audk/Vlv2TbltDevicePkg/PlatformInitPei/PlatformEarlyInit.c

1196 lines
40 KiB
C
Raw Normal View History

/** @file
Copyright (c) 2004 - 2016, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
Module Name:
PlatformEarlyInit.c
Abstract:
Do platform specific PEI stage initializations.
--*/
#include "PlatformEarlyInit.h"
#ifdef __GNUC__
#pragma GCC push_options
#pragma GCC optimize ("O0")
#else
#pragma optimize ("", off)
#endif
static EFI_PEI_STALL_PPI mStallPpi = {
PEI_STALL_RESOLUTION,
Stall
};
static EFI_PEI_PPI_DESCRIPTOR mInstallStallPpi = {
EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST,
&gEfiPeiStallPpiGuid,
&mStallPpi
};
//
// The reserved SMBus addresses are defined in PlatformDxe.h file.
//
static UINT8 mSmbusRsvdAddresses[] = PLATFORM_SMBUS_RSVD_ADDRESSES;
static PEI_SMBUS_POLICY_PPI mSmbusPolicyPpi = {
SMBUS_BASE_ADDRESS,
SMBUS_BUS_DEV_FUNC,
PLATFORM_NUM_SMBUS_RSVD_ADDRESSES,
mSmbusRsvdAddresses
};
static EFI_PEI_PPI_DESCRIPTOR mInstallSmbusPolicyPpi = {
EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST,
&gPeiSmbusPolicyPpiGuid,
&mSmbusPolicyPpi
};
static PEI_SPEAKER_IF_PPI mSpeakerInterfacePpi = {
ProgramToneFrequency,
GenerateBeepTone
};
static EFI_PEI_PPI_DESCRIPTOR mInstallSpeakerInterfacePpi = {
EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST,
&gPeiSpeakerInterfacePpiGuid,
&mSpeakerInterfacePpi
};
static EFI_PEI_RESET_PPI mResetPpi = { IchReset };
static EFI_PEI_FIND_FV_PPI mEfiFindFvPpi = {
(EFI_PEI_FIND_FV_FINDFV)FindFv
};
static EFI_PEI_PPI_DESCRIPTOR mPpiList[] = {
{
EFI_PEI_PPI_DESCRIPTOR_PPI,
&gEfiPeiMasterBootModePpiGuid,
NULL
},
{
EFI_PEI_PPI_DESCRIPTOR_PPI,
&gEfiPeiResetPpiGuid,
&mResetPpi
},
{
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gEfiFindFvPpiGuid,
&mEfiFindFvPpi
}
};
static EFI_PEI_NOTIFY_DESCRIPTOR mNotifyList[] = {
{
EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK,
&gEfiEndOfPeiSignalPpiGuid,
(EFI_PEIM_NOTIFY_ENTRY_POINT)EndOfPeiPpiNotifyCallback
},
{
(EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK| EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gEfiPeiMemoryDiscoveredPpiGuid,
(EFI_PEIM_NOTIFY_ENTRY_POINT)MemoryDiscoveredPpiNotifyCallback
}
};
/**
Parse the status registers for figuring out the wake-up event and save it into
an GUID HOB which will be referenced later. However, modification is required
to meet the chipset register definition and the practical hardware design. Thus,
this is just an example.
@param PeiServices pointer to the PEI Service Table
@param EFI_SUCCESS Always return Success
@retval None
**/
EFI_STATUS
EFIAPI
GetWakeupEventAndSaveToHob (
IN CONST EFI_PEI_SERVICES **PeiServices
)
{
UINT16 Pm1Sts;
UINTN Gpe0Sts;
UINTN WakeEventData;
//
// Read the ACPI registers
//
Pm1Sts = IoRead16 (ACPI_BASE_ADDRESS + R_PCH_ACPI_PM1_STS);
Gpe0Sts = IoRead32 (ACPI_BASE_ADDRESS + R_PCH_ACPI_GPE0a_STS);
//
// Figure out the wake-up event
//
if ((Pm1Sts & B_PCH_ACPI_PM1_STS_PWRBTN) != 0) {
WakeEventData = SMBIOS_WAKEUP_TYPE_POWER_SWITCH;
} else if (((Pm1Sts & B_PCH_ACPI_PM1_STS_WAK) != 0)) {
WakeEventData = SMBIOS_WAKEUP_TYPE_PCI_PME;
} else if (Gpe0Sts != 0) {
WakeEventData = SMBIOS_WAKEUP_TYPE_OTHERS;
} else {
WakeEventData = SMBIOS_WAKEUP_TYPE_UNKNOWN;
}
DEBUG ((EFI_D_ERROR, "ACPI Wake Status Register: %04x\n", Pm1Sts));
DEBUG ((EFI_D_ERROR, "ACPI Wake Event Data: %02x\n", WakeEventData));
return EFI_SUCCESS;
}
EFI_STATUS
GetSetupVariable (
IN CONST EFI_PEI_SERVICES **PeiServices,
IN SYSTEM_CONFIGURATION *SystemConfiguration
)
{
UINTN VariableSize;
EFI_STATUS Status;
EFI_PEI_READ_ONLY_VARIABLE2_PPI *Variable;
VariableSize = sizeof (SYSTEM_CONFIGURATION);
ZeroMem (SystemConfiguration, sizeof (SYSTEM_CONFIGURATION));
Status = (*PeiServices)->LocatePpi (
PeiServices,
&gEfiPeiReadOnlyVariable2PpiGuid,
0,
NULL,
(void **)&Variable
);
ASSERT_EFI_ERROR (Status);
//
// Use normal setup default from NVRAM variable,
// the Platform Mode (manufacturing/safe/normal) is handle in PeiGetVariable.
