audk/UefiCpuPkg/Library/MpInitLib/Ia32/MpFuncs.nasm

349 lines
12 KiB
NASM
Raw Normal View History

;------------------------------------------------------------------------------ ;
; Copyright (c) 2015 - 2021, Intel Corporation. All rights reserved.<BR>
; SPDX-License-Identifier: BSD-2-Clause-Patent
;
; Module Name:
;
; MpFuncs.nasm
;
; Abstract:
;
; This is the assembly code for MP support
;
;-------------------------------------------------------------------------------
%include "MpEqu.inc"
extern ASM_PFX(InitializeFloatingPointUnits)
SECTION .text
;-------------------------------------------------------------------------------------
;RendezvousFunnelProc procedure follows. All APs execute their procedure. This
;procedure serializes all the AP processors through an Init sequence. It must be
;noted that APs arrive here very raw...ie: real mode, no stack.
;ALSO THIS PROCEDURE IS EXECUTED BY APs ONLY ON 16 BIT MODE. HENCE THIS PROC
;IS IN MACHINE CODE.
;-------------------------------------------------------------------------------------
global ASM_PFX(RendezvousFunnelProc)
ASM_PFX(RendezvousFunnelProc):
RendezvousFunnelProcStart:
; At this point CS = 0x(vv00) and ip= 0x0.
BITS 16
mov ebp, eax ; save BIST information
mov ax, cs
mov ds, ax
mov es, ax
mov ss, ax
xor ax, ax
mov fs, ax
mov gs, ax
mov si, MP_CPU_EXCHANGE_INFO_FIELD (BufferStart)
mov ebx, [si]
mov si, MP_CPU_EXCHANGE_INFO_FIELD (DataSegment)
mov edx, [si]
;
; Get start address of 32-bit code in low memory (<1MB)
;
mov edi, MP_CPU_EXCHANGE_INFO_FIELD (ModeTransitionMemory)
mov si, MP_CPU_EXCHANGE_INFO_FIELD (GdtrProfile)
o32 lgdt [cs:si]
mov si, MP_CPU_EXCHANGE_INFO_FIELD (IdtrProfile)
o32 lidt [cs:si]
;
; Switch to protected mode
;
mov eax, cr0 ; Get control register 0
or eax, 000000003h ; Set PE bit (bit #0) & MP
mov cr0, eax
; Switch to 32-bit code in executable memory (>1MB)
o32 jmp far [cs:di]
;
; Following code may be copied to memory with type of EfiBootServicesCode.
; This is required at DXE phase if NX is enabled for EfiBootServicesCode of
; memory.
;
BITS 32
Flat32Start: ; protected mode entry point
mov ds, dx
mov es, dx
mov fs, dx
mov gs, dx
mov ss, dx
mov esi, ebx
mov edi, esi
add edi, MP_CPU_EXCHANGE_INFO_FIELD (EnableExecuteDisable)
cmp byte [edi], 0
jz SkipEnableExecuteDisable
;
; Enable IA32 PAE execute disable
;
mov ecx, 0xc0000080
rdmsr
bts eax, 11
wrmsr
mov edi, esi
add edi, MP_CPU_EXCHANGE_INFO_FIELD (Cr3)
mov eax, dword [edi]
mov cr3, eax
mov eax, cr4
bts eax, 5
mov cr4, eax
mov eax, cr0
bts eax, 31
mov cr0, eax
SkipEnableExecuteDisable:
mov edi, esi
add edi, MP_CPU_EXCHANGE_INFO_FIELD (InitFlag)
cmp dword [edi], 1 ; 1 == ApInitConfig
jnz GetApicId
; Increment the number of APs executing here as early as possible
; This is decremented in C code when AP is finished executing
mov edi, esi
add edi, MP_CPU_EXCHANGE_INFO_FIELD (NumApsExecuting)
lock inc dword [edi]
; AP init
mov edi, esi
add edi, MP_CPU_EXCHANGE_INFO_FIELD (ApIndex)
mov ebx, 1
lock xadd dword [edi], ebx ; EBX = ApIndex++
inc ebx ; EBX is CpuNumber
mov edi, esi
add edi, MP_CPU_EXCHANGE_INFO_FIELD (StackSize)
mov eax, [edi]
mov ecx, ebx
inc ecx
mul ecx ; EAX = StackSize * (CpuNumber + 1)
mov edi, esi
add edi, MP_CPU_EXCHANGE_INFO_FIELD (StackStart)
add eax, [edi]
mov esp, eax
jmp CProcedureInvoke
GetApicId:
mov eax, 0
cpuid
cmp eax, 0bh
