}
}
mPolicyDetermined = TRUE;
}
Aperture = 0;
PaddingAperture = 0;
if (Bridge == NULL) {
return ;
}
//
// Assume the bridge is aligned
//
for ( CurrentLink = GetFirstNode (&Bridge->ChildList)
; !IsNull (&Bridge->ChildList, CurrentLink)
; CurrentLink = GetNextNode (&Bridge->ChildList, CurrentLink)
) {
Node = RESOURCE_NODE_FROM_LINK (CurrentLink);
if (Node->ResourceUsage == PciResUsagePadding) {
ASSERT (PaddingAperture == 0);
PaddingAperture = Node->Length;
continue;
}
//
// Consider the aperture alignment
//
Offset = Aperture & (Node->Alignment);
if (Offset != 0) {
Aperture = Aperture + (Node->Alignment + 1) - Offset;
}
//
// IsaEnable and VGAEnable can not be implemented now.
// If both of them are enabled, then the IO resource would
// become too limited to meet the requirement of most of devices.
//
if (mReserveIsaAliases || mReserveVgaAliases) {
if (!IS_PCI_BRIDGE (&(Node->PciDev->Pci)) && !IS_CARDBUS_BRIDGE (&(Node->PciDev->Pci))) {
//
// Check if there is need to support ISA/VGA decoding
// If so, we need to avoid isa/vga aliasing range
//
if (mReserveIsaAliases) {
SkipIsaAliasAperture (
&Aperture,
Node->Length
);
Offset = Aperture & (Node->Alignment);
if (Offset != 0) {
Aperture = Aperture + (Node->Alignment + 1) - Offset;
}
} else if (mReserveVgaAliases) {
SkipVGAAperture (
&Aperture,
Node->Length
);
Offset = Aperture & (Node->Alignment);
if (Offset != 0) {
Aperture = Aperture + (Node->Alignment + 1) - Offset;
}
}
}
}
Node->Offset = Aperture;
//
// Increment aperture by the length of node
//
Aperture += Node->Length;
}
//
// Adjust the aperture with the bridge's alignment
//
Offset = Aperture & (Bridge->Alignment);
if (Offset != 0) {
Aperture = Aperture + (Bridge->Alignment + 1) - Offset;
}
Bridge->Length = Aperture;
//
// At last, adjust the bridge's alignment to the first child's alignment
// if the bridge has at least one child
//
CurrentLink = Bridge->ChildList.ForwardLink;
if (CurrentLink != &Bridge->ChildList) {
Node = RESOURCE_NODE_FROM_LINK (CurrentLink);
if (Node->Alignment > Bridge->Alignment) {
Bridge->Alignment = Node->Alignment;
}
}
//
// Hotplug controller needs padding resources.
// Use the larger one between the padding resource and actual occupied resource.
//
Bridge->Length = MAX (Bridge->Length, PaddingAperture);
}
/**
This function is used to calculate the resource aperture
for a given bridge device.
@param Bridge PCI resource node for given bridge device.
**/
VOID
CalculateResourceAperture (
IN PCI_RESOURCE_NODE *Bridge
)
{
UINT64 Aperture[2];
LIST_ENTRY *CurrentLink;
PCI_RESOURCE_NODE *Node;
if (Bridge == NULL) {
return ;
}
if (Bridge->ResType == PciBarTypeIo16) {
CalculateApertureIo16 (Bridge);
return ;
}
Aperture[PciResUsageTypical] = 0;
Aperture[PciResUsagePadding] = 0;
//
// Assume the bridge is aligned
//
for ( CurrentLink = GetFirstNode (&Bridge->ChildList)
; !IsNull (&Bridge->ChildList, CurrentLink)
; CurrentLink = GetNextNode (&Bridge->ChildList, CurrentLink)
) {
Node = RESOURCE_NODE_FROM_LINK (CurrentLink);
//
// It's possible for a bridge to contain multiple padding resource
// nodes due to DegradeResource().
//
ASSERT ((Node->ResourceUsage == PciResUsageTypical) ||
(Node->ResourceUsage == PciResUsagePadding));
ASSERT (Node->ResourceUsage < ARRAY_SIZE (Aperture));
//
// Recode current aperture as a offset
// Apply padding resource to meet alignment requirement
// Node offset will be used in future real allocation
//
Node->Offset = ALIGN_VALUE (Aperture[Node->ResourceUsage], Node->Alignment + 1);
//
// Record the total aperture.
//
Aperture[Node->ResourceUsage] = Node->Offset + Node->Length;
}
//
// Adjust the aperture with the bridge's alignment
//
Aperture[PciResUsageTypical] = ALIGN_VALUE (Aperture[PciResUsageTypical], Bridge->Alignment + 1);
Aperture[PciResUsagePadding] = ALIGN_VALUE (Aperture[PciResUsagePadding], Bridge->Alignment + 1);
//
// Hotplug controller needs padding resources.
// Use the larger one between the padding resource and actual occupied resource.
//
Bridge->Length = MAX (Aperture[PciResUsageTypical], Aperture[PciResUsagePadding]);
//
// Adjust the bridge's alignment to the MAX (first) alignment of all children.
//
CurrentLink = Bridge->ChildList.ForwardLink;
if (CurrentLink != &Bridge->ChildList) {
Node = RESOURCE_NODE_FROM_LINK (CurrentLink);
if (Node->Alignment > Bridge->Alignment) {
Bridge->Alignment = Node->Alignment;
}
}
}
/**
Get IO/Memory resource info for given PCI device.
@param PciDev Pci device instance.
@param IoNode Resource info node for IO .
@param Mem32Node Resource info node for 32-bit memory.
@param PMem32Node Resource info node for 32-bit Prefetchable Memory.
@param Mem64Node Resource info node for 64-bit memory.
@param PMem64Node Resource info node for 64-bit Prefetchable Memory.