//
VariableSize = sizeof(SYSTEM_CONFIGURATION);
Status = Variable->GetVariable (
Variable,
L"Setup",
&gEfiSetupVariableGuid,
NULL,
&VariableSize,
SystemConfiguration
);
if (EFI_ERROR (Status) || VariableSize != sizeof(SYSTEM_CONFIGURATION)) {
//The setup variable is corrupted
VariableSize = sizeof(SYSTEM_CONFIGURATION);
Status = Variable->GetVariable(
Variable,
L"SetupRecovery",
&gEfiSetupVariableGuid,
NULL,
&VariableSize,
SystemConfiguration
);
ASSERT_EFI_ERROR (Status);
}
return Status;
}
EFI_STATUS
VlvPolicyInit (
IN CONST EFI_PEI_SERVICES **PeiServices,
IN SYSTEM_CONFIGURATION *SystemConfiguration
)
{
EFI_STATUS Status;
EFI_PEI_PPI_DESCRIPTOR *mVlvPolicyPpiDesc;
VLV_POLICY_PPI *mVlvPolicyPpi;
Status = (*PeiServices)->AllocatePool(
PeiServices,
sizeof (EFI_PEI_PPI_DESCRIPTOR),
(void **)&mVlvPolicyPpiDesc
);
ASSERT_EFI_ERROR (Status);
Status = (*PeiServices)->AllocatePool(
PeiServices,
sizeof (VLV_POLICY_PPI),
(void **)&mVlvPolicyPpi
);
ASSERT_EFI_ERROR (Status);
//
// Initialize PPI
//
(*PeiServices)->SetMem ((VOID *)mVlvPolicyPpi, sizeof (VLV_POLICY_PPI), 0);
mVlvPolicyPpiDesc->Flags = EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST;
mVlvPolicyPpiDesc->Guid = &gVlvPolicyPpiGuid;
mVlvPolicyPpiDesc->Ppi = mVlvPolicyPpi;
mVlvPolicyPpi->GtConfig.PrimaryDisplay = SystemConfiguration->PrimaryVideoAdaptor;
mVlvPolicyPpi->GtConfig.IgdDvmt50PreAlloc = SystemConfiguration->IgdDvmt50PreAlloc;
mVlvPolicyPpi->GtConfig.ApertureSize = SystemConfiguration->IgdApertureSize;
mVlvPolicyPpi->GtConfig.GttSize = SystemConfiguration->GTTSize;
if (SystemConfiguration->PrimaryVideoAdaptor != 2) {
mVlvPolicyPpi->GtConfig.InternalGraphics = SystemConfiguration->Igd;
} else {
mVlvPolicyPpi->GtConfig.InternalGraphics = 0;
}
mVlvPolicyPpi->GtConfig.IgdTurboEn = 1;
mVlvPolicyPpi->PlatformData.FastBoot = SystemConfiguration->FastBoot;
mVlvPolicyPpi->PlatformData.DynSR = 1;
DEBUG ((EFI_D_ERROR, "Setup Option ISPEn: 0x%x\n", SystemConfiguration->ISPEn));
mVlvPolicyPpi->ISPEn = SystemConfiguration->ISPEn;
DEBUG ((EFI_D_ERROR, "Setup Option ISPDevSel: 0x%x\n", SystemConfiguration->ISPDevSel));
mVlvPolicyPpi->ISPPciDevConfig = SystemConfiguration->ISPDevSel;
if (SystemConfiguration->ISPEn == 0) {
mVlvPolicyPpi->ISPPciDevConfig = 0;
DEBUG ((EFI_D_ERROR, "Update Setup Option ISPDevSel: 0x%x\n", mVlvPolicyPpi->ISPPciDevConfig));
}
Status = (*PeiServices)->InstallPpi(
PeiServices,
mVlvPolicyPpiDesc
);
ASSERT_EFI_ERROR (Status);
return EFI_SUCCESS;
}
EFI_STATUS
ConfigureSoCGpio (
IN SYSTEM_CONFIGURATION *SystemConfiguration
)
{
DEBUG ((EFI_D_ERROR, "ConfigureSoCGpio------------start\n"));
if (SystemConfiguration->eMMCBootMode== 1) {// Auto detection mode
DEBUG ((EFI_D_ERROR, "Auto detection mode------------start\n"));
//
//Silicon Steppings
//
switch (PchStepping()) {
case PchA0: // SOC A0 and A1
case PchA1:
DEBUG ((EFI_D_ERROR, "SOC A0/A1: eMMC 4.41 GPIO Configuration\n"));
SystemConfiguration->LpsseMMCEnabled = 1;
SystemConfiguration->LpsseMMC45Enabled = 0;
break;
case PchB0: // SOC B0 and later
default:
DEBUG ((EFI_D_ERROR, "SOC B0 and later: eMMC 4.5 GPIO Configuration\n"));
SystemConfiguration->LpsseMMCEnabled = 0;
SystemConfiguration->LpsseMMC45Enabled = 1;
break;
}
} else if (SystemConfiguration->eMMCBootMode == 2) { // eMMC 4.41
DEBUG ((EFI_D_ERROR, "Force to eMMC 4.41 GPIO Configuration\n"));
SystemConfiguration->LpsseMMCEnabled = 1;
SystemConfiguration->LpsseMMC45Enabled = 0;
} else if (SystemConfiguration->eMMCBootMode == 3) { // eMMC 4.5
DEBUG ((EFI_D_ERROR, "Force to eMMC 4.5 GPIO Configuration\n"));
SystemConfiguration->LpsseMMCEnabled = 0;
SystemConfiguration->LpsseMMC45Enabled = 1;
} else { // Disable eMMC controllers
DEBUG ((EFI_D_ERROR, "Disable eMMC GPIO controllers\n"));
SystemConfiguration->LpsseMMCEnabled = 0;
SystemConfiguration->LpsseMMC45Enabled = 0;
}
/*
20.1.1 EMMC
SDMMC1_CLK - write 0x2003ED01 to IOBASE + 0x03E0
SDMMC1_CMD - write 0x2003EC81 to IOBASE + 0x0390
SDMMC1_D0 - write 0x2003EC81 to IOBASE + 0x03D0
SDMMC1_D1 - write 0x2003EC81 to IOBASE + 0x0400
SDMMC1_D2 - write 0x2003EC81 to IOBASE + 0x03B0
