audk/MdeModulePkg/Bus/Pci/UfsPciHcDxe/UfsPciHcDxe.h

512 lines
26 KiB
C
Raw Normal View History

/** @file
UfsHcDxe driver is used to provide platform-dependent info, mainly UFS host controller
MMIO base, to upper layer UFS drivers.
Copyright (c) 2014 - 2015, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef _EFI_UFS_HOST_CONTROLLER_H_
#define _EFI_UFS_HOST_CONTROLLER_H_
#include <Uefi.h>
#include <IndustryStandard/Pci.h>
#include <IndustryStandard/Acpi.h>
#include <Protocol/ComponentName.h>
#include <Protocol/ComponentName2.h>
#include <Protocol/DriverBinding.h>
#include <Protocol/LoadedImage.h>
#include <Protocol/DevicePath.h>
#include <Protocol/PciIo.h>
#include <Protocol/UfsHostController.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/UefiLib.h>
#include <Library/DevicePathLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiDriverEntryPoint.h>
extern EFI_DRIVER_BINDING_PROTOCOL gUfsHcDriverBinding;
extern EFI_COMPONENT_NAME_PROTOCOL gUfsHcComponentName;
extern EFI_COMPONENT_NAME2_PROTOCOL gUfsHcComponentName2;
//
// Unique signature for private data structure.
//
#define UFS_HC_PRIVATE_DATA_SIGNATURE SIGNATURE_32 ('U','F','S','H')
typedef struct _UFS_HOST_CONTROLLER_PRIVATE_DATA UFS_HOST_CONTROLLER_PRIVATE_DATA;
//
// Nvme private data structure.
//
struct _UFS_HOST_CONTROLLER_PRIVATE_DATA {
UINT32 Signature;
EFI_HANDLE Handle;
EDKII_UFS_HOST_CONTROLLER_PROTOCOL UfsHc;
EFI_PCI_IO_PROTOCOL *PciIo;
UINT8 BarIndex;
UINT64 PciAttributes;
};
#define UFS_HOST_CONTROLLER_PRIVATE_DATA_FROM_UFSHC(a) \
CR (a, \
UFS_HOST_CONTROLLER_PRIVATE_DATA, \
UfsHc, \
UFS_HC_PRIVATE_DATA_SIGNATURE \
)
/**
Retrieves a Unicode string that is the user readable name of the driver.
This function retrieves the user readable name of a driver in the form of a
Unicode string. If the driver specified by This has a user readable name in
the language specified by Language, then a pointer to the driver name is
returned in DriverName, and EFI_SUCCESS is returned. If the driver specified
by This does not support the language specified by Language,
then EFI_UNSUPPORTED is returned.
@param This[in] A pointer to the EFI_COMPONENT_NAME2_PROTOCOL or
EFI_COMPONENT_NAME_PROTOCOL instance.
@param Language[in] A pointer to a Null-terminated ASCII string
array indicating the language. This is the
language of the driver name that the caller is
requesting, and it must match one of the
languages specified in SupportedLanguages. The
number of languages supported by a driver is up
to the driver writer. Language is specified
in RFC 4646 or ISO 639-2 language code format.
@param DriverName[out] A pointer to the Unicode string to return.
This Unicode string is the name of the
driver specified by This in the language
specified by Language.
@retval EFI_SUCCESS The Unicode string for the Driver specified by
This and the language specified by Language was
returned in DriverName.
@retval EFI_INVALID_PARAMETER Language is NULL.
@retval EFI_INVALID_PARAMETER DriverName is NULL.
@retval EFI_UNSUPPORTED The driver specified by This does not support
the language specified by Language.
**/
EFI_STATUS
EFIAPI
UfsHcComponentNameGetDriverName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN CHAR8 *Language,
OUT CHAR16 **DriverName
);
/**
Retrieves a Unicode string that is the user readable name of the controller
that is being managed by a driver.
This function retrieves the user readable name of the controller specified by
ControllerHandle and ChildHandle in the form of a Unicode string. If the
driver specified by This has a user readable name in the language specified by
Language, then a pointer to the controller name is returned in ControllerName,
and EFI_SUCCESS is returned. If the driver specified by This is not currently
managing the controller specified by ControllerHandle and ChildHandle,
then EFI_UNSUPPORTED is returned. If the driver specified by This does not
support the language specified by Language, then EFI_UNSUPPORTED is returned.
