audk/MdePkg/Library/BaseMemoryLibOptDxe/AArch64/CopyMem.S

237 lines
6.9 KiB
ArmAsm
Raw Normal View History

//
// Copyright (c) 2012 - 2016, Linaro Limited
// All rights reserved.
// Copyright (c) 2015 ARM Ltd
// All rights reserved.
// SPDX-License-Identifier: BSD-2-Clause-Patent
//
// Assumptions:
//
// ARMv8-a, AArch64, unaligned accesses.
//
//
#define dstin x0
#define src x1
#define count x2
#define dst x3
#define srcend x4
#define dstend x5
#define A_l x6
#define A_lw w6
#define A_h x7
#define A_hw w7
#define B_l x8
#define B_lw w8
#define B_h x9
#define C_l x10
#define C_h x11
#define D_l x12
#define D_h x13
#define E_l x14
#define E_h x15
#define F_l srcend
#define F_h dst
#define tmp1 x9
#define tmp2 x3
#define L(l) .L ## l
// Copies are split into 3 main cases: small copies of up to 16 bytes,
// medium copies of 17..96 bytes which are fully unrolled. Large copies
// of more than 96 bytes align the destination and use an unrolled loop
// processing 64 bytes per iteration.
// Small and medium copies read all data before writing, allowing any
// kind of overlap, and memmove tailcalls memcpy for these cases as
// well as non-overlapping copies.
__memcpy:
prfm PLDL1KEEP, [src]
add srcend, src, count
add dstend, dstin, count
cmp count, 16
b.ls L(copy16)
cmp count, 96
b.hi L(copy_long)
// Medium copies: 17..96 bytes.
sub tmp1, count, 1
ldp A_l, A_h, [src]
tbnz tmp1, 6, L(copy96)
ldp D_l, D_h, [srcend, -16]
tbz tmp1, 5, 1f
ldp B_l, B_h, [src, 16]
ldp C_l, C_h, [srcend, -32]
stp B_l, B_h, [dstin, 16]
stp C_l, C_h, [dstend, -32]
1:
stp A_l, A_h, [dstin]
stp D_l, D_h, [dstend, -16]
ret
.p2align 4
// Small copies: 0..16 bytes.
L(copy16):
cmp count, 8
b.lo 1f
ldr A_l, [src]
ldr A_h, [srcend, -8]
str A_l, [dstin]
str A_h, [dstend, -8]
ret
.p2align 4
1:
tbz count, 2, 1f
ldr A_lw, [src]
ldr A_hw, [srcend, -4]
str A_lw, [dstin]
str A_hw, [dstend, -4]
ret
// Copy 0..3 bytes. Use a branchless sequence that copies the same
// byte 3 times if count==1, or the 2nd byte twice if count==2.
1:
cbz count, 2f
lsr tmp1, count, 1
ldrb A_lw, [src]
ldrb A_hw, [srcend, -1]
ldrb B_lw, [src, tmp1]
strb A_lw, [dstin]
strb B_lw, [dstin, tmp1]
strb A_hw, [dstend, -1]
2: ret
.p2align 4
// Copy 64..96 bytes. Copy 64 bytes from the start and
// 32 bytes from the end.
L(copy96):
ldp B_l, B_h, [src, 16]
ldp C_l, C_h, [src, 32]
ldp D_l, D_h, [src, 48]
ldp E_l, E_h, [srcend, -32]
ldp F_l, F_h, [srcend, -16]
stp A_l, A_h, [dstin]
stp B_l, B_h, [dstin, 16]
stp C_l, C_h, [dstin, 32]
stp D_l, D_h, [dstin, 48]
stp E_l, E_h, [dstend, -32]
stp F_l, F_h, [dstend, -16]
ret
// Align DST to 16 byte alignment so that we don't cross cache line
// boundaries on both loads and stores. There are at least 96 bytes
// to copy, so copy 16 bytes unaligned and then align. The loop
// copies 64 bytes per iteration and prefetches one iteration ahead.