UefiCpuPkg/MpInitLib: fix feature test for Extended Topology CPUID leaf According to the Intel SDM (325462-060US / September 2016), > INPUT EAX = 0BH: Returns Extended Topology Information > > [...] Software must detect the presence of CPUID leaf 0BH by verifying > (a) the highest leaf index supported by CPUID is >= 0BH, and > (b) CPUID.0BH:EBX[15:0] reports a non-zero value. [...] The "GetApicId" sections in the Ia32 and X64 "MpFuncs.nasm" files do not perform check (b). This causes an actual bug in the following OVMF setup: - Intel W3550 host processor <http://ark.intel.com/products/39720/>, - the QEMU/KVM guest's VCPU model is set to "host", that is, "the CPU visible to the guest should be exactly the same as the host CPU". Under "GetApicId", check (a) passes: the CPUID level of the W3550 is exactly 11 decimal. However, leaf 11 itself is not supported, therefore EDX is set to zero: > If a value entered for CPUID.EAX is less than or equal to the maximum > input value and the leaf is not supported on that processor then 0 is > returned in all the registers. Because we don't check (b), the "GetProcessorNumber" section of the code is reached with an initial APIC ID of 0 in EDX on all of the APs. Given that "GetProcessorNumber" searches the "MP_CPU_EXCHANGE_INFO.CpuInfo[*].InitialApicId" fields for a match, all APs enter ApWakeupFunction() with an identical "NumApsExecuting" parameter. This results in unpredictable guest behavior (crashes, reboots, hangs etc). Reorganize the "GetApicId" section and add the missing check in both assembly files. Cc: Jeff Fan <jeff.fan@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jeff Fan <jeff.fan@intel.com>
2016-11-22 13:58:54 +01:00
jb NoX2Apic ; CPUID level below CPUID_EXTENDED_TOPOLOGY
mov eax, 0bh
xor ecx, ecx
cpuid
test ebx, 0ffffh
jz NoX2Apic ; CPUID.0BH:EBX[15:0] is zero
; Processor is x2APIC capable; 32-bit x2APIC ID is already in EDX
jmp GetProcessorNumber
NoX2Apic:
; Processor is not x2APIC capable, so get 8-bit APIC ID
mov eax, 1
cpuid
shr ebx, 24
mov edx, ebx
GetProcessorNumber:
;
; Get processor number for this AP
; Note that BSP may become an AP due to SwitchBsp()
;
xor ebx, ebx
lea eax, [esi + MP_CPU_EXCHANGE_INFO_FIELD (CpuInfo)]
mov edi, [eax]
GetNextProcNumber:
cmp dword [edi + CPU_INFO_IN_HOB.InitialApicId], edx ; APIC ID match?
jz ProgramStack
add edi, CPU_INFO_IN_HOB_size
inc ebx
jmp GetNextProcNumber
ProgramStack:
mov esp, dword [edi + CPU_INFO_IN_HOB.ApTopOfStack]
CProcedureInvoke:
push ebp ; push BIST data at top of AP stack
xor ebp, ebp ; clear ebp for call stack trace
push ebp
mov ebp, esp
mov eax, ASM_PFX(InitializeFloatingPointUnits)
call eax ; Call assembly function to initialize FPU per UEFI spec
push ebx ; Push ApIndex
mov eax, esi
add eax, MP_CPU_EXCHANGE_INFO_OFFSET
push eax ; push address of exchange info data buffer
mov edi, esi
add edi, MP_CPU_EXCHANGE_INFO_FIELD (CFunction)
mov eax, [edi]
call eax ; Invoke C function
jmp $ ; Never reach here
RendezvousFunnelProcEnd:
UefiCpuPkg: Allow AP booting under SEV-ES BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=2198 Typically, an AP is booted using the INIT-SIPI-SIPI sequence. This sequence is intercepted by the hypervisor, which sets the AP's registers to the values requested by the sequence. At that point, the hypervisor can start the AP, which will then begin execution at the appropriate location. Under SEV-ES, AP booting presents some challenges since the hypervisor is not allowed to alter the AP's register state. In this situation, we have to distinguish between the AP's first boot and AP's subsequent boots. First boot: Once the AP's register state has been defined (which is before the guest is first booted) it cannot be altered. Should the hypervisor attempt to alter the register state, the change would be detected by the hardware and the VMRUN instruction would fail. Given this, the first boot for the AP is required to begin execution with this initial register state, which is typically the reset vector. This prevents the BSP from directing the AP startup location through the INIT-SIPI-SIPI sequence. To work around this, the firmware will provide a build time reserved area that can be used as the initial