audk/UefiCpuPkg/Library/CpuExceptionHandlerLib/X64/ArchExceptionHandler.c

426 lines
14 KiB
C
Raw Normal View History

/** @file
x64 CPU Exception Handler.
Copyright (c) 2012 - 2022, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "CpuExceptionCommon.h"
/**
Return address map of exception handler template so that C code can generate
exception tables.
@param IdtEntry Pointer to IDT entry to be updated.
@param InterruptHandler IDT handler value.
**/
VOID
ArchUpdateIdtEntry (
OUT IA32_IDT_GATE_DESCRIPTOR *IdtEntry,
IN UINTN InterruptHandler
)
{
IdtEntry->Bits.OffsetLow = (UINT16)(UINTN)InterruptHandler;
IdtEntry->Bits.OffsetHigh = (UINT16)((UINTN)InterruptHandler >> 16);
IdtEntry->Bits.OffsetUpper = (UINT32)((UINTN)InterruptHandler >> 32);
IdtEntry->Bits.GateType = IA32_IDT_GATE_TYPE_INTERRUPT_32;
}
/**
Read IDT handler value from IDT entry.
@param IdtEntry Pointer to IDT entry to be read.
**/
UINTN
ArchGetIdtHandler (
IN IA32_IDT_GATE_DESCRIPTOR *IdtEntry
)
{
return IdtEntry->Bits.OffsetLow + (((UINTN)IdtEntry->Bits.OffsetHigh) << 16) +
(((UINTN)IdtEntry->Bits.OffsetUpper) << 32);
}
/**
Save CPU exception context when handling EFI_VECTOR_HANDOFF_HOOK_AFTER case.
@param[in] ExceptionType Exception type.
@param[in] SystemContext Pointer to EFI_SYSTEM_CONTEXT.
@param[in] ExceptionHandlerData Pointer to exception handler data.
**/
VOID
ArchSaveExceptionContext (
IN UINTN ExceptionType,
IN EFI_SYSTEM_CONTEXT SystemContext,
IN EXCEPTION_HANDLER_DATA *ExceptionHandlerData
)
{
IA32_EFLAGS32 Eflags;
RESERVED_VECTORS_DATA *ReservedVectors;
ReservedVectors = ExceptionHandlerData->ReservedVectors;
//
// Save Exception context in global variable in first entry of the exception handler.
// So when original exception handler returns to the new exception handler (second entry),
// the Eflags/Cs/Eip/ExceptionData can be used.
//
ReservedVectors[ExceptionType].OldSs = SystemContext.SystemContextX64->Ss;
ReservedVectors[ExceptionType].OldSp = SystemContext.SystemContextX64->Rsp;
ReservedVectors[ExceptionType].OldFlags = SystemContext.SystemContextX64->Rflags;
ReservedVectors[ExceptionType].OldCs = SystemContext.SystemContextX64->Cs;
ReservedVectors[ExceptionType].OldIp = SystemContext.SystemContextX64->Rip;
ReservedVectors[ExceptionType].ExceptionData = SystemContext.SystemContextX64->ExceptionData;
//
// Clear IF flag to avoid old IDT handler enable interrupt by IRET
//
Eflags.UintN = SystemContext.SystemContextX64->Rflags;
Eflags.Bits.IF = 0;
SystemContext.SystemContextX64->Rflags = Eflags.UintN;
//
// Modify the EIP in stack, then old IDT handler will return to HookAfterStubBegin.
//
SystemContext.SystemContextX64->Rip = (UINTN)ReservedVectors[ExceptionType].HookAfterStubHeaderCode;
}
/**
Restore CPU exception context when handling EFI_VECTOR_HANDOFF_HOOK_AFTER case.
@param[in] ExceptionType Exception type.
@param[in] SystemContext Pointer to EFI_SYSTEM_CONTEXT.
@param[in] ExceptionHandlerData Pointer to exception handler data.
