audk/ArmPkg/Library/ArmMmuLib/AArch64/ArmMmuLibCore.c

729 lines
23 KiB
C
Raw Normal View History

/** @file
* File managing the MMU for ARMv8 architecture
*
* Copyright (c) 2011-2014, ARM Limited. All rights reserved.
* Copyright (c) 2016, Linaro Limited. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
#include <Uefi.h>
#include <Chipset/AArch64.h>
#include <Library/BaseMemoryLib.h>
#include <Library/CacheMaintenanceLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/ArmLib.h>
#include <Library/ArmMmuLib.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
// We use this index definition to define an invalid block entry
#define TT_ATTR_INDX_INVALID ((UINT32)~0)
STATIC
UINT64
ArmMemoryAttributeToPageAttribute (
IN ARM_MEMORY_REGION_ATTRIBUTES Attributes
)
{
switch (Attributes) {
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK:
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK:
return TT_ATTR_INDX_MEMORY_WRITE_BACK | TT_SH_INNER_SHAREABLE;
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH:
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH:
return TT_ATTR_INDX_MEMORY_WRITE_THROUGH | TT_SH_INNER_SHAREABLE;
// Uncached and device mappings are treated as outer shareable by default,
case ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED:
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED:
return TT_ATTR_INDX_MEMORY_NON_CACHEABLE;
default:
ASSERT(0);
case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_DEVICE:
if (ArmReadCurrentEL () == AARCH64_EL2)
return TT_ATTR_INDX_DEVICE_MEMORY | TT_XN_MASK;
else
return TT_ATTR_INDX_DEVICE_MEMORY | TT_UXN_MASK | TT_PXN_MASK;
}
}
UINT64
PageAttributeToGcdAttribute (
IN UINT64 PageAttributes
)
{
UINT64 GcdAttributes;
switch (PageAttributes & TT_ATTR_INDX_MASK) {
case TT_ATTR_INDX_DEVICE_MEMORY:
GcdAttributes = EFI_MEMORY_UC;
break;
case TT_ATTR_INDX_MEMORY_NON_CACHEABLE:
GcdAttributes = EFI_MEMORY_WC;
break;
case TT_ATTR_INDX_MEMORY_WRITE_THROUGH:
GcdAttributes = EFI_MEMORY_WT;
break;
case TT_ATTR_INDX_MEMORY_WRITE_BACK:
GcdAttributes = EFI_MEMORY_WB;
break;
default:
DEBUG ((EFI_D_ERROR, "PageAttributeToGcdAttribute: PageAttributes:0x%lX not supported.\n", PageAttributes));
ASSERT (0);
// The Global Coherency Domain (GCD) value is defined as a bit set.
// Returning 0 means no attribute has been set.
GcdAttributes = 0;
}
// Determine protection attributes
if (((PageAttributes & TT_AP_MASK) == TT_AP_NO_RO) || ((PageAttributes & TT_AP_MASK) == TT_AP_RO_RO)) {
// Read only cases map to write-protect
GcdAttributes |= EFI_MEMORY_WP;
}
// Process eXecute Never attribute
if ((PageAttributes & (TT_PXN_MASK | TT_UXN_MASK)) != 0 ) {
GcdAttributes |= EFI_MEMORY_XP;
}
return GcdAttributes;
}
ARM_MEMORY_REGION_ATTRIBUTES
GcdAttributeToArmAttribute (
IN UINT64 GcdAttributes
)
{
switch (GcdAttributes & 0xFF) {
case EFI_MEMORY_UC:
return ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;
case EFI_MEMORY_WC:
return ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED;
case EFI_MEMORY_WT:
return ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH;
case EFI_MEMORY_WB:
return ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK;
default:
DEBUG ((EFI_D_ERROR, "GcdAttributeToArmAttribute: 0x%lX attributes is not supported.\n", GcdAttributes));
ASSERT (0);
return ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;
}
}
#define MIN_T0SZ 16
#define BITS_PER_LEVEL 9
VOID
GetRootTranslationTableInfo (
IN UINTN T0SZ,
OUT UINTN *TableLevel,
OUT UINTN *TableEntryCount
)
{
// Get the level of the root table
if (TableLevel) {
*TableLevel = (T0SZ - MIN_T0SZ) / BITS_PER_LEVEL;
}
if (TableEntryCount) {
*TableEntryCount = 1UL << (BITS_PER_LEVEL - (T0SZ - MIN_T0SZ) % BITS_PER_LEVEL);
}
}
STATIC
VOID
ReplaceLiveEntry (
IN UINT64 *Entry,
IN UINT64 Value
)
{
if (!ArmMmuEnabled ()) {
*Entry = Value;
} else {
ArmReplaceLiveTranslationEntry (Entry, Value);
}
}
STATIC
VOID
LookupAddresstoRootTable (
IN UINT64 MaxAddress,
OUT UINTN *T0SZ,
OUT UINTN *TableEntryCount
)
{
UINTN TopBit;
// Check the parameters are not NULL
ASSERT ((T0SZ != NULL) && (TableEntryCount != NULL));
// Look for the highest bit set in MaxAddress
for (TopBit = 63; TopBit != 0; TopBit--) {
if ((1ULL << TopBit) & MaxAddress) {
// MaxAddress top bit is found
TopBit = TopBit + 1;
break;
}
}
ASSERT (TopBit != 0);
// Calculate T0SZ from the top bit of the MaxAddress
*T0SZ = 64 - TopBit;
// Get the Table info from T0SZ
GetRootTranslationTableInfo (*T0SZ, NULL, TableEntryCount);
}
STATIC
UINT64*
GetBlockEntryListFromAddress (
IN UINT64 *RootTable,
IN UINT64 RegionStart,
OUT UINTN *TableLevel,
IN OUT UINT64 *BlockEntrySize,
OUT UINT64 **LastBlockEntry
)
{
UINTN RootTableLevel;
UINTN RootTableEntryCount;
UINT64 *TranslationTable;
UINT64 *BlockEntry;
UINT64 *SubTableBlockEntry;
UINT64 BlockEntryAddress;
UINTN BaseAddressAlignment;
UINTN PageLevel;
UINTN Index;
UINTN IndexLevel;
UINTN T0SZ;
UINT64 Attributes;
UINT64 TableAttributes;
// Initialize variable
BlockEntry = NULL;
// Ensure the parameters are valid
if (!(TableLevel && BlockEntrySize && LastBlockEntry)) {
ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
return NULL;
}
// Ensure the Region is aligned on 4KB boundary
if ((RegionStart & (SIZE_4KB - 1)) != 0) {
ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
return NULL;
}
// Ensure the required size is aligned on 4KB boundary and not 0
if ((*BlockEntrySize & (SIZE_4KB - 1)) != 0 || *BlockEntrySize == 0) {
ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
return NULL;
}
T0SZ = ArmGetTCR () & TCR_T0SZ_MASK;
// Get the Table info from T0SZ
GetRootTranslationTableInfo (T0SZ, &RootTableLevel, &RootTableEntryCount);
// If the start address is 0x0 then we use the size of the region to identify the alignment
if (RegionStart == 0) {
// Identify the highest possible alignment for the Region Size
BaseAddressAlignment = LowBitSet64 (*BlockEntrySize);
} else {
// Identify the highest possible alignment for the Base Address
BaseAddressAlignment = LowBitSet64 (RegionStart);
}
// Identify the Page Level the RegionStart must belong to. Note that PageLevel
// should be at least 1 since block translations are not supported at level 0
PageLevel = MAX (3 - ((BaseAddressAlignment - 12) / 9), 1);
// If the required size is smaller than the current block size then we need to go to the page below.