IP value. The hypervisor can extract this location value by checking for the SEV-ES reset block GUID that must be located 48-bytes from the end of the firmware. The format of the SEV-ES reset block area is: 0x00 - 0x01 - SEV-ES Reset IP 0x02 - 0x03 - SEV-ES Reset CS Segment Base[31:16] 0x04 - 0x05 - Size of the SEV-ES reset block 0x06 - 0x15 - SEV-ES Reset Block GUID (00f771de-1a7e-4fcb-890e-68c77e2fb44e) The total size is 22 bytes. Any expansion to this block must be done by adding new values before existing values. The hypervisor will use the IP and CS values obtained from the SEV-ES reset block to set as the AP's initial values. The CS Segment Base represents the upper 16 bits of the CS segment base and must be left shifted by 16 bits to form the complete CS segment base value. Before booting the AP for the first time, the BSP must initialize the SEV-ES reset area. This consists of programming a FAR JMP instruction to the contents of a memory location that is also located in the SEV-ES reset area. The BSP must program the IP and CS values for the FAR JMP based on values drived from the INIT-SIPI-SIPI sequence. Subsequent boots: Again, the hypervisor cannot alter the AP register state, so a method is required to take the AP out of halt state and redirect it to the desired IP location. If it is determined that the AP is running in an SEV-ES guest, then instead of calling CpuSleep(), a VMGEXIT is issued with the AP Reset Hold exit code (0x80000004). The hypervisor will put the AP in a halt state, waiting for an INIT-SIPI-SIPI sequence. Once the sequence is recognized, the hypervisor will resume the AP. At this point the AP must transition from the current 64-bit long mode down to 16-bit real mode and begin executing at the derived location from the INIT-SIPI-SIPI sequence. Another change is around the area of obtaining the (x2)APIC ID during AP startup. During AP startup, the AP can't take a #VC exception before the AP has established a stack. However, the AP stack is set by using the (x2)APIC ID, which is obtained through CPUID instructions. A CPUID instruction will cause a #VC, so a different method must be used. The GHCB protocol supports a method to obtain CPUID information from the hypervisor through the GHCB MSR. This method does not require a stack, so it is used to obtain the necessary CPUID information to determine the (x2)APIC ID. The new 16-bit protected mode GDT entry is used in order to transition from 64-bit long mode down to 16-bit real mode. A new assembler routine is created that takes the AP from 64-bit long mode to 16-bit real mode. This is located under 1MB in memory and transitions from 64-bit long mode to 32-bit compatibility mode to 16-bit protected mode and finally 16-bit real mode. Cc: Eric Dong <eric.dong@intel.com> Cc: Ray Ni <ray.ni@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Eric Dong <eric.dong@intel.com> Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Regression-tested-by: Laszlo Ersek <lersek@redhat.com>
2020-08-12 22:21:42 +02:00
;-------------------------------------------------------------------------------------
;SwitchToRealProc procedure follows.
;NOT USED IN 32 BIT MODE.
;-------------------------------------------------------------------------------------
global ASM_PFX(SwitchToRealProc)
ASM_PFX(SwitchToRealProc):
SwitchToRealProcStart:
jmp $ ; Never reach here
SwitchToRealProcEnd:
;-------------------------------------------------------------------------------------
; AsmRelocateApLoop (MwaitSupport, ApTargetCState, PmCodeSegment, TopOfApStack, CountTofinish, Pm16CodeSegment, SevEsAPJumpTable, WakeupBuffer);
;
; The last three parameters (Pm16CodeSegment, SevEsAPJumpTable and WakeupBuffer) are
; specific to SEV-ES support and are not applicable on IA32.