SDMMC1_D3_CD_B - write 0x2003EC81 to IOBASE + 0x0360
MMC1_D4_SD_WE - write 0x2003EC81 to IOBASE + 0x0380
MMC1_D5 - write 0x2003EC81 to IOBASE + 0x03C0
MMC1_D6 - write 0x2003EC81 to IOBASE + 0x0370
MMC1_D7 - write 0x2003EC81 to IOBASE + 0x03F0
MMC1_RESET_B - write 0x2003ED01 to IOBASE + 0x0330
*/
if (SystemConfiguration->LpsseMMCEnabled== 1) {
MmioWrite32 (IO_BASE_ADDRESS + 0x03E0, 0x2003ED01); //EMMC 4.41
MmioWrite32 (IO_BASE_ADDRESS + 0x0390, 0x2003EC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x03D0, 0x2003EC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x0400, 0x2003EC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x03B0, 0x2003EC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x0360, 0x2003EC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x0380, 0x2003EC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x03C0, 0x2003EC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x0370, 0x2003EC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x03F0, 0x2003EC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x0330, 0x2003ED01);
}
/*
eMMC 4.5 controller
SDMMC1_CLK - write 0x2003ED03 to IOBASE + 0x03E0
SDMMC1_CMD - write 0x2003EC83 to IOBASE + 0x0390
SDMMC1_D0 - write 0x2003EC83 to IOBASE + 0x03D0
SDMMC1_D1 - write 0x2003EC83 to IOBASE + 0x0400
SDMMC1_D2 - write 0x2003EC83 to IOBASE + 0x03B0
SDMMC1_D3_CD_B - write 0x2003EC83 to IOBASE + 0x0360
MMC1_D4_SD_WE - write 0x2003EC83 to IOBASE + 0x0380
MMC1_D5 - write 0x2003EC83 to IOBASE + 0x03C0
MMC1_D6 - write 0x2003EC83 to IOBASE + 0x0370
MMC1_D7 - write 0x2003EC83 to IOBASE + 0x03F0
MMC1_RESET_B - write 0x2003ED03 to IOBASE + 0x0330
*/
if (SystemConfiguration->LpsseMMC45Enabled== 1) {
MmioWrite32 (IO_BASE_ADDRESS + 0x03E0, 0x2003ED03); // EMMC 4.5
MmioWrite32 (IO_BASE_ADDRESS + 0x0390, 0x2003EC83);
MmioWrite32 (IO_BASE_ADDRESS + 0x03D0, 0x2003EC83);
MmioWrite32 (IO_BASE_ADDRESS + 0x0400, 0x2003EC83);
MmioWrite32 (IO_BASE_ADDRESS + 0x03B0, 0x2003EC83);
MmioWrite32 (IO_BASE_ADDRESS + 0x0360, 0x2003EC83);
MmioWrite32 (IO_BASE_ADDRESS + 0x0380, 0x2003EC83);
MmioWrite32 (IO_BASE_ADDRESS + 0x03C0, 0x2003EC83);
MmioWrite32 (IO_BASE_ADDRESS + 0x0370, 0x2003EC83);
MmioWrite32 (IO_BASE_ADDRESS + 0x03F0, 0x2003EC83);
MmioWrite32 (IO_BASE_ADDRESS + 0x0330, 0x2003ED03);
}
//
// Change GPIOC_0 setting to allow MMIO access under Android.
//
IoWrite32 (GPIO_BASE_ADDRESS + R_PCH_GPIO_SC_USE_SEL,
(IoRead32(GPIO_BASE_ADDRESS + R_PCH_GPIO_SC_USE_SEL) & (UINT32)~BIT0));
DEBUG ((EFI_D_ERROR, "ConfigureSoCGpio------------end\n"));
return EFI_SUCCESS;
}
EFI_STATUS
MeasuredBootInit (
IN CONST EFI_PEI_SERVICES **PeiServices,
IN SYSTEM_CONFIGURATION *SystemConfiguration
)
{
if (SystemConfiguration->MeasuredBootEnable) {
PcdSetBool (PcdMeasuredBootEnable, TRUE);
} else {
PcdSetBool (PcdMeasuredBootEnable, FALSE);
}
return EFI_SUCCESS;
}
EFI_STATUS
ConfigureLpssAndSccGpio (
IN SYSTEM_CONFIGURATION *SystemConfiguration,
IN EFI_PLATFORM_INFO_HOB *PlatformInfo
)
{
/*One time configuration to each GPIO controller PSB_CONF register should be done before starting pad configuration:
GPIO SCORE - write 0x01001002 to IOBASE + 0x0700
GPIO NCORE - write 0x01001002 to IOBASE + 0x0F00
GPIO SSUS - write 0x01001002 to IOBASE + 0x1700
*/
DEBUG ((EFI_D_ERROR, "ConfigureLpssAndSccGpio------------start\n"));
/*
19.1.1 PWM0
PWM0 - write 0x2003CD01 to IOBASE + 0x00A0
19.1.2 PWM1
PWM0 - write 0x2003CD01 to IOBASE + 0x00B0
*/
if (SystemConfiguration->LpssPwm0Enabled== 1) {
MmioWrite32 (IO_BASE_ADDRESS + 0x00A0, 0x2003CD01);
} else if (SystemConfiguration->LpssPwm0Enabled== 0) {
MmioWrite32 (IO_BASE_ADDRESS + 0x00A0, 0x2003CD00);
}
if (SystemConfiguration->LpssPwm1Enabled== 1) {
MmioWrite32 (IO_BASE_ADDRESS + 0x00B0, 0x2003CC01);
} else if (SystemConfiguration->LpssPwm1Enabled== 0) {
MmioWrite32 (IO_BASE_ADDRESS + 0x00B0, 0x2003CD00);
}
/*
19.1.3 UART1
UART1_RXD-L - write 0x2003CC81 to IOBASE + 0x0020
UART1_TXD-0 - write 0x2003CC81 to IOBASE + 0x0010
UART1_RTS_B-1 - write 0x2003CC81 to IOBASE + 0x0000
UART1_CTS_B-H - write 0x2003CC81 to IOBASE + 0x0040
*/
if (SystemConfiguration->LpssHsuart0Enabled== 1) {