// The PageLevel was calculated on the Base Address alignment but did not take in account the alignment
// of the allocation size
while (*BlockEntrySize < TT_BLOCK_ENTRY_SIZE_AT_LEVEL (PageLevel)) {
// It does not fit so we need to go a page level above
PageLevel++;
}
//
// Get the Table Descriptor for the corresponding PageLevel. We need to decompose RegionStart to get appropriate entries
//
TranslationTable = RootTable;
for (IndexLevel = RootTableLevel; IndexLevel <= PageLevel; IndexLevel++) {
BlockEntry = (UINT64*)TT_GET_ENTRY_FOR_ADDRESS (TranslationTable, IndexLevel, RegionStart);
if ((IndexLevel != 3) && ((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY)) {
// Go to the next table
TranslationTable = (UINT64*)(*BlockEntry & TT_ADDRESS_MASK_DESCRIPTION_TABLE);
// If we are at the last level then update the last level to next level
if (IndexLevel == PageLevel) {
// Enter the next level
PageLevel++;
}
} else if ((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY) {
// If we are not at the last level then we need to split this BlockEntry
if (IndexLevel != PageLevel) {
// Retrieve the attributes from the block entry
Attributes = *BlockEntry & TT_ATTRIBUTES_MASK;
// Convert the block entry attributes into Table descriptor attributes
TableAttributes = TT_TABLE_AP_NO_PERMISSION;
if (Attributes & TT_NS) {
TableAttributes = TT_TABLE_NS;
}
// Get the address corresponding at this entry
BlockEntryAddress = RegionStart;
BlockEntryAddress = BlockEntryAddress >> TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);
// Shift back to right to set zero before the effective address
BlockEntryAddress = BlockEntryAddress << TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);
// Set the correct entry type for the next page level
if ((IndexLevel + 1) == 3) {
Attributes |= TT_TYPE_BLOCK_ENTRY_LEVEL3;
} else {
Attributes |= TT_TYPE_BLOCK_ENTRY;
}
// Create a new translation table
TranslationTable = AllocatePages (1);
if (TranslationTable == NULL) {
return NULL;
}
// Populate the newly created lower level table
SubTableBlockEntry = TranslationTable;
for (Index = 0; Index < TT_ENTRY_COUNT; Index++) {
*SubTableBlockEntry = Attributes | (BlockEntryAddress + (Index << TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel + 1)));
SubTableBlockEntry++;
}
// Fill the BlockEntry with the new TranslationTable
ReplaceLiveEntry (BlockEntry,
((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) | TableAttributes | TT_TYPE_TABLE_ENTRY);
}
} else {
if (IndexLevel != PageLevel) {
//
// Case when we have an Invalid Entry and we are at a page level above of the one targetted.
//
// Create a new translation table
TranslationTable = AllocatePages (1);
if (TranslationTable == NULL) {
return NULL;
}
ZeroMem (TranslationTable, TT_ENTRY_COUNT * sizeof(UINT64));
// Fill the new BlockEntry with the TranslationTable
*BlockEntry = ((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) | TT_TYPE_TABLE_ENTRY;
}
}
}
// Expose the found PageLevel to the caller
*TableLevel = PageLevel;
// Now, we have the Table Level we can get the Block Size associated to this table
*BlockEntrySize = TT_BLOCK_ENTRY_SIZE_AT_LEVEL (PageLevel);
// The last block of the root table depends on the number of entry in this table,
// otherwise it is always the (TT_ENTRY_COUNT - 1)th entry in the table.