**/
VOID
ArchRestoreExceptionContext (
IN UINTN ExceptionType,
IN EFI_SYSTEM_CONTEXT SystemContext,
IN EXCEPTION_HANDLER_DATA *ExceptionHandlerData
)
{
RESERVED_VECTORS_DATA *ReservedVectors;
ReservedVectors = ExceptionHandlerData->ReservedVectors;
SystemContext.SystemContextX64->Ss = ReservedVectors[ExceptionType].OldSs;
SystemContext.SystemContextX64->Rsp = ReservedVectors[ExceptionType].OldSp;
SystemContext.SystemContextX64->Rflags = ReservedVectors[ExceptionType].OldFlags;
SystemContext.SystemContextX64->Cs = ReservedVectors[ExceptionType].OldCs;
SystemContext.SystemContextX64->Rip = ReservedVectors[ExceptionType].OldIp;
SystemContext.SystemContextX64->ExceptionData = ReservedVectors[ExceptionType].ExceptionData;
}
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
/**
Setup separate stacks for certain exception handlers.
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
@param[in] Buffer Point to buffer used to separate exception stack.
@param[in, out] BufferSize On input, it indicates the byte size of Buffer.
If the size is not enough, the return status will
be EFI_BUFFER_TOO_SMALL, and output BufferSize
will be the size it needs.
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
@retval EFI_SUCCESS The stacks are assigned successfully.
@retval EFI_BUFFER_TOO_SMALL This BufferSize is too small.
@retval EFI_UNSUPPORTED This function is not supported.
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
**/
EFI_STATUS
ArchSetupExceptionStack (
IN VOID *Buffer,
IN OUT UINTN *BufferSize
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
)
{
IA32_DESCRIPTOR Gdtr;
IA32_DESCRIPTOR Idtr;
IA32_IDT_GATE_DESCRIPTOR *IdtTable;
IA32_TSS_DESCRIPTOR *TssDesc;
IA32_TASK_STATE_SEGMENT *Tss;
VOID *NewGdtTable;
UINTN StackTop;
UINTN Index;
UINTN Vector;
UINTN TssBase;
UINT8 *StackSwitchExceptions;
UINTN NeedBufferSize;
if (BufferSize == NULL) {
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
return EFI_INVALID_PARAMETER;
}
//
// Interrupt stack table supports only 7 vectors.
//
if (CPU_STACK_SWITCH_EXCEPTION_NUMBER > ARRAY_SIZE (Tss->IST)) {
return EFI_UNSUPPORTED;
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
}
//
// Total needed size includes stack size, new GDT table size, TSS size.
// Add another DESCRIPTOR size for alignment requiremet.
//
// Layout of memory needed for each processor:
// --------------------------------
// | |
// | Stack Size | X ExceptionNumber
// | |
// --------------------------------
// | Alignment | (just in case)
// --------------------------------
// | |
// | Original GDT |
// | |
// --------------------------------
// | |
// | Exception task descriptors | X 1
// | |
// --------------------------------
// | |
// | Exception task-state segment | X 1
// | |
// --------------------------------
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
//
AsmReadGdtr (&Gdtr);
NeedBufferSize = CPU_STACK_SWITCH_EXCEPTION_NUMBER * CPU_KNOWN_GOOD_STACK_SIZE +
sizeof (IA32_TSS_DESCRIPTOR) +
Gdtr.Limit + 1 + CPU_TSS_DESC_SIZE +
CPU_TSS_SIZE;
if (*BufferSize < NeedBufferSize) {
*BufferSize = NeedBufferSize;
return EFI_BUFFER_TOO_SMALL;
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
}
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
}
AsmReadIdtr (&Idtr);
StackSwitchExceptions = CPU_STACK_SWITCH_EXCEPTION_LIST;
StackTop = (UINTN)Buffer + CPU_STACK_SWITCH_EXCEPTION_NUMBER * CPU_KNOWN_GOOD_STACK_SIZE;
NewGdtTable = ALIGN_POINTER (StackTop, sizeof (IA32_TSS_DESCRIPTOR));
TssDesc = (IA32_TSS_DESCRIPTOR *)((UINTN)NewGdtTable + Gdtr.Limit + 1);
Tss = (IA32_TASK_STATE_SEGMENT *)((UINTN)TssDesc + CPU_TSS_DESC_SIZE);
CopyMem (NewGdtTable, (VOID *)Gdtr.Base, Gdtr.Limit + 1);
Gdtr.Base = (UINTN)NewGdtTable;
Gdtr.Limit = (UINT16)(Gdtr.Limit + CPU_TSS_DESC_SIZE);
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
//
// Fixup current task descriptor. Task-state segment for current task will
// be filled by processor during task switching.