**/
VOID
GetResourceFromDevice (
IN PCI_IO_DEVICE *PciDev,
IN OUT PCI_RESOURCE_NODE *IoNode,
IN OUT PCI_RESOURCE_NODE *Mem32Node,
IN OUT PCI_RESOURCE_NODE *PMem32Node,
IN OUT PCI_RESOURCE_NODE *Mem64Node,
IN OUT PCI_RESOURCE_NODE *PMem64Node
)
{
UINT8 Index;
PCI_RESOURCE_NODE *Node;
BOOLEAN ResourceRequested;
Node = NULL;
ResourceRequested = FALSE;
for (Index = 0; Index < PCI_MAX_BAR; Index++) {
switch ((PciDev->PciBar)[Index].BarType) {
case PciBarTypeMem32:
MdeModulePkg/PciBus: Shadow option ROM after BARs are programmed REF: https://bugzilla.tianocore.org/show_bug.cgi?id=1376 Today's implementation reuses the 32bit MMIO resource requested by all PCI devices MMIO BARs when shadowing the option ROM. Take a simple example, a system has only one PCI device. It requires 8MB 32bit MMIO and contains a 4MB option ROM. Today's implementation only requests 8MB (max of 4M and 8M) 32bit MMIO from PciHostBridgeResourceAllocation protocol. Let's assume the MMIO range [3GB, 3GB+8MB) is allocated. The 3GB base address is firstly programmed to the option ROM BAR for option ROM shadow. Then the option ROM decoding is turned off and 3GB base address is programmed to the 32bit MMIO BAR. It doesn't cause issues when the device doesn't request too much MMIO. But when the device contains a 64bit MMIO BAR which requests 4GB MMIO and a 4MB option ROM. Let's assume [3GB, 3GB+8MB) 32bit MMIO range is allocated for the option ROM. When the option ROM is being shadowed, 64bit MMIO BAR is programmed to value 0, which means [0, 4GB) MMIO is given to the 64bit BAR. The range overlaps with the option ROM range which may cause the device malfunction (e.g.: option ROM cannot be read out) when the device has two separate decoders: one for MMIO BAR, the other for option ROM. The patch requests dedicated MEM32 resource for Option ROMs and moves the Option ROM shadow logic after all MMIO BARs are programmed. The MMIO BAR setting to 0 when shadowing Option ROM is also skipped because the MMIO BAR already contains the correct value. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Hao Wu <hao.a.wu@intel.com>
2018-12-01 15:43:28 +01:00
case PciBarTypeOpRom:
Node = CreateResourceNode (
PciDev,
(PciDev->PciBar)[Index].Length,
(PciDev->PciBar)[Index].Alignment,
Index,
MdeModulePkg/PciBus: Shadow option ROM after BARs are programmed REF: https://bugzilla.tianocore.org/show_bug.cgi?id=1376 Today's implementation reuses the 32bit MMIO resource requested by all PCI devices MMIO BARs when shadowing the option ROM. Take a simple example, a system has only one PCI device. It requires 8MB 32bit MMIO and contains a 4MB option ROM. Today's implementation only requests 8MB (max of 4M and 8M) 32bit MMIO from PciHostBridgeResourceAllocation protocol. Let's assume the MMIO range [3GB, 3GB+8MB) is allocated. The 3GB base address is firstly programmed to the option ROM BAR for option ROM shadow. Then the option ROM decoding is turned off and 3GB base address is programmed to the 32bit MMIO BAR. It doesn't cause issues when the device doesn't request too much MMIO. But when the device contains a 64bit MMIO BAR which requests 4GB MMIO and a 4MB option ROM. Let's assume [3GB, 3GB+8MB) 32bit MMIO range is allocated for the option ROM. When the option ROM is being shadowed, 64bit MMIO BAR is programmed to value 0, which means [0, 4GB) MMIO is given to the 64bit BAR. The range overlaps with the option ROM range which may cause the device malfunction (e.g.: option ROM cannot be read out) when the device has two separate decoders: one for MMIO BAR, the other for option ROM. The patch requests dedicated MEM32 resource for Option ROMs and moves the Option ROM shadow logic after all MMIO BARs are programmed. The MMIO BAR setting to 0 when shadowing Option ROM is also skipped because the MMIO BAR already contains the correct value. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Hao Wu <hao.a.wu@intel.com>
2018-12-01 15:43:28 +01:00
(PciDev->PciBar)[Index].BarType,
PciResUsageTypical
);
InsertResourceNode (
Mem32Node,
Node
);
ResourceRequested = TRUE;
break;
case PciBarTypeMem64:
Node = CreateResourceNode (
PciDev,
(PciDev->PciBar)[Index].Length,
(PciDev->PciBar)[Index].Alignment,
Index,
PciBarTypeMem64,
PciResUsageTypical
);
InsertResourceNode (
Mem64Node,
Node
);
ResourceRequested = TRUE;
break;
case PciBarTypePMem64:
Node = CreateResourceNode (
PciDev,
(PciDev->PciBar)[Index].Length,
(PciDev->PciBar)[Index].Alignment,
Index,
PciBarTypePMem64,
PciResUsageTypical
);
InsertResourceNode (
PMem64Node,
Node
);
ResourceRequested = TRUE;
break;
case PciBarTypePMem32:
Node = CreateResourceNode (
PciDev,
(PciDev->PciBar)[Index].Length,
(PciDev->PciBar)[Index].Alignment,
Index,
PciBarTypePMem32,
PciResUsageTypical
);
InsertResourceNode (
PMem32Node,
Node
);
ResourceRequested = TRUE;
break;
case PciBarTypeIo16:
case PciBarTypeIo32:
Node = CreateResourceNode (
PciDev,
(PciDev->PciBar)[Index].Length,
(PciDev->PciBar)[Index].Alignment,
Index,
PciBarTypeIo16,
PciResUsageTypical
);
InsertResourceNode (
IoNode,
Node
);
ResourceRequested = TRUE;
break;
case PciBarTypeUnknown:
break;
default:
break;
}
}
//
// Add VF resource
//
for (Index = 0; Index < PCI_MAX_BAR; Index++) {
switch ((PciDev->VfPciBar)[Index].BarType) {
case PciBarTypeMem32:
Node = CreateVfResourceNode (
PciDev,
(PciDev->VfPciBar)[Index].Length,
(PciDev->VfPciBar)[Index].Alignment,
Index,
PciBarTypeMem32,
PciResUsageTypical
);
InsertResourceNode (
Mem32Node,
Node
);
break;
case PciBarTypeMem64:
Node = CreateVfResourceNode (
PciDev,
(PciDev->VfPciBar)[Index].Length,
(PciDev->VfPciBar)[Index].Alignment,
Index,
PciBarTypeMem64,
PciResUsageTypical
);
InsertResourceNode (
Mem64Node,
Node
);
break;
case PciBarTypePMem64:
Node = CreateVfResourceNode (
PciDev,
(PciDev->VfPciBar)[Index].Length,
(PciDev->VfPciBar)[Index].Alignment,
Index,
PciBarTypePMem64,
PciResUsageTypical
);
InsertResourceNode (
PMem64Node,
Node
);
break;
case PciBarTypePMem32:
Node = CreateVfResourceNode (
PciDev,
(PciDev->VfPciBar)[Index].Length,
(PciDev->VfPciBar)[Index].Alignment,
Index,
PciBarTypePMem32,
PciResUsageTypical
);
InsertResourceNode (
PMem32Node,
Node
);
break;
case PciBarTypeIo16:
case PciBarTypeIo32:
break;
case PciBarTypeUnknown:
break;
default:
break;
}
}
// If there is no resource requested from this device,
// then we indicate this device has been allocated naturally.
//
if (!ResourceRequested) {
PciDev->Allocated = TRUE;
}
}
/**
This function is used to create a resource node.
@param PciDev Pci device instance.
@param Length Length of Io/Memory resource.
@param Alignment Alignment of resource.
@param Bar Bar index.
@param ResType Type of resource: IO/Memory.
@param ResUsage Resource usage.
@return PCI resource node created for given PCI device.
NULL means PCI resource node is not created.
**/
PCI_RESOURCE_NODE *
CreateResourceNode (
IN PCI_IO_DEVICE *PciDev,
IN UINT64 Length,
IN UINT64 Alignment,
IN UINT8 Bar,
IN PCI_BAR_TYPE ResType,
IN PCI_RESOURCE_USAGE ResUsage
)
{
PCI_RESOURCE_NODE *Node;
Node = NULL;
Node = AllocateZeroPool (sizeof (PCI_RESOURCE_NODE));
ASSERT (Node != NULL);
if (Node == NULL) {
return NULL;
}
Node->Signature = PCI_RESOURCE_SIGNATURE;
Node->PciDev = PciDev;
Node->Length = Length;
Node->Alignment = Alignment;
Node->Bar = Bar;
Node->ResType = ResType;
Node->Reserved = FALSE;
Node->ResourceUsage = ResUsage;
InitializeListHead (&Node->ChildList);
return Node;
}
/**
This function is used to create a IOV VF resource node.
@param PciDev Pci device instance.
@param Length Length of Io/Memory resource.
@param Alignment Alignment of resource.
@param Bar Bar index.
@param ResType Type of resource: IO/Memory.
@param ResUsage Resource usage.
@return PCI resource node created for given VF PCI device.
NULL means PCI resource node is not created.