@param This[in] A pointer to the EFI_COMPONENT_NAME2_PROTOCOL or
EFI_COMPONENT_NAME_PROTOCOL instance.
@param ControllerHandle[in] The handle of a controller that the driver
specified by This is managing. This handle
specifies the controller whose name is to be
returned.
@param ChildHandle[in] The handle of the child controller to retrieve
the name of. This is an optional parameter that
may be NULL. It will be NULL for device
drivers. It will also be NULL for a bus drivers
that wish to retrieve the name of the bus
controller. It will not be NULL for a bus
driver that wishes to retrieve the name of a
child controller.
@param Language[in] A pointer to a Null-terminated ASCII string
array indicating the language. This is the
language of the driver name that the caller is
requesting, and it must match one of the
languages specified in SupportedLanguages. The
number of languages supported by a driver is up
to the driver writer. Language is specified in
RFC 4646 or ISO 639-2 language code format.
@param ControllerName[out] A pointer to the Unicode string to return.
This Unicode string is the name of the
controller specified by ControllerHandle and
ChildHandle in the language specified by
Language from the point of view of the driver
specified by This.
@retval EFI_SUCCESS The Unicode string for the user readable name in
the language specified by Language for the
driver specified by This was returned in
DriverName.
@retval EFI_INVALID_PARAMETER ControllerHandle is NULL.
@retval EFI_INVALID_PARAMETER ChildHandle is not NULL and it is not a valid
EFI_HANDLE.
@retval EFI_INVALID_PARAMETER Language is NULL.
@retval EFI_INVALID_PARAMETER ControllerName is NULL.
@retval EFI_UNSUPPORTED The driver specified by This is not currently
managing the controller specified by
ControllerHandle and ChildHandle.
@retval EFI_UNSUPPORTED The driver specified by This does not support
the language specified by Language.
**/
EFI_STATUS
EFIAPI
UfsHcComponentNameGetControllerName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ChildHandle OPTIONAL,
IN CHAR8 *Language,
OUT CHAR16 **ControllerName
);
/**
Tests to see if this driver supports a given controller. If a child device is provided,
it further tests to see if this driver supports creating a handle for the specified child device.
This function checks to see if the driver specified by This supports the device specified by
ControllerHandle. Drivers will typically use the device path attached to
ControllerHandle and/or the services from the bus I/O abstraction attached to
ControllerHandle to determine if the driver supports ControllerHandle. This function
may be called many times during platform initialization. In order to reduce boot times, the tests
performed by this function must be very small, and take as little time as possible to execute. This
function must not change the state of any hardware devices, and this function must be aware that the
device specified by ControllerHandle may already be managed by the same driver or a
different driver. This function must match its calls to AllocatePages() with FreePages(),
AllocatePool() with FreePool(), and OpenProtocol() with CloseProtocol().
Since ControllerHandle may have been previously started by the same driver, if a protocol is
already in the opened state, then it must not be closed with CloseProtocol(). This is required
to guarantee the state of ControllerHandle is not modified by this function.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle The handle of the controller to test. This handle
must support a protocol interface that supplies
an I/O abstraction to the driver.
@param[in] RemainingDevicePath A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For bus drivers, if this parameter is not NULL, then
the bus driver must determine if the bus controller specified
by ControllerHandle and the child controller specified
by RemainingDevicePath are both supported by this
bus driver.
@retval EFI_SUCCESS The device specified by ControllerHandle and
RemainingDevicePath is supported by the driver specified by This.
@retval EFI_ALREADY_STARTED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by the driver
specified by This.
@retval EFI_ACCESS_DENIED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by a different
driver or an application that requires exclusive access.
Currently not implemented.
@retval EFI_UNSUPPORTED The device specified by ControllerHandle and
RemainingDevicePath is not supported by the driver specified by This.
**/
EFI_STATUS
EFIAPI
UfsHcDriverBindingSupported (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
);
/**
Starts a device controller or a bus controller.
The Start() function is designed to be invoked from the EFI boot service ConnectController().
As a result, much of the error checking on the parameters to Start() has been moved into this
common boot service. It is legal to call Start() from other locations,
but the following calling restrictions must be followed or the system behavior will not be deterministic.
1. ControllerHandle must be a valid EFI_HANDLE.
2. If RemainingDevicePath is not NULL, then it must be a pointer to a naturally aligned
EFI_DEVICE_PATH_PROTOCOL.
