audk/UefiPayloadPkg/Library/CbParseLib/CbParseLib.c

607 lines
16 KiB
C
Raw Normal View History

/** @file
This library will parse the coreboot table in memory and extract those required
information.
Copyright (c) 2014 - 2021, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Uefi/UefiBaseType.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/DebugLib.h>
#include <Library/PcdLib.h>
#include <Library/IoLib.h>
#include <Library/BlParseLib.h>
#include <IndustryStandard/Acpi.h>
#include <Coreboot.h>
/**
Convert a packed value from cbuint64 to a UINT64 value.
@param val The pointer to packed data.
@return the UNIT64 value after conversion.
**/
UINT64
cb_unpack64 (
IN struct cbuint64 val
)
{
return LShiftU64 (val.hi, 32) | val.lo;
}
/**
Returns the sum of all elements in a buffer of 16-bit values. During
calculation, the carry bits are also been added.
@param Buffer The pointer to the buffer to carry out the sum operation.
@param Length The size, in bytes, of Buffer.
@return Sum The sum of Buffer with carry bits included during additions.
**/
UINT16
CbCheckSum16 (
IN UINT16 *Buffer,
IN UINTN Length
)
{
UINT32 Sum;
UINT32 TmpValue;
UINTN Idx;
UINT8 *TmpPtr;
Sum = 0;
TmpPtr = (UINT8 *)Buffer;
for (Idx = 0; Idx < Length; Idx++) {
TmpValue = TmpPtr[Idx];
if (Idx % 2 == 1) {
TmpValue <<= 8;
}
Sum += TmpValue;
// Wrap
if (Sum >= 0x10000) {
Sum = (Sum + (Sum >> 16)) & 0xFFFF;
}
}
return (UINT16)((~Sum) & 0xFFFF);
}
/**
Check the coreboot table if it is valid.
@param Header Pointer to coreboot table
@retval TRUE The coreboot table is valid.
@retval Others The coreboot table is not valid.
**/
BOOLEAN
IsValidCbTable (
IN struct cb_header *Header
)
{
UINT16 CheckSum;
if ((Header == NULL) || (Header->table_bytes == 0)) {
return FALSE;
}
if (Header->signature != CB_HEADER_SIGNATURE) {
return FALSE;
}
//
// Check the checksum of the coreboot table header
//
CheckSum = CbCheckSum16 ((UINT16 *)Header, sizeof (*Header));
if (CheckSum != 0) {
DEBUG ((DEBUG_ERROR, "Invalid coreboot table header checksum\n"));
return FALSE;
}
CheckSum = CbCheckSum16 ((UINT16 *)((UINT8 *)Header + sizeof (*Header)), Header->table_bytes);
if (CheckSum != Header->table_checksum) {
DEBUG ((DEBUG_ERROR, "Incorrect checksum of all the coreboot table entries\n"));
return FALSE;
}
return TRUE;
}
/**
This function retrieves the parameter base address from boot loader.
This function will get bootloader specific parameter address for UEFI payload.
e.g. HobList pointer for Slim Bootloader, and coreboot table header for Coreboot.
@retval NULL Failed to find the GUID HOB.
@retval others GUIDed HOB data pointer.
**/
VOID *
EFIAPI
GetParameterBase (
VOID
)
{
struct cb_header *Header;
struct cb_record *Record;
UINT8 *TmpPtr;
UINT8 *CbTablePtr;
UINTN Idx;
EFI_STATUS Status;
//
// coreboot could pass coreboot table to UEFI payload
//
Header = (struct cb_header *)(UINTN)GET_BOOTLOADER_PARAMETER ();
if (IsValidCbTable (Header)) {
return Header;
}
//
// Find simplified coreboot table in memory range 0 ~ 4KB.
// Some GCC version does not allow directly access to NULL pointer,
// so start the search from 0x10 instead.
//
for (Idx = 16; Idx < 4096; Idx += 16) {
Header = (struct cb_header *)Idx;
if (Header->signature == CB_HEADER_SIGNATURE) {
break;
}
}
if (Idx >= 4096) {
return NULL;
}
//
// Check the coreboot header
//
if (!IsValidCbTable (Header)) {
return NULL;
}
//
// Find full coreboot table in high memory
//
CbTablePtr = NULL;
TmpPtr = (UINT8 *)Header + Header->header_bytes;
for (Idx = 0; Idx < Header->table_entries; Idx++) {
Record = (struct cb_record *)TmpPtr;
if (Record->tag == CB_TAG_FORWARD) {
CbTablePtr = (VOID *)(UINTN)((struct cb_forward *)(UINTN)Record)->forward;
break;
}
TmpPtr += Record->size;
}
//
// Check the coreboot header in high memory
//
if (!IsValidCbTable ((struct cb_header *)CbTablePtr)) {
return NULL;
}
Status = PcdSet64S (PcdBootloaderParameter, (UINTN)CbTablePtr);
ASSERT_EFI_ERROR (Status);
return CbTablePtr;
}
/**
Find coreboot record with given Tag.