*LastBlockEntry = TT_LAST_BLOCK_ADDRESS(TranslationTable,
(PageLevel == RootTableLevel) ? RootTableEntryCount : TT_ENTRY_COUNT);
return BlockEntry;
}
STATIC
RETURN_STATUS
UpdateRegionMapping (
IN UINT64 *RootTable,
IN UINT64 RegionStart,
IN UINT64 RegionLength,
IN UINT64 Attributes,
IN UINT64 BlockEntryMask
)
{
UINT32 Type;
UINT64 *BlockEntry;
UINT64 *LastBlockEntry;
UINT64 BlockEntrySize;
UINTN TableLevel;
// Ensure the Length is aligned on 4KB boundary
if ((RegionLength == 0) || ((RegionLength & (SIZE_4KB - 1)) != 0)) {
ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
return RETURN_INVALID_PARAMETER;
}
do {
// Get the first Block Entry that matches the Virtual Address and also the information on the Table Descriptor
// such as the the size of the Block Entry and the address of the last BlockEntry of the Table Descriptor
BlockEntrySize = RegionLength;
BlockEntry = GetBlockEntryListFromAddress (RootTable, RegionStart, &TableLevel, &BlockEntrySize, &LastBlockEntry);
if (BlockEntry == NULL) {
// GetBlockEntryListFromAddress() return NULL when it fails to allocate new pages from the Translation Tables
return RETURN_OUT_OF_RESOURCES;
}
if (TableLevel != 3) {
Type = TT_TYPE_BLOCK_ENTRY;
} else {
Type = TT_TYPE_BLOCK_ENTRY_LEVEL3;
}
do {
// Fill the Block Entry with attribute and output block address
*BlockEntry &= BlockEntryMask;
*BlockEntry |= (RegionStart & TT_ADDRESS_MASK_BLOCK_ENTRY) | Attributes | Type;
// Go to the next BlockEntry
RegionStart += BlockEntrySize;
RegionLength -= BlockEntrySize;
BlockEntry++;
// Break the inner loop when next block is a table
// Rerun GetBlockEntryListFromAddress to avoid page table memory leak
if (TableLevel != 3 &&
(*BlockEntry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY) {
break;
}
} while ((RegionLength >= BlockEntrySize) && (BlockEntry <= LastBlockEntry));
} while (RegionLength != 0);
return RETURN_SUCCESS;
}
STATIC
RETURN_STATUS
FillTranslationTable (
IN UINT64 *RootTable,
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryRegion
)
{
return UpdateRegionMapping (
RootTable,
MemoryRegion->VirtualBase,
MemoryRegion->Length,
ArmMemoryAttributeToPageAttribute (MemoryRegion->Attributes) | TT_AF,
0
);
}
RETURN_STATUS
SetMemoryAttributes (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes,
IN EFI_PHYSICAL_ADDRESS VirtualMask
)
{
RETURN_STATUS Status;
ARM_MEMORY_REGION_DESCRIPTOR MemoryRegion;
UINT64 *TranslationTable;
MemoryRegion.PhysicalBase = BaseAddress;
MemoryRegion.VirtualBase = BaseAddress;
MemoryRegion.Length = Length;
MemoryRegion.Attributes = GcdAttributeToArmAttribute (Attributes);
TranslationTable = ArmGetTTBR0BaseAddress ();
Status = FillTranslationTable (TranslationTable, &MemoryRegion);
if (RETURN_ERROR (Status)) {
return Status;
}
// Invalidate all TLB entries so changes are synced
ArmInvalidateTlb ();
return RETURN_SUCCESS;
}
STATIC
RETURN_STATUS
SetMemoryRegionAttribute (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes,
IN UINT64 BlockEntryMask
)
{
RETURN_STATUS Status;
UINT64 *RootTable;
RootTable = ArmGetTTBR0BaseAddress ();
Status = UpdateRegionMapping (RootTable, BaseAddress, Length, Attributes, BlockEntryMask);
if (RETURN_ERROR (Status)) {
return Status;
}
// Invalidate all TLB entries so changes are synced
ArmInvalidateTlb ();
return RETURN_SUCCESS;
}
RETURN_STATUS
ArmSetMemoryRegionNoExec (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
UINT64 Val;
if (ArmReadCurrentEL () == AARCH64_EL1) {
Val = TT_PXN_MASK | TT_UXN_MASK;
} else {
Val = TT_XN_MASK;
}
return SetMemoryRegionAttribute (
BaseAddress,
Length,
Val,
~TT_ADDRESS_MASK_BLOCK_ENTRY);
}
RETURN_STATUS