**/
PCI_RESOURCE_NODE *
CreateVfResourceNode (
IN PCI_IO_DEVICE *PciDev,
IN UINT64 Length,
IN UINT64 Alignment,
IN UINT8 Bar,
IN PCI_BAR_TYPE ResType,
IN PCI_RESOURCE_USAGE ResUsage
)
{
PCI_RESOURCE_NODE *Node;
Node = CreateResourceNode (PciDev, Length, Alignment, Bar, ResType, ResUsage);
if (Node == NULL) {
return Node;
}
Node->Virtual = TRUE;
return Node;
}
/**
This function is used to extract resource request from
device node list.
@param Bridge Pci device instance.
@param IoNode Resource info node for IO.
@param Mem32Node Resource info node for 32-bit memory.
@param PMem32Node Resource info node for 32-bit Prefetchable Memory.
@param Mem64Node Resource info node for 64-bit memory.
@param PMem64Node Resource info node for 64-bit Prefetchable Memory.
**/
VOID
CreateResourceMap (
IN PCI_IO_DEVICE *Bridge,
IN OUT PCI_RESOURCE_NODE *IoNode,
IN OUT PCI_RESOURCE_NODE *Mem32Node,
IN OUT PCI_RESOURCE_NODE *PMem32Node,
IN OUT PCI_RESOURCE_NODE *Mem64Node,
IN OUT PCI_RESOURCE_NODE *PMem64Node
)
{
PCI_IO_DEVICE *Temp;
PCI_RESOURCE_NODE *IoBridge;
PCI_RESOURCE_NODE *Mem32Bridge;
PCI_RESOURCE_NODE *PMem32Bridge;
PCI_RESOURCE_NODE *Mem64Bridge;
PCI_RESOURCE_NODE *PMem64Bridge;
LIST_ENTRY *CurrentLink;
CurrentLink = Bridge->ChildList.ForwardLink;
while (CurrentLink != NULL && CurrentLink != &Bridge->ChildList) {
Temp = PCI_IO_DEVICE_FROM_LINK (CurrentLink);
//
// Create resource nodes for this device by scanning the
// Bar array in the device private data
// If the upstream bridge doesn't support this device,
// no any resource node will be created for this device
//
GetResourceFromDevice (
Temp,
IoNode,
Mem32Node,
PMem32Node,
Mem64Node,
PMem64Node
);
if (IS_PCI_BRIDGE (&Temp->Pci)) {
//
// If the device has children, create a bridge resource node for this PPB
// Note: For PPB, memory aperture is aligned with 1MB and IO aperture
// is aligned with 4KB (smaller alignments may be supported).
//
IoBridge = CreateResourceNode (
Temp,
0,
Temp->BridgeIoAlignment,
PPB_IO_RANGE,
PciBarTypeIo16,
PciResUsageTypical
);
Mem32Bridge = CreateResourceNode (
Temp,
0,
0xFFFFF,
PPB_MEM32_RANGE,
PciBarTypeMem32,
PciResUsageTypical
);
PMem32Bridge = CreateResourceNode (
Temp,
0,
0xFFFFF,
PPB_PMEM32_RANGE,
PciBarTypePMem32,
PciResUsageTypical
);
Mem64Bridge = CreateResourceNode (
Temp,
0,
0xFFFFF,
PPB_MEM64_RANGE,
PciBarTypeMem64,
PciResUsageTypical
);
PMem64Bridge = CreateResourceNode (
Temp,
0,
0xFFFFF,
PPB_PMEM64_RANGE,
PciBarTypePMem64,
PciResUsageTypical
);
//
// Recursively create resource map on this bridge
//
CreateResourceMap (
Temp,
IoBridge,
Mem32Bridge,
PMem32Bridge,
Mem64Bridge,
PMem64Bridge
);
if (ResourceRequestExisted (IoBridge)) {
InsertResourceNode (
IoNode,
IoBridge
);
} else {
FreePool (IoBridge);
IoBridge = NULL;
}
//
// If there is node under this resource bridge,
// then calculate bridge's aperture of this type
// and insert it into the respective resource tree.
// If no, delete this resource bridge
//
if (ResourceRequestExisted (Mem32Bridge)) {
InsertResourceNode (
Mem32Node,
Mem32Bridge
);
} else {
FreePool (Mem32Bridge);
Mem32Bridge = NULL;
}
//
// If there is node under this resource bridge,
// then calculate bridge's aperture of this type
// and insert it into the respective resource tree.
// If no, delete this resource bridge
//
if (ResourceRequestExisted (PMem32Bridge)) {
InsertResourceNode (
PMem32Node,
PMem32Bridge
);
} else {
FreePool (PMem32Bridge);
PMem32Bridge = NULL;
}
//
// If there is node under this resource bridge,
// then calculate bridge's aperture of this type
// and insert it into the respective resource tree.
// If no, delete this resource bridge
//
if (ResourceRequestExisted (Mem64Bridge)) {
InsertResourceNode (
Mem64Node,
Mem64Bridge
);
} else {
FreePool (Mem64Bridge);
Mem64Bridge = NULL;
}
//
// If there is node under this resource bridge,
// then calculate bridge's aperture of this type
// and insert it into the respective resource tree.
// If no, delete this resource bridge
//
if (ResourceRequestExisted (PMem64Bridge)) {
InsertResourceNode (
PMem64Node,
PMem64Bridge
);
} else {
FreePool (PMem64Bridge);
PMem64Bridge = NULL;
}
}
//
// If it is P2C, apply hard coded resource padding
//
if (IS_CARDBUS_BRIDGE (&Temp->Pci)) {
ResourcePaddingForCardBusBridge (
Temp,
IoNode,
Mem32Node,
PMem32Node,
Mem64Node,
PMem64Node
);
}
CurrentLink = CurrentLink->ForwardLink;
}
//
// To do some platform specific resource padding ...
//
ResourcePaddingPolicy (
Bridge,
IoNode,
Mem32Node,
PMem32Node,
Mem64Node,
PMem64Node
);
//
// Degrade resource if necessary
//
DegradeResource (
Bridge,
Mem32Node,
PMem32Node,
Mem64Node,
PMem64Node
);
//
// Calculate resource aperture for this bridge device
//
CalculateResourceAperture (Mem32Node);
CalculateResourceAperture (PMem32Node);
CalculateResourceAperture (Mem64Node);
CalculateResourceAperture (PMem64Node);
CalculateResourceAperture (IoNode);
}
/**
This function is used to do the resource padding for a specific platform.
@param PciDev Pci device instance.
@param IoNode Resource info node for IO.
@param Mem32Node Resource info node for 32-bit memory.
@param PMem32Node Resource info node for 32-bit Prefetchable Memory.
@param Mem64Node Resource info node for 64-bit memory.
@param PMem64Node Resource info node for 64-bit Prefetchable Memory.
**/
VOID
ResourcePaddingPolicy (
IN PCI_IO_DEVICE *PciDev,
IN PCI_RESOURCE_NODE *IoNode,
IN PCI_RESOURCE_NODE *Mem32Node,
IN PCI_RESOURCE_NODE *PMem32Node,
IN PCI_RESOURCE_NODE *Mem64Node,
IN PCI_RESOURCE_NODE *PMem64Node
)
{
//
// Create padding resource node
//
if (PciDev->ResourcePaddingDescriptors != NULL) {
ApplyResourcePadding (
PciDev,
IoNode,
Mem32Node,
PMem32Node,
Mem64Node,
PMem64Node
);
}
}
/**
This function is used to degrade resource if the upstream bridge
doesn't support certain resource. Degradation path is
PMEM64 -> MEM64 -> MEM32
PMEM64 -> PMEM32 -> MEM32
IO32 -> IO16.
@param Bridge Pci device instance.
@param Mem32Node Resource info node for 32-bit memory.
@param PMem32Node Resource info node for 32-bit Prefetchable Memory.