//
TssBase = (UINTN)Tss;
TssDesc->Uint128.Uint64 = 0;
TssDesc->Uint128.Uint64_1 = 0;
TssDesc->Bits.LimitLow = sizeof (IA32_TASK_STATE_SEGMENT) - 1;
TssDesc->Bits.BaseLow = (UINT16)TssBase;
TssDesc->Bits.BaseMidl = (UINT8)(TssBase >> 16);
TssDesc->Bits.Type = IA32_GDT_TYPE_TSS;
TssDesc->Bits.P = 1;
TssDesc->Bits.LimitHigh = 0;
TssDesc->Bits.BaseMidh = (UINT8)(TssBase >> 24);
TssDesc->Bits.BaseHigh = (UINT32)(TssBase >> 32);
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
//
// Fixup exception task descriptor and task-state segment
//
ZeroMem (Tss, sizeof (*Tss));
//
// Plus 1 byte is for compact stack layout in case StackTop is already aligned.
//
StackTop = StackTop - CPU_STACK_ALIGNMENT + 1;
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
StackTop = (UINTN)ALIGN_POINTER (StackTop, CPU_STACK_ALIGNMENT);
IdtTable = (IA32_IDT_GATE_DESCRIPTOR *)Idtr.Base;
for (Index = 0; Index < CPU_STACK_SWITCH_EXCEPTION_NUMBER; ++Index) {
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
//
// Fixup IST
//
Tss->IST[Index] = StackTop;
StackTop -= CPU_KNOWN_GOOD_STACK_SIZE;
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
//
// Set the IST field to enable corresponding IST
//
Vector = StackSwitchExceptions[Index];
if ((Vector >= CPU_EXCEPTION_NUM) ||
(Vector >= (Idtr.Limit + 1) / sizeof (IA32_IDT_GATE_DESCRIPTOR)))
{
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
continue;
}
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
IdtTable[Vector].Bits.Reserved_0 = (UINT8)(Index + 1);
}
//
// Publish GDT
//
AsmWriteGdtr (&Gdtr);
//
// Load current task
//
AsmWriteTr ((UINT16)((UINTN)TssDesc - Gdtr.Base));
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
return EFI_SUCCESS;
}
/**
Display CPU information.
@param ExceptionType Exception type.
@param SystemContext Pointer to EFI_SYSTEM_CONTEXT.
**/
VOID
EFIAPI
DumpCpuContext (
IN EFI_EXCEPTION_TYPE ExceptionType,
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
InternalPrintMessage (
"!!!! X64 Exception Type - %02x(%a) CPU Apic ID - %08x !!!!\n",
ExceptionType,
GetExceptionNameStr (ExceptionType),
GetApicId ()
);
if ((mErrorCodeFlag & (1 << ExceptionType)) != 0) {
InternalPrintMessage (
"ExceptionData - %016lx",
SystemContext.SystemContextX64->ExceptionData
);
if (ExceptionType == EXCEPT_IA32_PAGE_FAULT) {
InternalPrintMessage (
" I:%x R:%x U:%x W:%x P:%x PK:%x SS:%x SGX:%x",
(SystemContext.SystemContextX64->ExceptionData & IA32_PF_EC_ID) != 0,
(SystemContext.SystemContextX64->ExceptionData & IA32_PF_EC_RSVD) != 0,
(SystemContext.SystemContextX64->ExceptionData & IA32_PF_EC_US) != 0,
(SystemContext.SystemContextX64->ExceptionData & IA32_PF_EC_WR) != 0,
(SystemContext.SystemContextX64->ExceptionData & IA32_PF_EC_P) != 0,
(SystemContext.SystemContextX64->ExceptionData & IA32_PF_EC_PK) != 0,
(SystemContext.SystemContextX64->ExceptionData & IA32_PF_EC_SS) != 0,
(SystemContext.SystemContextX64->ExceptionData & IA32_PF_EC_SGX) != 0
);
}
InternalPrintMessage ("\n");
}
InternalPrintMessage (
"RIP - %016lx, CS - %016lx, RFLAGS - %016lx\n",
SystemContext.SystemContextX64->Rip,
SystemContext.SystemContextX64->Cs,
SystemContext.SystemContextX64->Rflags