ArmClearMemoryRegionNoExec (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
UINT64 Mask;
// XN maps to UXN in the EL1&0 translation regime
Mask = ~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_PXN_MASK | TT_XN_MASK);
return SetMemoryRegionAttribute (
BaseAddress,
Length,
0,
Mask);
}
RETURN_STATUS
ArmSetMemoryRegionReadOnly (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
return SetMemoryRegionAttribute (
BaseAddress,
Length,
TT_AP_RO_RO,
~TT_ADDRESS_MASK_BLOCK_ENTRY);
}
RETURN_STATUS
ArmClearMemoryRegionReadOnly (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
return SetMemoryRegionAttribute (
BaseAddress,
Length,
TT_AP_RW_RW,
~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_AP_MASK));
}
RETURN_STATUS
EFIAPI
ArmConfigureMmu (
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryTable,
OUT VOID **TranslationTableBase OPTIONAL,
OUT UINTN *TranslationTableSize OPTIONAL
)
{
VOID* TranslationTable;
UINT32 TranslationTableAttribute;
UINT64 MaxAddress;
UINTN T0SZ;
UINTN RootTableEntryCount;
UINT64 TCR;
RETURN_STATUS Status;
if(MemoryTable == NULL) {
ASSERT (MemoryTable != NULL);
return RETURN_INVALID_PARAMETER;
}
// Cover the entire GCD memory space
MaxAddress = (1UL << PcdGet8 (PcdPrePiCpuMemorySize)) - 1;
// Lookup the Table Level to get the information
LookupAddresstoRootTable (MaxAddress, &T0SZ, &RootTableEntryCount);
//
// Set TCR that allows us to retrieve T0SZ in the subsequent functions
//
// Ideally we will be running at EL2, but should support EL1 as well.
// UEFI should not run at EL3.
if (ArmReadCurrentEL () == AARCH64_EL2) {
//Note: Bits 23 and 31 are reserved(RES1) bits in TCR_EL2
TCR = T0SZ | (1UL << 31) | (1UL << 23) | TCR_TG0_4KB;
// Set the Physical Address Size using MaxAddress
if (MaxAddress < SIZE_4GB) {
TCR |= TCR_PS_4GB;
} else if (MaxAddress < SIZE_64GB) {
TCR |= TCR_PS_64GB;
} else if (MaxAddress < SIZE_1TB) {
TCR |= TCR_PS_1TB;
} else if (MaxAddress < SIZE_4TB) {
TCR |= TCR_PS_4TB;
} else if (MaxAddress < SIZE_16TB) {
TCR |= TCR_PS_16TB;
} else if (MaxAddress < SIZE_256TB) {
TCR |= TCR_PS_256TB;
} else {
DEBUG ((EFI_D_ERROR, "ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n", MaxAddress));
ASSERT (0); // Bigger than 48-bit memory space are not supported
return RETURN_UNSUPPORTED;
}
} else if (ArmReadCurrentEL () == AARCH64_EL1) {
// Due to Cortex-A57 erratum #822227 we must set TG1[1] == 1, regardless of EPD1.
TCR = T0SZ | TCR_TG0_4KB | TCR_TG1_4KB | TCR_EPD1;
// Set the Physical Address Size using MaxAddress
if (MaxAddress < SIZE_4GB) {
TCR |= TCR_IPS_4GB;
} else if (MaxAddress < SIZE_64GB) {
TCR |= TCR_IPS_64GB;
} else if (MaxAddress < SIZE_1TB) {
TCR |= TCR_IPS_1TB;
} else if (MaxAddress < SIZE_4TB) {
TCR |= TCR_IPS_4TB;
} else if (MaxAddress < SIZE_16TB) {
TCR |= TCR_IPS_16TB;
} else if (MaxAddress < SIZE_256TB) {
TCR |= TCR_IPS_256TB;
} else {
DEBUG ((EFI_D_ERROR, "ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n", MaxAddress));
ASSERT (0); // Bigger than 48-bit memory space are not supported
return RETURN_UNSUPPORTED;
}
} else {
ASSERT (0); // UEFI is only expected to run at EL2 and EL1, not EL3.
return RETURN_UNSUPPORTED;
}
//
// Translation table walks are always cache coherent on ARMv8-A, so cache
// maintenance on page tables is never needed. Since there is a risk of
// loss of coherency when using mismatched attributes, and given that memory
// is mapped cacheable except for extraordinary cases (such as non-coherent
// DMA), have the page table walker perform cached accesses as well, and
// assert below that that matches the attributes we use for CPU accesses to
// the region.