@param Mem64Node Resource info node for 64-bit memory.
@param PMem64Node Resource info node for 64-bit Prefetchable Memory.
**/
VOID
DegradeResource (
IN PCI_IO_DEVICE *Bridge,
IN PCI_RESOURCE_NODE *Mem32Node,
IN PCI_RESOURCE_NODE *PMem32Node,
IN PCI_RESOURCE_NODE *Mem64Node,
IN PCI_RESOURCE_NODE *PMem64Node
)
{
PCI_IO_DEVICE *PciIoDevice;
LIST_ENTRY *ChildDeviceLink;
LIST_ENTRY *ChildNodeLink;
LIST_ENTRY *NextChildNodeLink;
PCI_RESOURCE_NODE *ResourceNode;
if (FeaturePcdGet (PcdPciDegradeResourceForOptionRom)) {
//
// If any child device has both option ROM and 64-bit BAR, degrade its PMEM64/MEM64
// requests in case that if a legacy option ROM image can not access 64-bit resources.
//
ChildDeviceLink = Bridge->ChildList.ForwardLink;
while (ChildDeviceLink != NULL && ChildDeviceLink != &Bridge->ChildList) {
PciIoDevice = PCI_IO_DEVICE_FROM_LINK (ChildDeviceLink);
if (PciIoDevice->RomSize != 0) {
if (!IsListEmpty (&Mem64Node->ChildList)) {
ChildNodeLink = Mem64Node->ChildList.ForwardLink;
while (ChildNodeLink != &Mem64Node->ChildList) {
ResourceNode = RESOURCE_NODE_FROM_LINK (ChildNodeLink);
NextChildNodeLink = ChildNodeLink->ForwardLink;
if ((ResourceNode->PciDev == PciIoDevice) &&
(ResourceNode->Virtual || !PciIoDevice->PciBar[ResourceNode->Bar].BarTypeFixed)
) {
RemoveEntryList (ChildNodeLink);
InsertResourceNode (Mem32Node, ResourceNode);
}
ChildNodeLink = NextChildNodeLink;
}
}
if (!IsListEmpty (&PMem64Node->ChildList)) {
ChildNodeLink = PMem64Node->ChildList.ForwardLink;
while (ChildNodeLink != &PMem64Node->ChildList) {
ResourceNode = RESOURCE_NODE_FROM_LINK (ChildNodeLink);
NextChildNodeLink = ChildNodeLink->ForwardLink;
if ((ResourceNode->PciDev == PciIoDevice) &&
(ResourceNode->Virtual || !PciIoDevice->PciBar[ResourceNode->Bar].BarTypeFixed)
) {
RemoveEntryList (ChildNodeLink);
InsertResourceNode (PMem32Node, ResourceNode);
}
ChildNodeLink = NextChildNodeLink;
}
}
}
ChildDeviceLink = ChildDeviceLink->ForwardLink;
}
}
//
// If firmware is in 32-bit mode,
// then degrade PMEM64/MEM64 requests
//
if (sizeof (UINTN) <= 4) {
MergeResourceTree (
Mem32Node,
Mem64Node,
TRUE
);
MergeResourceTree (
PMem32Node,
PMem64Node,
TRUE
);
} else {
//
// if the bridge does not support MEM64, degrade MEM64 to MEM32
//
if (!BridgeSupportResourceDecode (Bridge, EFI_BRIDGE_MEM64_DECODE_SUPPORTED)) {
MergeResourceTree (
Mem32Node,
Mem64Node,
TRUE
);
}
//
// if the bridge does not support PMEM64, degrade PMEM64 to PMEM32
//
if (!BridgeSupportResourceDecode (Bridge, EFI_BRIDGE_PMEM64_DECODE_SUPPORTED)) {
MergeResourceTree (
PMem32Node,
PMem64Node,
TRUE
);
}
//
// if both PMEM64 and PMEM32 requests from child devices, which can not be satisfied
// by a P2P bridge simultaneously, keep PMEM64 and degrade PMEM32 to MEM32.
//
if (!IsListEmpty (&PMem64Node->ChildList) && Bridge->Parent != NULL) {
MergeResourceTree (
Mem32Node,
PMem32Node,
TRUE
);
}
}
//
// If bridge doesn't support Pmem32
// degrade it to mem32
//
if (!BridgeSupportResourceDecode (Bridge, EFI_BRIDGE_PMEM32_DECODE_SUPPORTED)) {
MergeResourceTree (
Mem32Node,
PMem32Node,
TRUE
);
}
//
// if root bridge supports combined Pmem Mem decoding
// merge these two type of resource
//
if (BridgeSupportResourceDecode (Bridge, EFI_BRIDGE_PMEM_MEM_COMBINE_SUPPORTED)) {
MergeResourceTree (
Mem32Node,
PMem32Node,
FALSE
);
//
// No need to check if to degrade MEM64 after merge, because
// if there are PMEM64 still here, 64-bit decode should be supported
// by the root bride.
//
MergeResourceTree (
Mem64Node,
PMem64Node,
FALSE
);
}
}
/**
Test whether bridge device support decode resource.
@param Bridge Bridge device instance.
@param Decode Decode type according to resource type.
@return TRUE The bridge device support decode resource.
@return FALSE The bridge device don't support decode resource.
**/
BOOLEAN
BridgeSupportResourceDecode (
IN PCI_IO_DEVICE *Bridge,
IN UINT32 Decode
)
{
if (((Bridge->Decodes) & Decode) != 0) {
return TRUE;
}
return FALSE;
}
/**
This function is used to program the resource allocated
for each resource node under specified bridge.
@param Base Base address of resource to be programmed.
@param Bridge PCI resource node for the bridge device.
@retval EFI_SUCCESS Successfully to program all resources
on given PCI bridge device.
@retval EFI_OUT_OF_RESOURCES Base is all one.
**/
EFI_STATUS
ProgramResource (
IN UINT64 Base,
IN PCI_RESOURCE_NODE *Bridge
)
{
LIST_ENTRY *CurrentLink;
PCI_RESOURCE_NODE *Node;
EFI_STATUS Status;
if (Base == gAllOne) {
return EFI_OUT_OF_RESOURCES;
}
CurrentLink = Bridge->ChildList.ForwardLink;
while (CurrentLink != &Bridge->ChildList) {
Node = RESOURCE_NODE_FROM_LINK (CurrentLink);
if (!IS_PCI_BRIDGE (&(Node->PciDev->Pci))) {
if (IS_CARDBUS_BRIDGE (&(Node->PciDev->Pci))) {
//
// Program the PCI Card Bus device
//
ProgramP2C (Base, Node);
} else {
//
// Program the PCI device BAR
//
ProgramBar (Base, Node);
}
} else {
//
// Program the PCI devices under this bridge
//
Status = ProgramResource (Base + Node->Offset, Node);
if (EFI_ERROR (Status)) {
return Status;
}
ProgramPpbApperture (Base, Node);
}
CurrentLink = CurrentLink->ForwardLink;
}
return EFI_SUCCESS;
}
/**
Program Bar register for PCI device.
@param Base Base address for PCI device resource to be programmed.
@param Node Point to resource node structure.