);
InternalPrintMessage (
"RAX - %016lx, RCX - %016lx, RDX - %016lx\n",
SystemContext.SystemContextX64->Rax,
SystemContext.SystemContextX64->Rcx,
SystemContext.SystemContextX64->Rdx
);
InternalPrintMessage (
"RBX - %016lx, RSP - %016lx, RBP - %016lx\n",
SystemContext.SystemContextX64->Rbx,
SystemContext.SystemContextX64->Rsp,
SystemContext.SystemContextX64->Rbp
);
InternalPrintMessage (
"RSI - %016lx, RDI - %016lx\n",
SystemContext.SystemContextX64->Rsi,
SystemContext.SystemContextX64->Rdi
);
InternalPrintMessage (
"R8 - %016lx, R9 - %016lx, R10 - %016lx\n",
SystemContext.SystemContextX64->R8,
SystemContext.SystemContextX64->R9,
SystemContext.SystemContextX64->R10
);
InternalPrintMessage (
"R11 - %016lx, R12 - %016lx, R13 - %016lx\n",
SystemContext.SystemContextX64->R11,
SystemContext.SystemContextX64->R12,
SystemContext.SystemContextX64->R13
);
InternalPrintMessage (
"R14 - %016lx, R15 - %016lx\n",
SystemContext.SystemContextX64->R14,
SystemContext.SystemContextX64->R15
);
InternalPrintMessage (
"DS - %016lx, ES - %016lx, FS - %016lx\n",
SystemContext.SystemContextX64->Ds,
SystemContext.SystemContextX64->Es,
SystemContext.SystemContextX64->Fs
);
InternalPrintMessage (
"GS - %016lx, SS - %016lx\n",
SystemContext.SystemContextX64->Gs,
SystemContext.SystemContextX64->Ss
);
InternalPrintMessage (
"CR0 - %016lx, CR2 - %016lx, CR3 - %016lx\n",
SystemContext.SystemContextX64->Cr0,
SystemContext.SystemContextX64->Cr2,
SystemContext.SystemContextX64->Cr3
);
InternalPrintMessage (
"CR4 - %016lx, CR8 - %016lx\n",
SystemContext.SystemContextX64->Cr4,
SystemContext.SystemContextX64->Cr8
);
InternalPrintMessage (
"DR0 - %016lx, DR1 - %016lx, DR2 - %016lx\n",
SystemContext.SystemContextX64->Dr0,
SystemContext.SystemContextX64->Dr1,
SystemContext.SystemContextX64->Dr2
);
InternalPrintMessage (
"DR3 - %016lx, DR6 - %016lx, DR7 - %016lx\n",
SystemContext.SystemContextX64->Dr3,
SystemContext.SystemContextX64->Dr6,
SystemContext.SystemContextX64->Dr7
);
InternalPrintMessage (
"GDTR - %016lx %016lx, LDTR - %016lx\n",
SystemContext.SystemContextX64->Gdtr[0],
SystemContext.SystemContextX64->Gdtr[1],
SystemContext.SystemContextX64->Ldtr
);
InternalPrintMessage (
"IDTR - %016lx %016lx, TR - %016lx\n",
SystemContext.SystemContextX64->Idtr[0],
SystemContext.SystemContextX64->Idtr[1],
SystemContext.SystemContextX64->Tr
);
InternalPrintMessage (
"FXSAVE_STATE - %016lx\n",
&SystemContext.SystemContextX64->FxSaveState
);
}
/**
Display CPU information.
@param ExceptionType Exception type.
@param SystemContext Pointer to EFI_SYSTEM_CONTEXT.
**/
VOID
DumpImageAndCpuContent (
IN EFI_EXCEPTION_TYPE ExceptionType,
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
DumpCpuContext (ExceptionType, SystemContext);
//
// Dump module image base and module entry point by RIP
//
if ((ExceptionType == EXCEPT_IA32_PAGE_FAULT) &&
((SystemContext.SystemContextX64->ExceptionData & IA32_PF_EC_ID) != 0))
{
//
// The RIP in SystemContext could not be used
// if it is page fault with I/D set.
//
DumpModuleImageInfo ((*(UINTN *)(UINTN)SystemContext.SystemContextX64->Rsp));
} else {
DumpModuleImageInfo (SystemContext.SystemContextX64->Rip);
}
}