.p2align 4
L(copy_long):
and tmp1, dstin, 15
bic dst, dstin, 15
ldp D_l, D_h, [src]
sub src, src, tmp1
add count, count, tmp1 // Count is now 16 too large.
ldp A_l, A_h, [src, 16]
stp D_l, D_h, [dstin]
ldp B_l, B_h, [src, 32]
ldp C_l, C_h, [src, 48]
ldp D_l, D_h, [src, 64]!
subs count, count, 128 + 16 // Test and readjust count.
b.ls 2f
1:
stp A_l, A_h, [dst, 16]
ldp A_l, A_h, [src, 16]
stp B_l, B_h, [dst, 32]
ldp B_l, B_h, [src, 32]
stp C_l, C_h, [dst, 48]
ldp C_l, C_h, [src, 48]
stp D_l, D_h, [dst, 64]!
ldp D_l, D_h, [src, 64]!
subs count, count, 64
b.hi 1b
// Write the last full set of 64 bytes. The remainder is at most 64
// bytes, so it is safe to always copy 64 bytes from the end even if
// there is just 1 byte left.
2:
ldp E_l, E_h, [srcend, -64]
stp A_l, A_h, [dst, 16]
ldp A_l, A_h, [srcend, -48]
stp B_l, B_h, [dst, 32]
ldp B_l, B_h, [srcend, -32]
stp C_l, C_h, [dst, 48]
ldp C_l, C_h, [srcend, -16]
stp D_l, D_h, [dst, 64]
stp E_l, E_h, [dstend, -64]
stp A_l, A_h, [dstend, -48]
stp B_l, B_h, [dstend, -32]
stp C_l, C_h, [dstend, -16]
ret
//
// All memmoves up to 96 bytes are done by memcpy as it supports overlaps.
// Larger backwards copies are also handled by memcpy. The only remaining
// case is forward large copies. The destination is aligned, and an
// unrolled loop processes 64 bytes per iteration.
//
ASM_GLOBAL ASM_PFX(InternalMemCopyMem)
ASM_PFX(InternalMemCopyMem):
sub tmp2, dstin, src
cmp count, 96
ccmp tmp2, count, 2, hi
b.hs __memcpy
cbz tmp2, 3f
add dstend, dstin, count
add srcend, src, count
// Align dstend to 16 byte alignment so that we don't cross cache line
// boundaries on both loads and stores. There are at least 96 bytes
// to copy, so copy 16 bytes unaligned and then align. The loop
// copies 64 bytes per iteration and prefetches one iteration ahead.
and tmp2, dstend, 15
ldp D_l, D_h, [srcend, -16]
sub srcend, srcend, tmp2
sub count, count, tmp2
ldp A_l, A_h, [srcend, -16]
stp D_l, D_h, [dstend, -16]
ldp B_l, B_h, [srcend, -32]
ldp C_l, C_h, [srcend, -48]
ldp D_l, D_h, [srcend, -64]!
sub dstend, dstend, tmp2
subs count, count, 128
b.ls 2f
nop
1:
stp A_l, A_h, [dstend, -16]
ldp A_l, A_h, [srcend, -16]
stp B_l, B_h, [dstend, -32]
ldp B_l, B_h, [srcend, -32]
stp C_l, C_h, [dstend, -48]
ldp C_l, C_h, [srcend, -48]
stp D_l, D_h, [dstend, -64]!
ldp D_l, D_h, [srcend, -64]!
subs count, count, 64
b.hi 1b
// Write the last full set of 64 bytes. The remainder is at most 64
// bytes, so it is safe to always copy 64 bytes from the start even if
// there is just 1 byte left.
2:
ldp E_l, E_h, [src, 48]
stp A_l, A_h, [dstend, -16]
ldp A_l, A_h, [src, 32]
stp B_l, B_h, [dstend, -32]
ldp B_l, B_h, [src, 16]
stp C_l, C_h, [dstend, -48]
ldp C_l, C_h, [src]
stp D_l, D_h, [dstend, -64]
stp E_l, E_h, [dstin, 48]
stp A_l, A_h, [dstin, 32]
stp B_l, B_h, [dstin, 16]
stp C_l, C_h, [dstin]
3: ret