@param Tag The tag id to be found
@retval NULL The Tag is not found.
@retval Others The pointer to the record found.
**/
VOID *
FindCbTag (
IN UINT32 Tag
)
{
struct cb_header *Header;
struct cb_record *Record;
UINT8 *TmpPtr;
UINT8 *TagPtr;
UINTN Idx;
Header = (struct cb_header *)GetParameterBase ();
TagPtr = NULL;
TmpPtr = (UINT8 *)Header + Header->header_bytes;
for (Idx = 0; Idx < Header->table_entries; Idx++) {
Record = (struct cb_record *)TmpPtr;
if (Record->tag == Tag) {
TagPtr = TmpPtr;
break;
}
TmpPtr += Record->size;
}
return TagPtr;
}
/**
Find the given table with TableId from the given coreboot memory Root.
@param Root The coreboot memory table to be searched in
@param TableId Table id to be found
@param MemTable To save the base address of the memory table found
@param MemTableSize To save the size of memory table found
@retval RETURN_SUCCESS Successfully find out the memory table.
@retval RETURN_INVALID_PARAMETER Invalid input parameters.
@retval RETURN_NOT_FOUND Failed to find the memory table.
**/
RETURN_STATUS
FindCbMemTable (
IN struct cbmem_root *Root,
IN UINT32 TableId,
OUT VOID **MemTable,
OUT UINT32 *MemTableSize
)
{
UINTN Idx;
BOOLEAN IsImdEntry;
struct cbmem_entry *Entries;
if ((Root == NULL) || (MemTable == NULL)) {
return RETURN_INVALID_PARAMETER;
}
//
// Check if the entry is CBMEM or IMD
// and handle them separately
//
Entries = Root->entries;
if (Entries[0].magic == CBMEM_ENTRY_MAGIC) {
IsImdEntry = FALSE;
} else {
Entries = (struct cbmem_entry *)((struct imd_root *)Root)->entries;
if (Entries[0].magic == IMD_ENTRY_MAGIC) {
IsImdEntry = TRUE;
} else {
return RETURN_NOT_FOUND;
}
}
for (Idx = 0; Idx < Root->num_entries; Idx++) {
if (Entries[Idx].id == TableId) {
if (IsImdEntry) {
*MemTable = (VOID *)((UINTN)Entries[Idx].start + (UINTN)Root);
} else {
*MemTable = (VOID *)(UINTN)Entries[Idx].start;
}
if (MemTableSize != NULL) {
*MemTableSize = Entries[Idx].size;
}
DEBUG ((
DEBUG_INFO,
"Find CbMemTable Id 0x%x, base %p, size 0x%x\n",
TableId,
*MemTable,
Entries[Idx].size
));
return RETURN_SUCCESS;
}
}
return RETURN_NOT_FOUND;
}
/**
Acquire the coreboot memory table with the given table id
@param TableId Table id to be searched
@param MemTable Pointer to the base address of the memory table
@param MemTableSize Pointer to the size of the memory table
@retval RETURN_SUCCESS Successfully find out the memory table.
@retval RETURN_INVALID_PARAMETER Invalid input parameters.
@retval RETURN_NOT_FOUND Failed to find the memory table.
**/
RETURN_STATUS
ParseCbMemTable (
IN UINT32 TableId,
OUT VOID **MemTable,
OUT UINT32 *MemTableSize
)
{
EFI_STATUS Status;
CB_MEMORY *Rec;
struct cb_memory_range *Range;
UINT64 Start;
UINT64 Size;
UINTN Index;
struct cbmem_root *CbMemRoot;
if (MemTable == NULL) {
return RETURN_INVALID_PARAMETER;
}
*MemTable = NULL;
Status = RETURN_NOT_FOUND;
//
// Get the coreboot memory table
//
Rec = (CB_MEMORY *)FindCbTag (CB_TAG_MEMORY);
if (Rec == NULL) {
return Status;
}
for (Index = 0; Index < MEM_RANGE_COUNT (Rec); Index++) {
Range = MEM_RANGE_PTR (Rec, Index);
Start = cb_unpack64 (Range->start);
Size = cb_unpack64 (Range->size);
if ((Range->type == CB_MEM_TABLE) && (Start > 0x1000)) {
CbMemRoot = (struct cbmem_root *)(UINTN)(Start + Size - DYN_CBMEM_ALIGN_SIZE);
Status = FindCbMemTable (CbMemRoot, TableId, MemTable, MemTableSize);
if (!EFI_ERROR (Status)) {
break;
}
}
}
return Status;
}
/**
Acquire the memory information from the coreboot table in memory.