MmioWrite32 (IO_BASE_ADDRESS + 0x0020, 0x2003CC81); // uart1
MmioWrite32 (IO_BASE_ADDRESS + 0x0010, 0x2003CC81);
if (SystemConfiguration->LpssHsuart0FlowControlEnabled== 0) {
DEBUG ((EFI_D_ERROR, "LpssHsuart0FlowControlEnabled[0]\n"));
MmioWrite32 (IO_BASE_ADDRESS + 0x0000, 0x2003CC80);
MmioWrite32 (IO_BASE_ADDRESS + 0x0040, 0x2003CC80);
} else {
DEBUG ((EFI_D_ERROR, "LpssHsuart0FlowControlEnabled[1]\n"));
MmioWrite32 (IO_BASE_ADDRESS + 0x0000, 0x2003CC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x0040, 0x2003CC01);//W/A HSD 4752617 0x2003CC81
}
} else if (SystemConfiguration->LpssHsuart0Enabled== 0) {
MmioWrite32 (IO_BASE_ADDRESS + 0x0020, 0x2003CC80); // uart1
MmioWrite32 (IO_BASE_ADDRESS + 0x0010, 0x2003CC80);
}
/*
19.1.4 UART2
UART2_RTS_B-1 - write 0x2003CC81 to IOBASE + 0x0090
UART2_CTS_B-H - write 0x2003CC81 to IOBASE + 0x0080
UART2_RXD-H - write 0x2003CC81 to IOBASE + 0x0060
UART2_TXD-0 - write 0x2003CC81 to IOBASE + 0x0070
*/
if (SystemConfiguration->LpssHsuart1Enabled== 1) {
MmioWrite32 (IO_BASE_ADDRESS + 0x0060, 0x2003CC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x0070, 0x2003CC81);
if (SystemConfiguration->LpssHsuart1FlowControlEnabled== 0) {
DEBUG ((EFI_D_ERROR, "LpssHsuart1FlowControlEnabled[0]\n"));
MmioWrite32 (IO_BASE_ADDRESS + 0x0090, 0x2003CC80); // UART2_RTS_B
MmioWrite32 (IO_BASE_ADDRESS + 0x0080, 0x2003CC80); // UART2_CTS_B
} else {
DEBUG ((EFI_D_ERROR, "LpssHsuart1FlowControlEnabled[1]\n"));
MmioWrite32 (IO_BASE_ADDRESS + 0x0090, 0x2003CC81); // uart2
MmioWrite32 (IO_BASE_ADDRESS + 0x0080, 0x2003CC01); //W/A HSD 4752617 0x2003CC81
}
} else if (SystemConfiguration->LpssHsuart1Enabled== 0) {
MmioWrite32 (IO_BASE_ADDRESS + 0x0060, 0x2003CC80);
MmioWrite32 (IO_BASE_ADDRESS + 0x0070, 0x2003CC80);
}
/*
19.1.5 SPI
SPI1_CS0_B - write 0x2003CC81 to IOBASE + 0x0110
SPI1_CLK - write 0x2003CD01 to IOBASE + 0x0100
SPI1_MOSI - write 0x2003CC81 to IOBASE + 0x0130
SPI1_MISO - write 0x2003CC81 to IOBASE + 0x0120
*/
if (SystemConfiguration->LpssSpiEnabled== 1) {
MmioWrite32 (IO_BASE_ADDRESS + 0x0110, 0x2003CC81); // SPI
MmioWrite32 (IO_BASE_ADDRESS + 0x0100, 0x2003CD01);
MmioWrite32 (IO_BASE_ADDRESS + 0x0130, 0x2003CC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x0120, 0x2003CC81);
} else if (SystemConfiguration->LpssSpiEnabled== 0) {
MmioWrite32 (IO_BASE_ADDRESS + 0x0110, 0x2003cc80);
MmioWrite32 (IO_BASE_ADDRESS + 0x0100, 0x2003cc80);
MmioWrite32 (IO_BASE_ADDRESS + 0x0130, 0x2003cc80);
MmioWrite32 (IO_BASE_ADDRESS + 0x0120, 0x2003cc80);
}
/*
19.1.6 I2C0
I2C0_SDA-OD-O - write 0x2003CC81 to IOBASE + 0x0210
I2C0_SCL-OD-O - write 0x2003CC81 to IOBASE + 0x0200
*/
if (SystemConfiguration->LpssI2C0Enabled== 1) {
MmioWrite32 (IO_BASE_ADDRESS + 0x0210, 0x2003C881);
MmioWrite32 (IO_BASE_ADDRESS + 0x0200, 0x2003C881);
}
/*
19.1.7 I2C1
I2C1_SDA-OD-O/I - write 0x2003CC81 to IOBASE + 0x01F0
I2C1_SCL-OD-O/I - write 0x2003CC81 to IOBASE + 0x01E0
*/
if (SystemConfiguration->LpssI2C1Enabled== 1) {
MmioWrite32 (IO_BASE_ADDRESS + 0x01F0, 0x2003C881);
MmioWrite32 (IO_BASE_ADDRESS + 0x01E0, 0x2003C881);
}
/*
19.1.8 I2C2
I2C2_SDA-OD-O/I - write 0x2003CC81 to IOBASE + 0x01D0
I2C2_SCL-OD-O/I - write 0x2003CC81 to IOBASE + 0x01B0
*/
if (SystemConfiguration->LpssI2C2Enabled== 1) {
MmioWrite32 (IO_BASE_ADDRESS + 0x01D0, 0x2003C881);
MmioWrite32 (IO_BASE_ADDRESS + 0x01B0, 0x2003C881);
}
/*
19.1.9 I2C3
I2C3_SDA-OD-O/I - write 0x2003CC81 to IOBASE + 0x0190
I2C3_SCL-OD-O/I - write 0x2003CC81 to IOBASE + 0x01C0
*/
if (SystemConfiguration->LpssI2C3Enabled== 1) {
MmioWrite32 (IO_BASE_ADDRESS + 0x0190, 0x2003C881);
MmioWrite32 (IO_BASE_ADDRESS + 0x01C0, 0x2003C881);
}
/*
19.1.10 I2C4
I2C4_SDA-OD-O/I - write 0x2003CC81 to IOBASE + 0x01A0
I2C4_SCL-OD-O/I - write 0x2003CC81 to IOBASE + 0x0170
*/
if (SystemConfiguration->LpssI2C4Enabled== 1) {
MmioWrite32 (IO_BASE_ADDRESS + 0x01A0, 0x2003C881);
MmioWrite32 (IO_BASE_ADDRESS + 0x0170, 0x2003C881);
}
/*
19.1.11 I2C5
I2C5_SDA-OD-O/I - write 0x2003CC81 to IOBASE + 0x0150
I2C5_SCL-OD-O/I - write 0x2003CC81 to IOBASE + 0x0140
*/
//touch 1.7M support on i2c5(from 0) need 2k PULL-UP.