;-------------------------------------------------------------------------------------
global ASM_PFX(AsmRelocateApLoop)
ASM_PFX(AsmRelocateApLoop):
AsmRelocateApLoopStart:
mov eax, esp
mov esp, [eax + 16] ; TopOfApStack
push dword [eax] ; push return address for stack trace
push ebp
mov ebp, esp
mov ebx, [eax + 8] ; ApTargetCState
mov ecx, [eax + 4] ; MwaitSupport
mov eax, [eax + 20] ; CountTofinish
lock dec dword [eax] ; (*CountTofinish)--
cmp cl, 1 ; Check mwait-monitor support
jnz HltLoop
MwaitLoop:
cli
mov eax, esp
xor ecx, ecx
xor edx, edx
monitor
mov eax, ebx ; Mwait Cx, Target C-State per eax[7:4]
shl eax, 4
mwait
jmp MwaitLoop
HltLoop:
cli
hlt
jmp HltLoop
AsmRelocateApLoopEnd:
;-------------------------------------------------------------------------------------
; AsmGetAddressMap (&AddressMap);
;-------------------------------------------------------------------------------------
global ASM_PFX(AsmGetAddressMap)
ASM_PFX(AsmGetAddressMap):
pushad
mov ebp,esp
mov ebx, [ebp + 24h]
mov dword [ebx + MP_ASSEMBLY_ADDRESS_MAP.RendezvousFunnelAddress], RendezvousFunnelProcStart
mov dword [ebx + MP_ASSEMBLY_ADDRESS_MAP.ModeEntryOffset], Flat32Start - RendezvousFunnelProcStart
mov dword [ebx + MP_ASSEMBLY_ADDRESS_MAP.RendezvousFunnelSize], RendezvousFunnelProcEnd - RendezvousFunnelProcStart
mov dword [ebx + MP_ASSEMBLY_ADDRESS_MAP.RelocateApLoopFuncAddress], AsmRelocateApLoopStart
mov dword [ebx + MP_ASSEMBLY_ADDRESS_MAP.RelocateApLoopFuncSize], AsmRelocateApLoopEnd - AsmRelocateApLoopStart
mov dword [ebx + MP_ASSEMBLY_ADDRESS_MAP.ModeTransitionOffset], Flat32Start - RendezvousFunnelProcStart
mov dword [ebx + MP_ASSEMBLY_ADDRESS_MAP.SwitchToRealSize], SwitchToRealProcEnd - SwitchToRealProcStart
mov dword [ebx + MP_ASSEMBLY_ADDRESS_MAP.SwitchToRealOffset], SwitchToRealProcStart - RendezvousFunnelProcStart
mov dword [ebx + MP_ASSEMBLY_ADDRESS_MAP.SwitchToRealNoNxOffset], SwitchToRealProcStart - Flat32Start
mov dword [ebx + MP_ASSEMBLY_ADDRESS_MAP.SwitchToRealPM16ModeOffset], 0
mov dword [ebx + MP_ASSEMBLY_ADDRESS_MAP.SwitchToRealPM16ModeSize], 0
popad
ret
;-------------------------------------------------------------------------------------
;AsmExchangeRole procedure follows. This procedure executed by current BSP, that is
;about to become an AP. It switches it'stack with the current AP.
;AsmExchangeRole (IN CPU_EXCHANGE_INFO *MyInfo, IN CPU_EXCHANGE_INFO *OthersInfo);
;-------------------------------------------------------------------------------------
global ASM_PFX(AsmExchangeRole)
ASM_PFX(AsmExchangeRole):
; DO NOT call other functions in this function, since 2 CPU may use 1 stack
; at the same time. If 1 CPU try to call a function, stack will be corrupted.
pushad
mov ebp,esp
; esi contains MyInfo pointer
mov esi, [ebp + 24h]
; edi contains OthersInfo pointer
mov edi, [ebp + 28h]
;Store EFLAGS, GDTR and IDTR register to stack
pushfd
mov eax, cr4
push eax ; push cr4 firstly
mov eax, cr0
push eax
sgdt [esi + CPU_EXCHANGE_ROLE_INFO.Gdtr]
sidt [esi + CPU_EXCHANGE_ROLE_INFO.Idtr]
; Store the its StackPointer
mov [esi + CPU_EXCHANGE_ROLE_INFO.StackPointer],esp
; update its switch state to STORED
mov byte [esi + CPU_EXCHANGE_ROLE_INFO.State], CPU_SWITCH_STATE_STORED
WaitForOtherStored:
; wait until the other CPU finish storing its state
cmp byte [edi + CPU_EXCHANGE_ROLE_INFO.State], CPU_SWITCH_STATE_STORED
jz OtherStored
pause
jmp WaitForOtherStored
OtherStored:
; Since another CPU already stored its state, load them
; load GDTR value
lgdt [edi + CPU_EXCHANGE_ROLE_INFO.Gdtr]
; load IDTR value
lidt [edi + CPU_EXCHANGE_ROLE_INFO.Idtr]
; load its future StackPointer
mov esp, [edi + CPU_EXCHANGE_ROLE_INFO.StackPointer]
; update the other CPU's switch state to LOADED
mov byte [edi + CPU_EXCHANGE_ROLE_INFO.State], CPU_SWITCH_STATE_LOADED
WaitForOtherLoaded:
; wait until the other CPU finish loading new state,
; otherwise the data in stack may corrupt
cmp byte [esi + CPU_EXCHANGE_ROLE_INFO.State], CPU_SWITCH_STATE_LOADED
jz OtherLoaded
pause
jmp WaitForOtherLoaded
OtherLoaded:
; since the other CPU already get the data it want, leave this procedure
pop eax
mov cr0, eax
pop eax
mov cr4, eax
popfd
popad
ret