@param MemInfoCallback The callback routine
@param Params Pointer to the callback routine parameter
@retval RETURN_SUCCESS Successfully find out the memory information.
@retval RETURN_NOT_FOUND Failed to find the memory information.
**/
RETURN_STATUS
EFIAPI
ParseMemoryInfo (
IN BL_MEM_INFO_CALLBACK MemInfoCallback,
IN VOID *Params
)
{
CB_MEMORY *Rec;
struct cb_memory_range *Range;
UINTN Index;
MEMORY_MAP_ENTRY MemoryMap;
//
// Get the coreboot memory table
//
Rec = (CB_MEMORY *)FindCbTag (CB_TAG_MEMORY);
if (Rec == NULL) {
return RETURN_NOT_FOUND;
}
for (Index = 0; Index < MEM_RANGE_COUNT (Rec); Index++) {
Range = MEM_RANGE_PTR (Rec, Index);
MemoryMap.Base = cb_unpack64 (Range->start);
MemoryMap.Size = cb_unpack64 (Range->size);
MemoryMap.Type = (UINT8)Range->type;
MemoryMap.Flag = 0;
DEBUG ((
DEBUG_INFO,
"%d. %016lx - %016lx [%02x]\n",
Index,
MemoryMap.Base,
MemoryMap.Base + MemoryMap.Size - 1,
MemoryMap.Type
));
MemInfoCallback (&MemoryMap, Params);
}
return RETURN_SUCCESS;
}
/**
Acquire SMBIOS table from coreboot.
@param SmbiosTable Pointer to the SMBIOS table info.
@retval RETURN_SUCCESS Successfully find out the tables.
@retval RETURN_NOT_FOUND Failed to find the tables.
**/
RETURN_STATUS
EFIAPI
ParseSmbiosTable (
OUT UNIVERSAL_PAYLOAD_SMBIOS_TABLE *SmbiosTable
)
{
EFI_STATUS Status;
VOID *MemTable;
UINT32 MemTableSize;
Status = ParseCbMemTable (SIGNATURE_32 ('T', 'B', 'M', 'S'), &MemTable, &MemTableSize);
if (EFI_ERROR (Status)) {
return EFI_NOT_FOUND;
}
SmbiosTable->SmBiosEntryPoint = (UINT64)(UINTN)MemTable;
return RETURN_SUCCESS;
}
/**
Acquire ACPI table from coreboot.
@param AcpiTableHob Pointer to the ACPI table info.
@retval RETURN_SUCCESS Successfully find out the tables.
@retval RETURN_NOT_FOUND Failed to find the tables.
**/
RETURN_STATUS
EFIAPI
ParseAcpiTableInfo (
OUT UNIVERSAL_PAYLOAD_ACPI_TABLE *AcpiTableHob
)
{
EFI_STATUS Status;
VOID *MemTable;
UINT32 MemTableSize;
Status = ParseCbMemTable (SIGNATURE_32 ('I', 'P', 'C', 'A'), &MemTable, &MemTableSize);
if (EFI_ERROR (Status)) {
return EFI_NOT_FOUND;
}
AcpiTableHob->Rsdp = (UINT64)(UINTN)MemTable;
return RETURN_SUCCESS;
}
/**
Find the serial port information
@param SerialPortInfo Pointer to serial port info structure
@retval RETURN_SUCCESS Successfully find the serial port information.
@retval RETURN_NOT_FOUND Failed to find the serial port information .
**/
RETURN_STATUS
EFIAPI
ParseSerialInfo (
OUT SERIAL_PORT_INFO *SerialPortInfo
)
{
struct cb_serial *CbSerial;
CbSerial = FindCbTag (CB_TAG_SERIAL);
if (CbSerial == NULL) {
return RETURN_NOT_FOUND;
}
SerialPortInfo->BaseAddr = CbSerial->baseaddr;
SerialPortInfo->RegWidth = CbSerial->regwidth;
SerialPortInfo->Type = CbSerial->type;
SerialPortInfo->Baud = CbSerial->baud;
SerialPortInfo->InputHertz = CbSerial->input_hertz;
SerialPortInfo->UartPciAddr = CbSerial->uart_pci_addr;
return RETURN_SUCCESS;
}
/**
Find the video frame buffer information
@param GfxInfo Pointer to the EFI_PEI_GRAPHICS_INFO_HOB structure
@retval RETURN_SUCCESS Successfully find the video frame buffer information.
@retval RETURN_NOT_FOUND Failed to find the video frame buffer information .