if (SystemConfiguration->LpssI2C5Enabled== 1) {
MmioWrite32 (IO_BASE_ADDRESS + 0x0150, 0x2003C881);
MmioWrite32 (IO_BASE_ADDRESS + 0x0140, 0x2003C881);
} else if(SystemConfiguration->LpssI2C5Enabled== 0) {
MmioWrite32 (IO_BASE_ADDRESS + 0x0150, 0x2003C880);
MmioWrite32 (IO_BASE_ADDRESS + 0x0140, 0x2003C880);
}
/*
19.1.12 I2C6
I2C6_SDA-OD-O/I - write 0x2003CC81 to IOBASE + 0x0180
I2C6_SCL-OD-O/I - write 0x2003CC81 to IOBASE + 0x0160
*/
if (SystemConfiguration->LpssI2C6Enabled== 1) {
MmioWrite32 (IO_BASE_ADDRESS + 0x0180, 0x2003C881);
MmioWrite32 (IO_BASE_ADDRESS + 0x0160, 0x2003C881);
} else if (SystemConfiguration->LpssI2C6Enabled== 0) {
MmioWrite32 (IO_BASE_ADDRESS + 0x0180, 0x2003C880);
MmioWrite32 (IO_BASE_ADDRESS + 0x0160, 0x2003C880);
}
/*
20.1.2 SDIO
SDMMC2_CLK - write 0x2003ED01 to IOBASE + 0x0320
SDMMC2_CMD - write 0x2003EC81 to IOBASE + 0x0300
SDMMC2_D0 - write 0x2003EC81 to IOBASE + 0x0350
SDMMC2_D1 - write 0x2003EC81 to IOBASE + 0x02F0
SDMMC2_D2 - write 0x2003EC81 to IOBASE + 0x0340
SDMMC2_D3_CD_B - write 0x2003EC81 to IOBASE + 0x0310
*/
if (SystemConfiguration->LpssSdioEnabled== 1) {
MmioWrite32 (IO_BASE_ADDRESS + 0x0320, 0x2003ED01);//SDIO
MmioWrite32 (IO_BASE_ADDRESS + 0x0300, 0x2003EC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x0350, 0x2003EC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x02F0, 0x2003EC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x0340, 0x2003EC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x0310, 0x2003EC81);
}
/*
20.1.3 SD Card
SDMMC3_1P8_EN - write 0x2003CD01 to IOBASE + 0x03F0
SDMMC3_CD_B - write 0x2003CC81 to IOBASE + 0x03A0
SDMMC3_CLK - write 0x2003CD01 to IOBASE + 0x02B0
SDMMC3_CMD - write 0x2003CC81 to IOBASE + 0x02C0
SDMMC3_D0 - write 0x2003CC81 to IOBASE + 0x02E0
SDMMC3_D1 - write 0x2003CC81 to IOBASE + 0x0290
SDMMC3_D2 - write 0x2003CC81 to IOBASE + 0x02D0
SDMMC3_D3 - write 0x2003CC81 to IOBASE + 0x02A0
SDMMC3_PWR_EN_B - write 0x2003CC81 to IOBASE + 0x0690
SDMMC3_WP - write 0x2003CC82 to IOBASE + 0x0160
*/
if (SystemConfiguration->LpssSdcardEnabled == 1) {
if (!((PlatformInfo->BoardId == BOARD_ID_BL_FFRD && PlatformInfo->BoardRev== PR11) && (SystemConfiguration->CfioPnpSettings == 1))) {
MmioWrite32 (IO_BASE_ADDRESS + 0x05F0, 0x2003CD01);//SDCARD
MmioWrite32 (IO_BASE_ADDRESS + 0x02B0, 0x2003CD01);
MmioWrite32 (IO_BASE_ADDRESS + 0x02C0, 0x2003CC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x02E0, 0x2003CC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x0290, 0x2003CC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x02D0, 0x2003CC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x02A0, 0x2003CC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x0690, 0x2003CC81);
MmioWrite32 (IO_BASE_ADDRESS + 0x0650, 0x2003CC82); //GPIOC_7 set to WP Pin
}
}
DEBUG ((EFI_D_ERROR, "ConfigureLpssAndSccGpio------------end\n"));
return EFI_SUCCESS;
}
EFI_STATUS
ConfigureLpeGpio (
IN SYSTEM_CONFIGURATION *SystemConfiguration
)
{
DEBUG ((EFI_D_ERROR, "ConfigureLpeGpio------------start\n"));
if (SystemConfiguration->PchAzalia == 0) {
MmioAndThenOr32 (IO_BASE_ADDRESS + 0x220, (UINT32)~(0x7), (UINT32) (0x01));
MmioAndThenOr32 (IO_BASE_ADDRESS + 0x250, (UINT32)~(0x7), (UINT32) (0x01));
MmioAndThenOr32 (IO_BASE_ADDRESS + 0x240, (UINT32)~(0x7), (UINT32) (0x01));
MmioAndThenOr32 (IO_BASE_ADDRESS + 0x260, (UINT32)~(0x7), (UINT32) (0x01));
MmioAndThenOr32 (IO_BASE_ADDRESS + 0x270, (UINT32)~(0x7), (UINT32) (0x01));
MmioAndThenOr32 (IO_BASE_ADDRESS + 0x230, (UINT32)~(0x7), (UINT32) (0x01));
MmioAndThenOr32 (IO_BASE_ADDRESS + 0x280, (UINT32)~(0x7), (UINT32) (0x01));
MmioAndThenOr32 (IO_BASE_ADDRESS + 0x540, (UINT32)~(0x7), (UINT32) (0x01));
}
DEBUG ((EFI_D_ERROR, "ConfigureLpeGpio------------end\n"));
return EFI_SUCCESS;
}
EFI_STATUS
ConfigureSciSmiGpioRout (
IN EFI_PLATFORM_INFO_HOB *PlatformInfo)
{
UINT32 GPI_Routing;
GPI_Routing = MmioRead32 (PMC_BASE_ADDRESS + R_PCH_PMC_GPI_ROUT);
//
// For FAB3, Route GPIO_CORE 0 to cause Runtime SCI, GPIO_SUS 0 to cause Wake SCI and GPIO_SUS 7 to cause EXTSMI
//
if(PlatformInfo->BoardRev == 3) {
GPI_Routing = GPI_Routing & 0xfffc3ffc;