3. Prior to calling Start(), the Supported() function for the driver specified by This must
have been called with the same calling parameters, and Supported() must have returned EFI_SUCCESS.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle The handle of the controller to start. This handle
must support a protocol interface that supplies
an I/O abstraction to the driver.
@param[in] RemainingDevicePath A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For a bus driver, if this parameter is NULL, then handles
for all the children of Controller are created by this driver.
If this parameter is not NULL and the first Device Path Node is
not the End of Device Path Node, then only the handle for the
child device specified by the first Device Path Node of
RemainingDevicePath is created by this driver.
If the first Device Path Node of RemainingDevicePath is
the End of Device Path Node, no child handle is created by this
driver.
@retval EFI_SUCCESS The device was started.
@retval EFI_DEVICE_ERROR The device could not be started due to a device error.Currently not implemented.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
@retval Others The driver failded to start the device.
**/
EFI_STATUS
EFIAPI
UfsHcDriverBindingStart (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
);
/**
Stops a device controller or a bus controller.
The Stop() function is designed to be invoked from the EFI boot service DisconnectController().
As a result, much of the error checking on the parameters to Stop() has been moved
into this common boot service. It is legal to call Stop() from other locations,
but the following calling restrictions must be followed or the system behavior will not be deterministic.
1. ControllerHandle must be a valid EFI_HANDLE that was used on a previous call to this
same driver's Start() function.
2. The first NumberOfChildren handles of ChildHandleBuffer must all be a valid
EFI_HANDLE. In addition, all of these handles must have been created in this driver's
Start() function, and the Start() function must have called OpenProtocol() on
ControllerHandle with an Attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle A handle to the device being stopped. The handle must
support a bus specific I/O protocol for the driver
to use to stop the device.
@param[in] NumberOfChildren The number of child device handles in ChildHandleBuffer.
@param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL
if NumberOfChildren is 0.
@retval EFI_SUCCESS The device was stopped.
@retval EFI_DEVICE_ERROR The device could not be stopped due to a device error.
**/
EFI_STATUS
EFIAPI
UfsHcDriverBindingStop (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN UINTN NumberOfChildren,
IN EFI_HANDLE *ChildHandleBuffer
);
/**
Get the MMIO base of the UFS host controller.
@param[in] This A pointer to the EFI_UFS_HOST_CONTROLLER_PROTOCOL instance.
@param[out] MmioBar The MMIO base address of UFS host controller.
@retval EFI_SUCCESS The operation succeeds.
@retval others The operation fails.
**/
EFI_STATUS
EFIAPI
UfsHcGetMmioBar (
IN EDKII_UFS_HOST_CONTROLLER_PROTOCOL *This,
OUT UINTN *MmioBar
);
/**
Provides the UFS controller-specific addresses needed to access system memory.
@param This A pointer to the EFI_UFS_HOST_CONTROLLER_PROTOCOL instance.
@param Operation Indicates if the bus master is going to read or write to system memory.
@param HostAddress The system memory address to map to the UFS controller.
@param NumberOfBytes On input the number of bytes to map. On output the number of bytes
that were mapped.
@param DeviceAddress The resulting map address for the bus master UFS controller to use to
access the hosts HostAddress.
@param Mapping A resulting value to pass to Unmap().
@retval EFI_SUCCESS The range was mapped for the returned NumberOfBytes.
@retval EFI_UNSUPPORTED The HostAddress cannot be mapped as a common buffer.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
@retval EFI_DEVICE_ERROR The system hardware could not map the requested address.
**/
EFI_STATUS
EFIAPI
UfsHcMap (
IN EDKII_UFS_HOST_CONTROLLER_PROTOCOL *This,
IN EDKII_UFS_HOST_CONTROLLER_OPERATION Operation,
IN VOID *HostAddress,
IN OUT UINTN *NumberOfBytes,
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
);
/**
Completes the Map() operation and releases any corresponding resources.
@param This A pointer to the EFI_UFS_HOST_CONTROLLER_PROTOCOL instance.
@param Mapping The mapping value returned from Map().
@retval EFI_SUCCESS The range was unmapped.
@retval EFI_DEVICE_ERROR The data was not committed to the target system memory.
**/
EFI_STATUS
EFIAPI
UfsHcUnmap (
IN EDKII_UFS_HOST_CONTROLLER_PROTOCOL *This,
IN VOID *Mapping
);
/**
Allocates pages that are suitable for an EfiUfsHcOperationBusMasterCommonBuffer
mapping.