**/
VOID
ProgramBar (
IN UINT64 Base,
IN PCI_RESOURCE_NODE *Node
)
{
EFI_PCI_IO_PROTOCOL *PciIo;
UINT64 Address;
UINT32 Address32;
ASSERT (Node->Bar < PCI_MAX_BAR);
//
// Check VF BAR
//
if (Node->Virtual) {
ProgramVfBar (Base, Node);
return;
}
Address = 0;
PciIo = &(Node->PciDev->PciIo);
Address = Base + Node->Offset;
//
// Indicate pci bus driver has allocated
// resource for this device
// It might be a temporary solution here since
// pci device could have multiple bar
//
Node->PciDev->Allocated = TRUE;
switch ((Node->PciDev->PciBar[Node->Bar]).BarType) {
case PciBarTypeIo16:
case PciBarTypeIo32:
case PciBarTypeMem32:
case PciBarTypePMem32:
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
(Node->PciDev->PciBar[Node->Bar]).Offset,
1,
&Address
);
MdeModulePkg/PciBus: Shadow option ROM after BARs are programmed REF: https://bugzilla.tianocore.org/show_bug.cgi?id=1376 Today's implementation reuses the 32bit MMIO resource requested by all PCI devices MMIO BARs when shadowing the option ROM. Take a simple example, a system has only one PCI device. It requires 8MB 32bit MMIO and contains a 4MB option ROM. Today's implementation only requests 8MB (max of 4M and 8M) 32bit MMIO from PciHostBridgeResourceAllocation protocol. Let's assume the MMIO range [3GB, 3GB+8MB) is allocated. The 3GB base address is firstly programmed to the option ROM BAR for option ROM shadow. Then the option ROM decoding is turned off and 3GB base address is programmed to the 32bit MMIO BAR. It doesn't cause issues when the device doesn't request too much MMIO. But when the device contains a 64bit MMIO BAR which requests 4GB MMIO and a 4MB option ROM. Let's assume [3GB, 3GB+8MB) 32bit MMIO range is allocated for the option ROM. When the option ROM is being shadowed, 64bit MMIO BAR is programmed to value 0, which means [0, 4GB) MMIO is given to the 64bit BAR. The range overlaps with the option ROM range which may cause the device malfunction (e.g.: option ROM cannot be read out) when the device has two separate decoders: one for MMIO BAR, the other for option ROM. The patch requests dedicated MEM32 resource for Option ROMs and moves the Option ROM shadow logic after all MMIO BARs are programmed. The MMIO BAR setting to 0 when shadowing Option ROM is also skipped because the MMIO BAR already contains the correct value. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Hao Wu <hao.a.wu@intel.com>
2018-12-01 15:43:28 +01:00
//
// Continue to the case PciBarTypeOpRom to set the BaseAddress.
// PciBarTypeOpRom is a virtual BAR only in root bridge, to capture
// the MEM32 resource requirement for Option ROM shadow.
//
MdeModulePkg/PciBus: Shadow option ROM after BARs are programmed REF: https://bugzilla.tianocore.org/show_bug.cgi?id=1376 Today's implementation reuses the 32bit MMIO resource requested by all PCI devices MMIO BARs when shadowing the option ROM. Take a simple example, a system has only one PCI device. It requires 8MB 32bit MMIO and contains a 4MB option ROM. Today's implementation only requests 8MB (max of 4M and 8M) 32bit MMIO from PciHostBridgeResourceAllocation protocol. Let's assume the MMIO range [3GB, 3GB+8MB) is allocated. The 3GB base address is firstly programmed to the option ROM BAR for option ROM shadow. Then the option ROM decoding is turned off and 3GB base address is programmed to the 32bit MMIO BAR. It doesn't cause issues when the device doesn't request too much MMIO. But when the device contains a 64bit MMIO BAR which requests 4GB MMIO and a 4MB option ROM. Let's assume [3GB, 3GB+8MB) 32bit MMIO range is allocated for the option ROM. When the option ROM is being shadowed, 64bit MMIO BAR is programmed to value 0, which means [0, 4GB) MMIO is given to the 64bit BAR. The range overlaps with the option ROM range which may cause the device malfunction (e.g.: option ROM cannot be read out) when the device has two separate decoders: one for MMIO BAR, the other for option ROM. The patch requests dedicated MEM32 resource for Option ROMs and moves the Option ROM shadow logic after all MMIO BARs are programmed. The MMIO BAR setting to 0 when shadowing Option ROM is also skipped because the MMIO BAR already contains the correct value. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Hao Wu <hao.a.wu@intel.com>
2018-12-01 15:43:28 +01:00
case PciBarTypeOpRom:
Node->PciDev->PciBar[Node->Bar].BaseAddress = Address;
break;
case PciBarTypeMem64:
case PciBarTypePMem64:
Address32 = (UINT32) (Address & 0x00000000FFFFFFFF);
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
(Node->PciDev->PciBar[Node->Bar]).Offset,
1,
&Address32
);
Address32 = (UINT32) RShiftU64 (Address, 32);
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
(UINT8) ((Node->PciDev->PciBar[Node->Bar]).Offset + 4),
1,
&Address32
);
Node->PciDev->PciBar[Node->Bar].BaseAddress = Address;
break;
default:
break;
}
}
/**
Program IOV VF Bar register for PCI device.
@param Base Base address for PCI device resource to be programmed.
@param Node Point to resource node structure.
**/
EFI_STATUS
ProgramVfBar (
IN UINT64 Base,
IN PCI_RESOURCE_NODE *Node
)
{
EFI_PCI_IO_PROTOCOL *PciIo;
UINT64 Address;
UINT32 Address32;
ASSERT (Node->Bar < PCI_MAX_BAR);
ASSERT (Node->Virtual);
Address = 0;
PciIo = &(Node->PciDev->PciIo);
Address = Base + Node->Offset;
//
// Indicate pci bus driver has allocated
// resource for this device
// It might be a temporary solution here since
// pci device could have multiple bar
//
Node->PciDev->Allocated = TRUE;
switch ((Node->PciDev->VfPciBar[Node->Bar]).BarType) {
case PciBarTypeMem32:
case PciBarTypePMem32:
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
(Node->PciDev->VfPciBar[Node->Bar]).Offset,
1,
&Address
);
Node->PciDev->VfPciBar[Node->Bar].BaseAddress = Address;
break;
case PciBarTypeMem64:
case PciBarTypePMem64:
Address32 = (UINT32) (Address & 0x00000000FFFFFFFF);
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
(Node->PciDev->VfPciBar[Node->Bar]).Offset,
1,
&Address32
);
Address32 = (UINT32) RShiftU64 (Address, 32);
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
((Node->PciDev->VfPciBar[Node->Bar]).Offset + 4),
1,
&Address32
);
Node->PciDev->VfPciBar[Node->Bar].BaseAddress = Address;
break;
case PciBarTypeIo16:
case PciBarTypeIo32:
break;
default:
break;
}
return EFI_SUCCESS;
}
/**
Program PCI-PCI bridge aperture.
@param Base Base address for resource.
@param Node Point to resource node structure.