GPI_Routing = GPI_Routing | 0x00024002;
}
//
// For FAB2/1, Route GPIO_CORE 7 to cause Runtime SCI, GPIO_SUS 0 to cause Wake SCI and GPIO_SUS 7 to cause EXTSMI
//
else {
GPI_Routing = GPI_Routing & 0x3fff3ffc;
GPI_Routing = GPI_Routing | 0x80004002;
}
MmioWrite32((PMC_BASE_ADDRESS + R_PCH_PMC_GPI_ROUT), GPI_Routing);
return EFI_SUCCESS;
}
EFI_STATUS
ConfigureMipiCsi (
VOID)
{
//
//Configure the platform clock for MIPI-CSI usage
//PLT_CLK0
//
MmioAndThenOr32 (IO_BASE_ADDRESS + 0x6a0, (UINT32)~(0x7), (UINT32) (0x01));
//
//PLT_CLK1
//
MmioAndThenOr32 (IO_BASE_ADDRESS + 0x570, (UINT32)~(0x7), (UINT32) (0x01));
//
//PLT_CLK2
//
MmioAndThenOr32 (IO_BASE_ADDRESS + 0x5B0, (UINT32)~(0x7), (UINT32) (0x01));
return EFI_SUCCESS;
}
EFI_STATUS
ConfigureUSBULPI (
VOID)
{
//
//Configure USB ULPI
//USB_ULPI_0_CLK
//
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x338, (UINT32)~(0x7), (UINT32) (GPI));
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x330, (UINT32)~(0x187), (UINT32) (0x101));
//
//USB_ULPI_0_DATA0
//
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x388, (UINT32)~(0x7), (UINT32) (GPI));
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x380, (UINT32)~(0x187), (UINT32) (0x101));
//
//USB_ULPI_0_DATA1
//
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x368, (UINT32)~(0x7), (UINT32) (GPI));
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x360, (UINT32)~(0x187), (UINT32) (0x101));
//
//USB_ULPI_0_DATA2
//
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x318, (UINT32)~(0x7), (UINT32) (GPI));
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x310, (UINT32)~(0x187), (UINT32) (0x101));
//
//USB_ULPI_0_DATA3
//
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x378, (UINT32)~(0x7), (UINT32) (GPI));
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x370, (UINT32)~(0x187), (UINT32) (0x101));
//
//USB_ULPI_0_DATA4
//
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x308, (UINT32)~(0x7), (UINT32) (GPI));
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x300, (UINT32)~(0x187), (UINT32) (0x101));
//
//USB_ULPI_0_DATA5
//
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x398, (UINT32)~(0x7), (UINT32) (GPI));
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x390, (UINT32)~(0x187), (UINT32) (0x101));
//
//USB_ULPI_0_DATA6
//
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x328, (UINT32)~(0x7), (UINT32) (GPI));
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x320, (UINT32)~(0x187), (UINT32) (0x101));
//
//USB_ULPI_0_DATA7
//
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x3a8, (UINT32)~(0x7), (UINT32) (GPI));
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x3a0, (UINT32)~(0x187), (UINT32) (0x101));
//
//USB_ULPI_0_DIR
//
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x348, (UINT32)~(0x7), (UINT32) (GPI));
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x340, (UINT32)~(0x187), (UINT32) (0x81));
//
//USB_ULPI_0_NXT
//
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x358, (UINT32)~(0x7), (UINT32) (GPI));
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x350, (UINT32)~(0x187), (UINT32) (0x101));
//
//USB_ULPI_0_STP
//
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x3b8, (UINT32)~(0x7), (UINT32) (GPI));
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x3b0, (UINT32)~(0x187), (UINT32) (0x81));
//
//USB_ULPI_0_REFCLK
//
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x288, (UINT32)~(0x7), (UINT32) (GPI));
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x280, (UINT32)~(0x187), (UINT32) (0x101));
return EFI_SUCCESS;
}
EFI_STATUS
DisableRTD3 (
VOID)
{
//
//Disable RTD3
//
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x210, (UINT32)~(0x0f000007), (UINT32) (0x00));
MmioAndThenOr32 (IO_BASE_ADDRESS + GPIO_SSUS_OFFSET + 0x1e0, (UINT32)~(0x0f000007), (UINT32) (0x00));
return EFI_SUCCESS;
}
/**
Platform specific initializations in stage1.
@param FfsHeader Pointer to the PEIM FFS file header.
@param PeiServices General purpose services available to every PEIM.
@retval EFI_SUCCESS Operation completed successfully.
@retval Otherwise Platform initialization failed.
