audk/StandaloneMmPkg/Core/StandaloneMmCore.inf

82 lines
2.4 KiB
INI
Raw Normal View History

StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
## @file
# This module provide an SMM CIS compliant implementation of SMM Core.
#
# Copyright (c) 2009 - 2015, Intel Corporation. All rights reserved.<BR>
# Copyright (c) 2016 - 2018, ARM Limited. All rights reserved.<BR>
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
#
##
[Defines]
INF_VERSION = 0x0001001A
BASE_NAME = StandaloneMmCore
FILE_GUID = 6E14B6FD-3600-4DD6-A17A-206B3B6DCE16
MODULE_TYPE = MM_CORE_STANDALONE
VERSION_STRING = 1.0
PI_SPECIFICATION_VERSION = 0x00010032
ENTRY_POINT = StandaloneMmMain
# VALID_ARCHITECTURES = IA32 X64 AARCH64
[Sources]
StandaloneMmCore.c
StandaloneMmCore.h
StandaloneMmCorePrivateData.h
Page.c
Pool.c
Handle.c
Locate.c
Notify.c
Dependency.c
Dispatcher.c
Mmi.c
InstallConfigurationTable.c
FwVol.c
[Packages]
MdePkg/MdePkg.dec
MdeModulePkg/MdeModulePkg.dec
StandaloneMmPkg/StandaloneMmPkg.dec
[LibraryClasses]
BaseLib
BaseMemoryLib
CacheMaintenanceLib
DebugLib
ExtractGuidedSectionLib
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
FvLib
HobLib
MemoryAllocationLib
MemLib
PeCoffLib
ReportStatusCodeLib
StandaloneMmCoreEntryPoint
[Protocols]
gEfiDxeMmReadyToLockProtocolGuid ## UNDEFINED # SmiHandlerRegister
gEfiMmReadyToLockProtocolGuid ## PRODUCES
gEfiMmEndOfDxeProtocolGuid ## PRODUCES
gEfiLoadedImageProtocolGuid ## PRODUCES
gEfiMmConfigurationProtocolGuid ## CONSUMES
[Guids]
gAprioriGuid ## SOMETIMES_CONSUMES ## File
gEfiEventDxeDispatchGuid ## PRODUCES ## GUID # SmiHandlerRegister
gEfiEndOfDxeEventGroupGuid ## PRODUCES ## GUID # SmiHandlerRegister
## SOMETIMES_CONSUMES ## GUID # Locate protocol
## SOMETIMES_PRODUCES ## GUID # SmiHandlerRegister
gEdkiiMemoryProfileGuid
gZeroGuid ## SOMETIMES_CONSUMES ## GUID
gEfiHobListGuid
gEfiHobMemoryAllocModuleGuid
StandaloneMmPkg/Core: Implementation of Standalone MM Core Module. Management Mode (MM) is a generic term used to describe a secure execution environment provided by the CPU and related silicon that is entered when the CPU detects a MMI. For x86 systems, this can be implemented with System Management Mode (SMM). For ARM systems, this can be implemented with TrustZone (TZ). A MMI can be a CPU instruction or interrupt. Upon detection of a MMI, a CPU will jump to the MM Entry Point and save some portion of its state (the "save state") such that execution can be resumed. The MMI can be generated synchronously by software or asynchronously by a hardware event. Each MMI source can be detected, cleared and disabled. Some systems provide for special memory (Management Mode RAM or MMRAM) which is set aside for software running in MM. Usually the MMRAM is hidden during normal CPU execution, but this is not required. Usually, after MMRAM is hidden it cannot be exposed until the next system reset. The MM Core Interface Specification describes three pieces of the PI Management Mode architecture: 1. MM Dispatch During DXE, the DXE Foundation works with the MM Foundation to schedule MM drivers for execution in the discovered firmware volumes. 2. MM Initialization MM related code opens MMRAM, creates the MMRAM memory map, and launches the MM Foundation, which provides the necessary services to launch MM-related drivers. Then, sometime before boot, MMRAM is closed and locked. This piece may be completed during the SEC, PEI or DXE phases. 3. MMI Management When an MMI generated, the MM environment is created and then the MMI sources are detected and MMI handlers called. This patch implements the MM Core. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com> Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2018-07-13 17:05:27 +02:00
gMmCoreDataHobGuid
gMmFvDispatchGuid
gEfiEventLegacyBootGuid
gEfiEventExitBootServicesGuid
gEfiEventReadyToBootGuid
[BuildOptions]
GCC:*_*_*_CC_FLAGS = -fpie
GCC:*_*_*_DLINK_FLAGS = -Wl,-z,text,-Bsymbolic,-pie