**/
VOID
ProgramPpbApperture (
IN UINT64 Base,
IN PCI_RESOURCE_NODE *Node
)
{
EFI_PCI_IO_PROTOCOL *PciIo;
UINT64 Address;
UINT32 Address32;
Address = 0;
//
// If no device resource of this PPB, return anyway
// Aperture is set default in the initialization code
//
if (Node->Length == 0 || Node->ResourceUsage == PciResUsagePadding) {
//
// For padding resource node, just ignore when programming
//
return ;
}
PciIo = &(Node->PciDev->PciIo);
Address = Base + Node->Offset;
//
// Indicate the PPB resource has been allocated
//
Node->PciDev->Allocated = TRUE;
switch (Node->Bar) {
case PPB_BAR_0:
case PPB_BAR_1:
switch ((Node->PciDev->PciBar[Node->Bar]).BarType) {
case PciBarTypeIo16:
case PciBarTypeIo32:
case PciBarTypeMem32:
case PciBarTypePMem32:
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
(Node->PciDev->PciBar[Node->Bar]).Offset,
1,
&Address
);
Node->PciDev->PciBar[Node->Bar].BaseAddress = Address;
Node->PciDev->PciBar[Node->Bar].Length = Node->Length;
break;
case PciBarTypeMem64:
case PciBarTypePMem64:
Address32 = (UINT32) (Address & 0x00000000FFFFFFFF);
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
(Node->PciDev->PciBar[Node->Bar]).Offset,
1,
&Address32
);
Address32 = (UINT32) RShiftU64 (Address, 32);
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
(UINT8) ((Node->PciDev->PciBar[Node->Bar]).Offset + 4),
1,
&Address32
);
Node->PciDev->PciBar[Node->Bar].BaseAddress = Address;
Node->PciDev->PciBar[Node->Bar].Length = Node->Length;
break;
default:
break;
}
break;
case PPB_IO_RANGE:
Address32 = ((UINT32) (Address)) >> 8;
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint8,
0x1C,
1,
&Address32
);
Address32 >>= 8;
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint16,
0x30,
1,
&Address32
);
Address32 = (UINT32) (Address + Node->Length - 1);
Address32 = ((UINT32) (Address32)) >> 8;
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint8,
0x1D,
1,
&Address32
);
Address32 >>= 8;
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint16,
0x32,
1,
&Address32
);
Node->PciDev->PciBar[Node->Bar].BaseAddress = Address;
Node->PciDev->PciBar[Node->Bar].Length = Node->Length;
break;
case PPB_MEM32_RANGE:
Address32 = ((UINT32) (Address)) >> 16;
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint16,
0x20,
1,
&Address32
);
Address32 = (UINT32) (Address + Node->Length - 1);
Address32 = ((UINT32) (Address32)) >> 16;
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint16,
0x22,
1,
&Address32
);
Node->PciDev->PciBar[Node->Bar].BaseAddress = Address;
Node->PciDev->PciBar[Node->Bar].Length = Node->Length;
break;
case PPB_PMEM32_RANGE:
case PPB_PMEM64_RANGE:
Address32 = ((UINT32) (Address)) >> 16;
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint16,
0x24,
1,
&Address32
);
Address32 = (UINT32) (Address + Node->Length - 1);
Address32 = ((UINT32) (Address32)) >> 16;
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint16,
0x26,
1,
&Address32
);
Address32 = (UINT32) RShiftU64 (Address, 32);
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
0x28,
1,
&Address32
);
Address32 = (UINT32) RShiftU64 ((Address + Node->Length - 1), 32);
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
0x2C,
1,
&Address32
);
Node->PciDev->PciBar[Node->Bar].BaseAddress = Address;
Node->PciDev->PciBar[Node->Bar].Length = Node->Length;
break;
default:
break;
}
}
/**
Program parent bridge for Option Rom.
@param PciDevice Pci device instance.
@param OptionRomBase Base address for Option Rom.
@param Enable Enable or disable PCI memory.
**/
VOID
ProgramUpstreamBridgeForRom (
IN PCI_IO_DEVICE *PciDevice,
IN UINT32 OptionRomBase,
IN BOOLEAN Enable
)
{
PCI_IO_DEVICE *Parent;
EFI_PCI_IO_PROTOCOL *PciIo;
UINT16 Base;
UINT16 Limit;
//
// For root bridge, just return.
//
Parent = PciDevice->Parent;
while (Parent != NULL) {
if (!IS_PCI_BRIDGE (&Parent->Pci)) {
break;
}
PciIo = &Parent->PciIo;
//
// Program PPB to only open a single <= 16MB aperture
//
if (Enable) {
MdeModulePkg/PciBus: Shadow option ROM after BARs are programmed REF: https://bugzilla.tianocore.org/show_bug.cgi?id=1376 Today's implementation reuses the 32bit MMIO resource requested by all PCI devices MMIO BARs when shadowing the option ROM. Take a simple example, a system has only one PCI device. It requires 8MB 32bit MMIO and contains a 4MB option ROM. Today's implementation only requests 8MB (max of 4M and 8M) 32bit MMIO from PciHostBridgeResourceAllocation protocol. Let's assume the MMIO range [3GB, 3GB+8MB) is allocated. The 3GB base address is firstly programmed to the option ROM BAR for option ROM shadow. Then the option ROM decoding is turned off and 3GB base address is programmed to the 32bit MMIO BAR. It doesn't cause issues when the device doesn't request too much MMIO. But when the device contains a 64bit MMIO BAR which requests 4GB MMIO and a 4MB option ROM. Let's assume [3GB, 3GB+8MB) 32bit MMIO range is allocated for the option ROM. When the option ROM is being shadowed, 64bit MMIO BAR is programmed to value 0, which means [0, 4GB) MMIO is given to the 64bit BAR. The range overlaps with the option ROM range which may cause the device malfunction (e.g.: option ROM cannot be read out) when the device has two separate decoders: one for MMIO BAR, the other for option ROM. The patch requests dedicated MEM32 resource for Option ROMs and moves the Option ROM shadow logic after all MMIO BARs are programmed. The MMIO BAR setting to 0 when shadowing Option ROM is also skipped because the MMIO BAR already contains the correct value. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Hao Wu <hao.a.wu@intel.com>
2018-12-01 15:43:28 +01:00
//
// Only cover MMIO for Option ROM.
//
Base = (UINT16) (OptionRomBase >> 16);
Limit = (UINT16) ((OptionRomBase + PciDevice->RomSize - 1) >> 16);
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint16, OFFSET_OF (PCI_TYPE01, Bridge.MemoryBase), 1, &Base);
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint16, OFFSET_OF (PCI_TYPE01, Bridge.MemoryLimit), 1, &Limit);
MdeModulePkg/PciBus: Shadow option ROM after BARs are programmed REF: https://bugzilla.tianocore.org/show_bug.cgi?id=1376 Today's implementation reuses the 32bit MMIO resource requested by all PCI devices MMIO BARs when shadowing the option ROM. Take a simple example, a system has only one PCI device. It requires 8MB 32bit MMIO and contains a 4MB option ROM. Today's implementation only requests 8MB (max of 4M and 8M) 32bit MMIO from PciHostBridgeResourceAllocation protocol. Let's assume the MMIO range [3GB, 3GB+8MB) is allocated. The 3GB base address is firstly programmed to the option ROM BAR for option ROM shadow. Then the option ROM decoding is turned off and 3GB base address is programmed to the 32bit MMIO BAR. It doesn't cause issues when the device doesn't request too much MMIO. But when the device contains a 64bit MMIO BAR which requests 4GB MMIO and a 4MB option ROM. Let's assume [3GB, 3GB+8MB) 32bit MMIO range is allocated for the option ROM. When the option ROM is being shadowed, 64bit MMIO BAR is programmed to value 0, which means [0, 4GB) MMIO is given to the 64bit BAR. The range overlaps with the option ROM range which may cause the device malfunction (e.g.: option ROM cannot be read out) when the device has two separate decoders: one for MMIO BAR, the other for option ROM. The patch requests dedicated MEM32 resource for Option ROMs and moves the Option ROM shadow logic after all MMIO BARs are programmed. The MMIO BAR setting to 0 when shadowing Option ROM is also skipped because the MMIO BAR already contains the correct value. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Hao Wu <hao.a.wu@intel.com>
2018-12-01 15:43:28 +01:00
PCI_ENABLE_COMMAND_REGISTER (Parent, EFI_PCI_COMMAND_MEMORY_SPACE);
} else {
MdeModulePkg/PciBus: Shadow option ROM after BARs are programmed REF: https://bugzilla.tianocore.org/show_bug.cgi?id=1376 Today's implementation reuses the 32bit MMIO resource requested by all PCI devices MMIO BARs when shadowing the option ROM. Take a simple example, a system has only one PCI device. It requires 8MB 32bit MMIO and contains a 4MB option ROM. Today's implementation only requests 8MB (max of 4M and 8M) 32bit MMIO from PciHostBridgeResourceAllocation protocol. Let's assume the MMIO range [3GB, 3GB+8MB) is allocated. The 3GB base address is firstly programmed to the option ROM BAR for option ROM shadow. Then the option ROM decoding is turned off and 3GB base address is programmed to the 32bit MMIO BAR. It doesn't cause issues when the device doesn't request too much MMIO. But when the device contains a 64bit MMIO BAR which requests 4GB MMIO and a 4MB option ROM. Let's assume [3GB, 3GB+8MB) 32bit MMIO range is allocated for the option ROM. When the option ROM is being shadowed, 64bit MMIO BAR is programmed to value 0, which means [0, 4GB) MMIO is given to the 64bit BAR. The range overlaps with the option ROM range which may cause the device malfunction (e.g.: option ROM cannot be read out) when the device has two separate decoders: one for MMIO BAR, the other for option ROM. The patch requests dedicated MEM32 resource for Option ROMs and moves the Option ROM shadow logic after all MMIO BARs are programmed. The MMIO BAR setting to 0 when shadowing Option ROM is also skipped because the MMIO BAR already contains the correct value. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Hao Wu <hao.a.wu@intel.com>
2018-12-01 15:43:28 +01:00
//
// Cover 32bit MMIO for devices below the bridge.