**/
RETURN_STATUS
EFIAPI
ParseGfxInfo (
OUT EFI_PEI_GRAPHICS_INFO_HOB *GfxInfo
)
{
struct cb_framebuffer *CbFbRec;
EFI_GRAPHICS_OUTPUT_MODE_INFORMATION *GfxMode;
if (GfxInfo == NULL) {
return RETURN_INVALID_PARAMETER;
}
CbFbRec = FindCbTag (CB_TAG_FRAMEBUFFER);
if (CbFbRec == NULL) {
return RETURN_NOT_FOUND;
}
DEBUG ((DEBUG_INFO, "Found coreboot video frame buffer information\n"));
DEBUG ((DEBUG_INFO, "physical_address: 0x%lx\n", CbFbRec->physical_address));
DEBUG ((DEBUG_INFO, "x_resolution: 0x%x\n", CbFbRec->x_resolution));
DEBUG ((DEBUG_INFO, "y_resolution: 0x%x\n", CbFbRec->y_resolution));
DEBUG ((DEBUG_INFO, "bits_per_pixel: 0x%x\n", CbFbRec->bits_per_pixel));
DEBUG ((DEBUG_INFO, "bytes_per_line: 0x%x\n", CbFbRec->bytes_per_line));
DEBUG ((DEBUG_INFO, "red_mask_size: 0x%x\n", CbFbRec->red_mask_size));
DEBUG ((DEBUG_INFO, "red_mask_pos: 0x%x\n", CbFbRec->red_mask_pos));
DEBUG ((DEBUG_INFO, "green_mask_size: 0x%x\n", CbFbRec->green_mask_size));
DEBUG ((DEBUG_INFO, "green_mask_pos: 0x%x\n", CbFbRec->green_mask_pos));
DEBUG ((DEBUG_INFO, "blue_mask_size: 0x%x\n", CbFbRec->blue_mask_size));
DEBUG ((DEBUG_INFO, "blue_mask_pos: 0x%x\n", CbFbRec->blue_mask_pos));
DEBUG ((DEBUG_INFO, "reserved_mask_size: 0x%x\n", CbFbRec->reserved_mask_size));
DEBUG ((DEBUG_INFO, "reserved_mask_pos: 0x%x\n", CbFbRec->reserved_mask_pos));
GfxMode = &GfxInfo->GraphicsMode;
GfxMode->Version = 0;
GfxMode->HorizontalResolution = CbFbRec->x_resolution;
GfxMode->VerticalResolution = CbFbRec->y_resolution;
GfxMode->PixelsPerScanLine = (CbFbRec->bytes_per_line << 3) / CbFbRec->bits_per_pixel;
if ((CbFbRec->red_mask_pos == 0) && (CbFbRec->green_mask_pos == 8) && (CbFbRec->blue_mask_pos == 16)) {
GfxMode->PixelFormat = PixelRedGreenBlueReserved8BitPerColor;
} else if ((CbFbRec->blue_mask_pos == 0) && (CbFbRec->green_mask_pos == 8) && (CbFbRec->red_mask_pos == 16)) {
GfxMode->PixelFormat = PixelBlueGreenRedReserved8BitPerColor;
}
GfxMode->PixelInformation.RedMask = ((1 << CbFbRec->red_mask_size) - 1) << CbFbRec->red_mask_pos;
GfxMode->PixelInformation.GreenMask = ((1 << CbFbRec->green_mask_size) - 1) << CbFbRec->green_mask_pos;
GfxMode->PixelInformation.BlueMask = ((1 << CbFbRec->blue_mask_size) - 1) << CbFbRec->blue_mask_pos;
GfxMode->PixelInformation.ReservedMask = ((1 << CbFbRec->reserved_mask_size) - 1) << CbFbRec->reserved_mask_pos;
GfxInfo->FrameBufferBase = CbFbRec->physical_address;
GfxInfo->FrameBufferSize = CbFbRec->bytes_per_line * CbFbRec->y_resolution;
return RETURN_SUCCESS;
}
/**
Find the video frame buffer device information
@param GfxDeviceInfo Pointer to the EFI_PEI_GRAPHICS_DEVICE_INFO_HOB structure
@retval RETURN_SUCCESS Successfully find the video frame buffer information.
@retval RETURN_NOT_FOUND Failed to find the video frame buffer information.
**/
RETURN_STATUS
EFIAPI
ParseGfxDeviceInfo (
OUT EFI_PEI_GRAPHICS_DEVICE_INFO_HOB *GfxDeviceInfo
)
{
return RETURN_NOT_FOUND;
}
/**
Parse and handle the misc info provided by bootloader
@retval RETURN_SUCCESS The misc information was parsed successfully.
@retval RETURN_NOT_FOUND Could not find required misc info.
@retval RETURN_OUT_OF_RESOURCES Insufficant memory space.
**/
RETURN_STATUS
EFIAPI
ParseMiscInfo (
VOID
)
{
return RETURN_SUCCESS;
}