**/
EFI_STATUS
EFIAPI
PlatformEarlyInitEntry (
IN EFI_PEI_FILE_HANDLE FileHandle,
IN CONST EFI_PEI_SERVICES **PeiServices
)
{
EFI_STATUS Status;
SYSTEM_CONFIGURATION SystemConfiguration;
EFI_PLATFORM_INFO_HOB *PlatformInfo;
EFI_PEI_HOB_POINTERS Hob;
EFI_PLATFORM_CPU_INFO PlatformCpuInfo;
EFI_SMRAM_HOB_DESCRIPTOR_BLOCK *DescriptorBlock;
EFI_SMRAM_HOB_DESCRIPTOR_BLOCK *NewDescriptorBlock;
UINTN Index;
UINTN MaxIndex;
UINT64 Base;
UINT64 Size;
UINT64 NewSize;
//
// Make sure base and size of the SMRAM region is aligned
//
Hob.Raw = GetFirstGuidHob (&gEfiSmmPeiSmramMemoryReserveGuid);
if (Hob.Raw != NULL) {
DescriptorBlock = GET_GUID_HOB_DATA (Hob.Raw);
DEBUG ((DEBUG_INFO, "SMM PEI SMRAM Memory Reserved HOB\n"));
for (Index = 0; Index < DescriptorBlock->NumberOfSmmReservedRegions; Index++) {
DEBUG((DEBUG_INFO, " SMRAM Descriptor[%02x]: Start=%016lx Size=%016lx State=%02x\n",
Index,
DescriptorBlock->Descriptor[Index].PhysicalStart,
DescriptorBlock->Descriptor[Index].PhysicalSize,
DescriptorBlock->Descriptor[Index].RegionState
));
}
//
// Find the largest usable range of SMRAM between 1MB and 4GB
//
for (Index = 0, MaxIndex = 0, Size = 0; Index < DescriptorBlock->NumberOfSmmReservedRegions; Index++) {
//
// Skip any SMRAM region that is already allocated, needs testing, or needs ECC initialization
//
if ((DescriptorBlock->Descriptor[Index].RegionState & (EFI_ALLOCATED | EFI_NEEDS_TESTING | EFI_NEEDS_ECC_INITIALIZATION)) != 0) {
continue;
}
//
// Skip any SMRAM region below 1MB
//
if (DescriptorBlock->Descriptor[Index].CpuStart < BASE_1MB) {
continue;
}
//
// Skip any SMRAM region that is above 4GB or crosses the 4GB boundary
//
if ((DescriptorBlock->Descriptor[Index].CpuStart + DescriptorBlock->Descriptor[Index].PhysicalSize) >= BASE_4GB) {
continue;
}
//
// Cache the largest SMRAM region index
//
if (DescriptorBlock->Descriptor[Index].PhysicalSize >= DescriptorBlock->Descriptor[MaxIndex].PhysicalSize) {
MaxIndex = Index;
}
}
//
// Find the extent of the contiguous SMRAM region that surrounds the largest usable SMRAM range
//
Base = DescriptorBlock->Descriptor[MaxIndex].CpuStart;
Size = DescriptorBlock->Descriptor[MaxIndex].PhysicalSize;
for (Index = 0; Index < DescriptorBlock->NumberOfSmmReservedRegions; Index++) {
if (DescriptorBlock->Descriptor[Index].CpuStart < Base &&
Base == (DescriptorBlock->Descriptor[Index].CpuStart + DescriptorBlock->Descriptor[Index].PhysicalSize)) {
Base = DescriptorBlock->Descriptor[Index].CpuStart;
Size += DescriptorBlock->Descriptor[Index].PhysicalSize;
} else if ((Base + Size) == DescriptorBlock->Descriptor[Index].CpuStart) {
Size += DescriptorBlock->Descriptor[Index].PhysicalSize;
}
}
//
// Round SMRAM region up to nearest power of 2 that is at least 4KB
//
NewSize = MAX (LShiftU64 (1, HighBitSet64 (Size - 1) + 1), SIZE_4KB);
if ((Base & ~(NewSize - 1)) != Base) {
//
// SMRAM region Base Address has smaller alignment than SMRAM region Size
// This is not compatible with SMRR settings
//
DEBUG((DEBUG_ERROR, "ERROR: SMRAM Region Size has larger alignment than SMRAM Region Base\n"));
DEBUG((DEBUG_ERROR, " SMRAM Region Base=%016lx Size=%016lx\n", Base, NewSize));
ASSERT (FALSE);
} else if (Size != NewSize) {
//
// See if the size difference can be added to an adjacent descriptor that is already allocated
//
for (Index = 0; Index < DescriptorBlock->NumberOfSmmReservedRegions; Index++) {
if ((DescriptorBlock->Descriptor[Index].CpuStart + DescriptorBlock->Descriptor[Index].PhysicalSize) == (Base + Size)) {
if (((DescriptorBlock->Descriptor[Index].RegionState) & EFI_ALLOCATED) != 0) {
DescriptorBlock->Descriptor[Index].PhysicalSize += (NewSize - Size);
Size = NewSize;
break;
}
}
}
if (Size != NewSize) {
//
// Add an allocated descriptor to the SMM PEI SMRAM Memory Reserved HOB to accomodate the larger size.
//
Index = DescriptorBlock->NumberOfSmmReservedRegions;
NewDescriptorBlock = (EFI_SMRAM_HOB_DESCRIPTOR_BLOCK *)BuildGuidHob (
&gEfiSmmPeiSmramMemoryReserveGuid,
sizeof (EFI_SMRAM_HOB_DESCRIPTOR_BLOCK) + ((Index + 1) * sizeof (EFI_SMRAM_DESCRIPTOR))
);
ASSERT (NewDescriptorBlock != NULL);
//
// Copy old EFI_SMRAM_HOB_DESCRIPTOR_BLOCK to new allocated region
//
CopyMem (
NewDescriptorBlock,
DescriptorBlock,
sizeof (EFI_SMRAM_HOB_DESCRIPTOR_BLOCK) + (Index * sizeof (EFI_SMRAM_DESCRIPTOR))
);
//
// Make sure last descriptor in NewDescriptorBlock contains last descriptor from DescriptorBlock
//
CopyMem (
&NewDescriptorBlock->Descriptor[Index],
&NewDescriptorBlock->Descriptor[Index - 1],
sizeof (EFI_SMRAM_DESCRIPTOR)
);
//
// Fill next to last descriptor with an allocated descriptor that aligns the total size of SMRAM
//
NewDescriptorBlock->Descriptor[Index - 1].CpuStart = Base + Size;
NewDescriptorBlock->Descriptor[Index - 1].PhysicalStart = Base + Size;
NewDescriptorBlock->Descriptor[Index - 1].PhysicalSize = NewSize - Size;
NewDescriptorBlock->Descriptor[Index - 1].RegionState = DescriptorBlock->Descriptor[MaxIndex].RegionState | EFI_ALLOCATED;
NewDescriptorBlock->NumberOfSmmReservedRegions++;
//
// Invalidate the original gEfiSmmPeiSmramMemoryReserveGuid HOB
//
ZeroMem (&Hob.Guid->Name, sizeof (&Hob.Guid->Name));