//
if (Parent->PciBar[PPB_MEM32_RANGE].Length == 0) {
//
// When devices under the bridge contains Option ROM and doesn't require 32bit MMIO.
//
Base = (UINT16) gAllOne;
Limit = (UINT16) gAllZero;
} else {
Base = (UINT16) ((UINT32) Parent->PciBar[PPB_MEM32_RANGE].BaseAddress >> 16);
Limit = (UINT16) ((UINT32) (Parent->PciBar[PPB_MEM32_RANGE].BaseAddress
+ Parent->PciBar[PPB_MEM32_RANGE].Length - 1) >> 16);
}
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint16, OFFSET_OF (PCI_TYPE01, Bridge.MemoryBase), 1, &Base);
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint16, OFFSET_OF (PCI_TYPE01, Bridge.MemoryLimit), 1, &Limit);
PCI_DISABLE_COMMAND_REGISTER (Parent, EFI_PCI_COMMAND_MEMORY_SPACE);
}
Parent = Parent->Parent;
}
}
/**
Test whether resource exists for a bridge.
@param Bridge Point to resource node for a bridge.
@retval TRUE There is resource on the given bridge.
@retval FALSE There isn't resource on the given bridge.
**/
BOOLEAN
ResourceRequestExisted (
IN PCI_RESOURCE_NODE *Bridge
)
{
if (Bridge != NULL) {
if (!IsListEmpty (&Bridge->ChildList) || Bridge->Length != 0) {
return TRUE;
}
}
return FALSE;
}
/**
Initialize resource pool structure.
@param ResourcePool Point to resource pool structure. This pool
is reset to all zero when returned.
@param ResourceType Type of resource.
**/
VOID
InitializeResourcePool (
IN OUT PCI_RESOURCE_NODE *ResourcePool,
IN PCI_BAR_TYPE ResourceType
)
{
ZeroMem (ResourcePool, sizeof (PCI_RESOURCE_NODE));
ResourcePool->ResType = ResourceType;
ResourcePool->Signature = PCI_RESOURCE_SIGNATURE;
InitializeListHead (&ResourcePool->ChildList);
}
/**
Destroy given resource tree.
@param Bridge PCI resource root node of resource tree.
**/
VOID
DestroyResourceTree (
IN PCI_RESOURCE_NODE *Bridge
)
{
PCI_RESOURCE_NODE *Temp;
LIST_ENTRY *CurrentLink;
while (!IsListEmpty (&Bridge->ChildList)) {
CurrentLink = Bridge->ChildList.ForwardLink;
Temp = RESOURCE_NODE_FROM_LINK (CurrentLink);
ASSERT (Temp);
RemoveEntryList (CurrentLink);
if (IS_PCI_BRIDGE (&(Temp->PciDev->Pci))) {
DestroyResourceTree (Temp);
}
FreePool (Temp);
}
}
/**
Insert resource padding for P2C.
@param PciDev Pci device instance.
@param IoNode Resource info node for IO.
@param Mem32Node Resource info node for 32-bit memory.
@param PMem32Node Resource info node for 32-bit Prefetchable Memory.
@param Mem64Node Resource info node for 64-bit memory.
@param PMem64Node Resource info node for 64-bit Prefetchable Memory.
**/
VOID
ResourcePaddingForCardBusBridge (
IN PCI_IO_DEVICE *PciDev,
IN PCI_RESOURCE_NODE *IoNode,
IN PCI_RESOURCE_NODE *Mem32Node,
IN PCI_RESOURCE_NODE *PMem32Node,
IN PCI_RESOURCE_NODE *Mem64Node,
IN PCI_RESOURCE_NODE *PMem64Node
)
{
PCI_RESOURCE_NODE *Node;
Node = NULL;
//
// Memory Base/Limit Register 0
// Bar 1 decodes memory range 0
//
Node = CreateResourceNode (
PciDev,
0x2000000,
0x1ffffff,
1,
PciBarTypeMem32,
PciResUsagePadding
);
InsertResourceNode (
Mem32Node,
Node
);
//
// Memory Base/Limit Register 1
// Bar 2 decodes memory range1
//
Node = CreateResourceNode (
PciDev,
0x2000000,
0x1ffffff,
2,
PciBarTypePMem32,
PciResUsagePadding
);
InsertResourceNode (
PMem32Node,
Node
);
//
// Io Base/Limit
// Bar 3 decodes io range 0
//
Node = CreateResourceNode (
PciDev,
0x100,
0xff,
3,
PciBarTypeIo16,
PciResUsagePadding
);
InsertResourceNode (
IoNode,
Node
);
//
// Io Base/Limit
// Bar 4 decodes io range 0
//
Node = CreateResourceNode (
PciDev,
0x100,
0xff,
4,
PciBarTypeIo16,
PciResUsagePadding
);
InsertResourceNode (
IoNode,
Node
);
}
/**
Program PCI Card device register for given resource node.
@param Base Base address of PCI Card device to be programmed.
@param Node Given resource node.