//
TCR |= TCR_SH_INNER_SHAREABLE |
TCR_RGN_OUTER_WRITE_BACK_ALLOC |
TCR_RGN_INNER_WRITE_BACK_ALLOC;
// Set TCR
ArmSetTCR (TCR);
// Allocate pages for translation table
TranslationTable = AllocatePages (1);
if (TranslationTable == NULL) {
return RETURN_OUT_OF_RESOURCES;
}
// We set TTBR0 just after allocating the table to retrieve its location from the subsequent
// functions without needing to pass this value across the functions. The MMU is only enabled
// after the translation tables are populated.
ArmSetTTBR0 (TranslationTable);
if (TranslationTableBase != NULL) {
*TranslationTableBase = TranslationTable;
}
if (TranslationTableSize != NULL) {
*TranslationTableSize = RootTableEntryCount * sizeof(UINT64);
}
ZeroMem (TranslationTable, RootTableEntryCount * sizeof(UINT64));
// Disable MMU and caches. ArmDisableMmu() also invalidates the TLBs
ArmDisableMmu ();
ArmDisableDataCache ();
ArmDisableInstructionCache ();
// Make sure nothing sneaked into the cache
ArmCleanInvalidateDataCache ();
ArmInvalidateInstructionCache ();
TranslationTableAttribute = TT_ATTR_INDX_INVALID;
while (MemoryTable->Length != 0) {
DEBUG_CODE_BEGIN ();
// Find the memory attribute for the Translation Table
if ((UINTN)TranslationTable >= MemoryTable->PhysicalBase &&
(UINTN)TranslationTable + EFI_PAGE_SIZE <= MemoryTable->PhysicalBase +
MemoryTable->Length) {
TranslationTableAttribute = MemoryTable->Attributes;
}
DEBUG_CODE_END ();
Status = FillTranslationTable (TranslationTable, MemoryTable);
if (RETURN_ERROR (Status)) {
goto FREE_TRANSLATION_TABLE;
}
MemoryTable++;
}
ASSERT (TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK ||
TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK);
ArmSetMAIR (MAIR_ATTR(TT_ATTR_INDX_DEVICE_MEMORY, MAIR_ATTR_DEVICE_MEMORY) | // mapped to EFI_MEMORY_UC
MAIR_ATTR(TT_ATTR_INDX_MEMORY_NON_CACHEABLE, MAIR_ATTR_NORMAL_MEMORY_NON_CACHEABLE) | // mapped to EFI_MEMORY_WC
MAIR_ATTR(TT_ATTR_INDX_MEMORY_WRITE_THROUGH, MAIR_ATTR_NORMAL_MEMORY_WRITE_THROUGH) | // mapped to EFI_MEMORY_WT
MAIR_ATTR(TT_ATTR_INDX_MEMORY_WRITE_BACK, MAIR_ATTR_NORMAL_MEMORY_WRITE_BACK)); // mapped to EFI_MEMORY_WB
ArmDisableAlignmentCheck ();
ArmEnableInstructionCache ();
ArmEnableDataCache ();
ArmEnableMmu ();
return RETURN_SUCCESS;
FREE_TRANSLATION_TABLE:
FreePages (TranslationTable, 1);
return Status;
}
RETURN_STATUS
EFIAPI
ArmMmuBaseLibConstructor (
VOID
)
{
extern UINT32 ArmReplaceLiveTranslationEntrySize;
//
// The ArmReplaceLiveTranslationEntry () helper function may be invoked
// with the MMU off so we have to ensure that it gets cleaned to the PoC
//
WriteBackDataCacheRange (ArmReplaceLiveTranslationEntry,
ArmReplaceLiveTranslationEntrySize);
return RETURN_SUCCESS;
}