@param This A pointer to the EFI_UFS_HOST_CONTROLLER_PROTOCOL instance.
@param Type This parameter is not used and must be ignored.
@param MemoryType The type of memory to allocate, EfiBootServicesData or
EfiRuntimeServicesData.
@param Pages The number of pages to allocate.
@param HostAddress A pointer to store the base system memory address of the
allocated range.
@param Attributes The requested bit mask of attributes for the allocated range.
@retval EFI_SUCCESS The requested memory pages were allocated.
@retval EFI_UNSUPPORTED Attributes is unsupported. The only legal attribute bits are
MEMORY_WRITE_COMBINE and MEMORY_CACHED.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
@retval EFI_OUT_OF_RESOURCES The memory pages could not be allocated.
**/
EFI_STATUS
EFIAPI
UfsHcAllocateBuffer (
IN EDKII_UFS_HOST_CONTROLLER_PROTOCOL *This,
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
OUT VOID **HostAddress,
IN UINT64 Attributes
);
/**
Frees memory that was allocated with AllocateBuffer().
@param This A pointer to the EFI_UFS_HOST_CONTROLLER_PROTOCOL instance.
@param Pages The number of pages to free.
@param HostAddress The base system memory address of the allocated range.
@retval EFI_SUCCESS The requested memory pages were freed.
@retval EFI_INVALID_PARAMETER The memory range specified by HostAddress and Pages
was not allocated with AllocateBuffer().
**/
EFI_STATUS
EFIAPI
UfsHcFreeBuffer (
IN EDKII_UFS_HOST_CONTROLLER_PROTOCOL *This,
IN UINTN Pages,
IN VOID *HostAddress
);
/**
Flushes all posted write transactions from the UFS bus to attached UFS device.
@param This A pointer to the EFI_UFS_HOST_CONTROLLER_PROTOCOL instance.
@retval EFI_SUCCESS The posted write transactions were flushed from the UFS bus
to attached UFS device.
@retval EFI_DEVICE_ERROR The posted write transactions were not flushed from the UFS
bus to attached UFS device due to a hardware error.
**/
EFI_STATUS
EFIAPI
UfsHcFlush (
IN EDKII_UFS_HOST_CONTROLLER_PROTOCOL *This
);
/**
Enable a UFS bus driver to access UFS MMIO registers in the UFS Host Controller memory space.
@param This A pointer to the EDKII_UFS_HOST_CONTROLLER_PROTOCOL instance.
@param Width Signifies the width of the memory operations.
@param Offset The offset within the UFS Host Controller MMIO space to start the
memory operation.
@param Count The number of memory operations to perform.
@param Buffer For read operations, the destination buffer to store the results.
For write operations, the source buffer to write data from.
@retval EFI_SUCCESS The data was read from or written to the UFS host controller.
@retval EFI_UNSUPPORTED The address range specified by Offset, Width, and Count is not
valid for the UFS Host Controller memory space.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
**/
EFI_STATUS
EFIAPI
UfsHcMmioRead (
IN EDKII_UFS_HOST_CONTROLLER_PROTOCOL *This,
IN EDKII_UFS_HOST_CONTROLLER_PROTOCOL_WIDTH Width,
IN UINT64 Offset,
IN UINTN Count,
IN OUT VOID *Buffer
);
/**
Enable a UFS bus driver to access UFS MMIO registers in the UFS Host Controller memory space.
@param This A pointer to the EDKII_UFS_HOST_CONTROLLER_PROTOCOL instance.
@param Width Signifies the width of the memory operations.
@param Offset The offset within the UFS Host Controller MMIO space to start the
memory operation.
@param Count The number of memory operations to perform.
@param Buffer For read operations, the destination buffer to store the results.
For write operations, the source buffer to write data from.
@retval EFI_SUCCESS The data was read from or written to the UFS host controller.
@retval EFI_UNSUPPORTED The address range specified by Offset, Width, and Count is not
valid for the UFS Host Controller memory space.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
**/
EFI_STATUS
EFIAPI
UfsHcMmioWrite (
IN EDKII_UFS_HOST_CONTROLLER_PROTOCOL *This,
IN EDKII_UFS_HOST_CONTROLLER_PROTOCOL_WIDTH Width,
IN UINT64 Offset,
IN UINTN Count,
IN OUT VOID *Buffer
);
#endif