**/
VOID
ProgramP2C (
IN UINT64 Base,
IN PCI_RESOURCE_NODE *Node
)
{
EFI_PCI_IO_PROTOCOL *PciIo;
UINT64 Address;
UINT64 TempAddress;
UINT16 BridgeControl;
Address = 0;
PciIo = &(Node->PciDev->PciIo);
Address = Base + Node->Offset;
//
// Indicate pci bus driver has allocated
// resource for this device
// It might be a temporary solution here since
// pci device could have multiple bar
//
Node->PciDev->Allocated = TRUE;
switch (Node->Bar) {
case P2C_BAR_0:
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
(Node->PciDev->PciBar[Node->Bar]).Offset,
1,
&Address
);
Node->PciDev->PciBar[Node->Bar].BaseAddress = Address;
Node->PciDev->PciBar[Node->Bar].Length = Node->Length;
break;
case P2C_MEM_1:
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
PCI_CARD_MEMORY_BASE_0,
1,
&Address
);
TempAddress = Address + Node->Length - 1;
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
PCI_CARD_MEMORY_LIMIT_0,
1,
&TempAddress
);
if (Node->ResType == PciBarTypeMem32) {
//
// Set non-prefetchable bit
//
PciIo->Pci.Read (
PciIo,
EfiPciIoWidthUint16,
PCI_CARD_BRIDGE_CONTROL,
1,
&BridgeControl
);
BridgeControl &= (UINT16) ~PCI_CARD_PREFETCHABLE_MEMORY_0_ENABLE;
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint16,
PCI_CARD_BRIDGE_CONTROL,
1,
&BridgeControl
);
} else {
//
// Set prefetchable bit
//
PciIo->Pci.Read (
PciIo,
EfiPciIoWidthUint16,
PCI_CARD_BRIDGE_CONTROL,
1,
&BridgeControl
);
BridgeControl |= PCI_CARD_PREFETCHABLE_MEMORY_0_ENABLE;
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint16,
PCI_CARD_BRIDGE_CONTROL,
1,
&BridgeControl
);
}
Node->PciDev->PciBar[Node->Bar].BaseAddress = Address;
Node->PciDev->PciBar[Node->Bar].Length = Node->Length;
Node->PciDev->PciBar[Node->Bar].BarType = Node->ResType;
break;
case P2C_MEM_2:
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
PCI_CARD_MEMORY_BASE_1,
1,
&Address
);
TempAddress = Address + Node->Length - 1;
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
PCI_CARD_MEMORY_LIMIT_1,
1,
&TempAddress
);
if (Node->ResType == PciBarTypeMem32) {
//
// Set non-prefetchable bit
//
PciIo->Pci.Read (
PciIo,
EfiPciIoWidthUint16,
PCI_CARD_BRIDGE_CONTROL,
1,
&BridgeControl
);
BridgeControl &= (UINT16) ~(PCI_CARD_PREFETCHABLE_MEMORY_1_ENABLE);
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint16,
PCI_CARD_BRIDGE_CONTROL,
1,
&BridgeControl
);
} else {
//
// Set prefetchable bit
//
PciIo->Pci.Read (
PciIo,
EfiPciIoWidthUint16,
PCI_CARD_BRIDGE_CONTROL,
1,
&BridgeControl
);
BridgeControl |= PCI_CARD_PREFETCHABLE_MEMORY_1_ENABLE;
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint16,
PCI_CARD_BRIDGE_CONTROL,
1,
&BridgeControl
);
}
Node->PciDev->PciBar[Node->Bar].BaseAddress = Address;
Node->PciDev->PciBar[Node->Bar].Length = Node->Length;
Node->PciDev->PciBar[Node->Bar].BarType = Node->ResType;
break;
case P2C_IO_1:
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
PCI_CARD_IO_BASE_0_LOWER,
1,
&Address
);
TempAddress = Address + Node->Length - 1;
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
PCI_CARD_IO_LIMIT_0_LOWER,
1,
&TempAddress
);
Node->PciDev->PciBar[Node->Bar].BaseAddress = Address;
Node->PciDev->PciBar[Node->Bar].Length = Node->Length;
Node->PciDev->PciBar[Node->Bar].BarType = Node->ResType;
break;
case P2C_IO_2:
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
PCI_CARD_IO_BASE_1_LOWER,
1,
&Address
);
TempAddress = Address + Node->Length - 1;
PciIo->Pci.Write (
PciIo,
EfiPciIoWidthUint32,
PCI_CARD_IO_LIMIT_1_LOWER,
1,
&TempAddress
);
Node->PciDev->PciBar[Node->Bar].BaseAddress = Address;
Node->PciDev->PciBar[Node->Bar].Length = Node->Length;
Node->PciDev->PciBar[Node->Bar].BarType = Node->ResType;
break;
default:
break;
}
}
/**
Create padding resource node.
@param PciDev Pci device instance.
@param IoNode Resource info node for IO.
@param Mem32Node Resource info node for 32-bit memory.
@param PMem32Node Resource info node for 32-bit Prefetchable Memory.
@param Mem64Node Resource info node for 64-bit memory.
@param PMem64Node Resource info node for 64-bit Prefetchable Memory.
**/
VOID
ApplyResourcePadding (
IN PCI_IO_DEVICE *PciDev,
IN PCI_RESOURCE_NODE *IoNode,
IN PCI_RESOURCE_NODE *Mem32Node,
IN PCI_RESOURCE_NODE *PMem32Node,
IN PCI_RESOURCE_NODE *Mem64Node,
IN PCI_RESOURCE_NODE *PMem64Node
)
{
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Ptr;
PCI_RESOURCE_NODE *Node;
UINT8 DummyBarIndex;
DummyBarIndex = 0;
Ptr = PciDev->ResourcePaddingDescriptors;
while (((EFI_ACPI_END_TAG_DESCRIPTOR *) Ptr)->Desc != ACPI_END_TAG_DESCRIPTOR) {
if (Ptr->Desc == ACPI_ADDRESS_SPACE_DESCRIPTOR && Ptr->ResType == ACPI_ADDRESS_SPACE_TYPE_IO) {
if (Ptr->AddrLen != 0) {
Node = CreateResourceNode (
PciDev,
Ptr->AddrLen,
Ptr->AddrRangeMax,
DummyBarIndex,
PciBarTypeIo16,
PciResUsagePadding
);
InsertResourceNode (
IoNode,
Node
);
}
Ptr++;
continue;
}
if (Ptr->Desc == ACPI_ADDRESS_SPACE_DESCRIPTOR && Ptr->ResType == ACPI_ADDRESS_SPACE_TYPE_MEM) {
if (Ptr->AddrSpaceGranularity == 32) {
//
// prefetchable
//
if (Ptr->SpecificFlag == 0x6) {
if (Ptr->AddrLen != 0) {
Node = CreateResourceNode (
PciDev,
Ptr->AddrLen,
Ptr->AddrRangeMax,
DummyBarIndex,
PciBarTypePMem32,
PciResUsagePadding
);
InsertResourceNode (
PMem32Node,
Node
);
}
Ptr++;
continue;
}
//
// Non-prefetchable
//
if (Ptr->SpecificFlag == 0) {
if (Ptr->AddrLen != 0) {
Node = CreateResourceNode (
PciDev,
Ptr->AddrLen,
Ptr->AddrRangeMax,
DummyBarIndex,
PciBarTypeMem32,
PciResUsagePadding
);
InsertResourceNode (
Mem32Node,
Node
);
}
Ptr++;
continue;
}
}
if (Ptr->AddrSpaceGranularity == 64) {
//
// prefetchable
//
if (Ptr->SpecificFlag == 0x6) {
if (Ptr->AddrLen != 0) {
Node = CreateResourceNode (
PciDev,
Ptr->AddrLen,
Ptr->AddrRangeMax,
DummyBarIndex,
PciBarTypePMem64,
PciResUsagePadding
);
InsertResourceNode (
PMem64Node,
Node
);
}
Ptr++;
continue;
}
//
// Non-prefetchable
//
if (Ptr->SpecificFlag == 0) {
if (Ptr->AddrLen != 0) {
Node = CreateResourceNode (
PciDev,
Ptr->AddrLen,
Ptr->AddrRangeMax,
DummyBarIndex,
PciBarTypeMem64,
PciResUsagePadding
);
InsertResourceNode (
Mem64Node,
Node
);
}
Ptr++;
continue;
}
}
}
Ptr++;
}
}
/**
Get padding resource for PCI-PCI bridge.
@param PciIoDevice PCI-PCI bridge device instance.
@note Feature flag PcdPciBusHotplugDeviceSupport determines
whether need to pad resource for them.
**/
VOID
GetResourcePaddingPpb (
IN PCI_IO_DEVICE *PciIoDevice
)
{
if (gPciHotPlugInit != NULL && FeaturePcdGet (PcdPciBusHotplugDeviceSupport)) {
if (PciIoDevice->ResourcePaddingDescriptors == NULL) {
GetResourcePaddingForHpb (PciIoDevice);
}
}
}