}
Hob.Raw = GetFirstGuidHob (&gEfiSmmPeiSmramMemoryReserveGuid);
DescriptorBlock = GET_GUID_HOB_DATA (Hob.Raw);
DEBUG ((DEBUG_INFO, "SMM PEI SMRAM Memory Reserved HOB - Updated\n"));
for (Index = 0; Index < DescriptorBlock->NumberOfSmmReservedRegions; Index++) {
DEBUG((DEBUG_INFO, " SMRAM Descriptor[%02x]: Start=%016lx Size=%016lx State=%02x\n",
Index,
DescriptorBlock->Descriptor[Index].PhysicalStart,
DescriptorBlock->Descriptor[Index].PhysicalSize,
DescriptorBlock->Descriptor[Index].RegionState
));
}
}
}
//
// Initialize SmbusPolicy PPI
//
Status = (*PeiServices)->InstallPpi(PeiServices, &mInstallSmbusPolicyPpi);
ASSERT_EFI_ERROR (Status);
//
// Initialize Stall PPIs
//
Status = (*PeiServices)->InstallPpi (PeiServices, &mInstallStallPpi);
ASSERT_EFI_ERROR (Status);
//
// Initialize platform PPIs
//
Status = (*PeiServices)->InstallPpi (PeiServices, &mInstallSpeakerInterfacePpi);
ASSERT_EFI_ERROR (Status);
//
// Variable initialization
//
ZeroMem(&PlatformCpuInfo, sizeof(EFI_PLATFORM_CPU_INFO));
//
// Set the some PCI and chipset range as UC
// And align to 1M at leaset
//
Hob.Raw = GetFirstGuidHob (&gEfiPlatformInfoGuid);
ASSERT (Hob.Raw != NULL);
PlatformInfo = GET_GUID_HOB_DATA(Hob.Raw);
//
// Initialize PlatformInfo HOB
//
MultiPlatformInfoInit(PeiServices, PlatformInfo);
//
// Do basic MCH init
//
MchInit (PeiServices);
//
// Set the new boot mode
//
Status = UpdateBootMode (PeiServices, PlatformInfo);
ASSERT_EFI_ERROR (Status);
SetPlatformBootMode (PeiServices, PlatformInfo);
//
// Get setup variable. This can only be done after BootMode is updated
//
GetSetupVariable (PeiServices, &SystemConfiguration);
CheckOsSelection(PeiServices, &SystemConfiguration);
//
// Update PlatformInfo HOB according to setup variable
//
PlatformInfoUpdate(PeiServices, PlatformInfo, &SystemConfiguration);
InitializePlatform (PeiServices, PlatformInfo, &SystemConfiguration);
//
// Initialize VlvPolicy PPI
//
Status = VlvPolicyInit (PeiServices, &SystemConfiguration);
ASSERT_EFI_ERROR (Status);
//
// Soc specific GPIO setting
//
ConfigureSoCGpio(&SystemConfiguration);
//
// Baylake Board specific.
//
if (PlatformInfo->BoardId == BOARD_ID_BL_RVP ||
PlatformInfo->BoardId == BOARD_ID_BL_FFRD ||
PlatformInfo->BoardId == BOARD_ID_BL_FFRD8 ||
PlatformInfo->BoardId == BOARD_ID_BL_RVP_DDR3L ||
PlatformInfo->BoardId == BOARD_ID_BL_STHI ||
PlatformInfo->BoardId == BOARD_ID_BB_RVP ||
PlatformInfo->BoardId == BOARD_ID_BS_RVP ||
PlatformInfo->BoardId == BOARD_ID_MINNOW2 ||
PlatformInfo->BoardId == BOARD_ID_MINNOW2_TURBOT||
PlatformInfo->BoardId == BOARD_ID_CVH) {
ConfigureLpssAndSccGpio(&SystemConfiguration, PlatformInfo);
}
//
// Configure LPE
// Alpine Valley and Bayley Bay board specific
//
ConfigureLpeGpio(&SystemConfiguration);
//
// Bayley Bay Board specific.
//
ConfigureSciSmiGpioRout(PlatformInfo);
if (SystemConfiguration.LpssI2C3Enabled == 1) {
ConfigureMipiCsi();
}
//
// Do basic CPU init
//
Status = PlatformCpuInit (PeiServices, &SystemConfiguration, &PlatformCpuInfo);
//
// Perform basic SSA related platform initialization
//
PlatformSsaInit (&SystemConfiguration,PeiServices);
//
// Do basic PCH init
//
Status = PlatformPchInit (&SystemConfiguration, PeiServices, PlatformInfo->PlatformType);
ASSERT_EFI_ERROR (Status);
//
// Initialize platform PPIs
//
Status = (*PeiServices)->InstallPpi (PeiServices, &mPpiList[0]);
ASSERT_EFI_ERROR (Status);
if (PlatformInfo->BoardId != BOARD_ID_CVH) {
InstallPlatformClocksNotify (PeiServices);
InstallPlatformSysCtrlGPIONotify(PeiServices);
}
//
// Initialize platform PPIs
//
Status = (*PeiServices)->NotifyPpi(PeiServices, &mNotifyList[0]);
ASSERT_EFI_ERROR (Status);
//
// Initialize Measured Boot
//
Status = MeasuredBootInit (PeiServices, &SystemConfiguration);
ASSERT_EFI_ERROR (Status);
return Status;
}
/**
Return the mainblockcompact Fv.
@param FvNumber Our enumeration of the firmware volumes we care about.
@param FvAddress Base Address of the memory containing the firmware volume
@retval EFI_SUCCESS
@retval EFI_NOT_FOUND
**/
EFI_STATUS
EFIAPI
FindFv (
IN EFI_PEI_FIND_FV_PPI *This,
IN CONST EFI_PEI_SERVICES **PeiServices,
IN OUT UINT8 *FvNumber,
OUT EFI_FIRMWARE_VOLUME_HEADER **FVAddress
)
{
//
// At present, we only have one Fv to search
//
if (*FvNumber == 0) {
*FvNumber = 1;
*FVAddress = (EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)FixedPcdGet32 (PcdFlashFvMainBase);
return EFI_SUCCESS;
}
else if (*FvNumber == 1) {
*FvNumber = 2;
*FVAddress = (EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)FixedPcdGet32 (PcdFlashFvRecovery2Base);
return EFI_SUCCESS;
}
else { // Not the one Fv we care about
return EFI_NOT_FOUND;
}
}
EFI_STATUS
EFIAPI
CpuOnlyReset (
IN CONST EFI_PEI_SERVICES **PeiServices
)
{
// MsgBus32Write(CDV_UNIT_PUNIT, PUNIT_CPU_RST, 0x01)
#ifdef __GNUC__
__asm__
(
"xorl %ecx, %ecx\n"
"1:hlt; hlt; hlt\n"
"jmp 1b\n"
);
#else
_asm {
xor ecx, ecx
HltLoop:
hlt
hlt
hlt
loop HltLoop
}
#endif
//
// If we get here we need to mark it as a failure.
//
return EFI_UNSUPPORTED;
}
#ifdef __GNUC__
#pragma GCC pop_options
#else
#pragma optimize ("", on)
#endif