audk/ArmPkg/Library/PlatformBootManagerLib/PlatformBm.c

987 lines
29 KiB
C
Raw Normal View History

/** @file
Implementation for PlatformBootManagerLib library class interfaces.
Copyright (C) 2015-2016, Red Hat, Inc.
Copyright (c) 2014 - 2021, ARM Ltd. All rights reserved.<BR>
Copyright (c) 2004 - 2018, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2016, Linaro Ltd. All rights reserved.<BR>
Copyright (c) 2021, Semihalf All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <IndustryStandard/Pci22.h>
#include <Library/BootLogoLib.h>
#include <Library/CapsuleLib.h>
#include <Library/DevicePathLib.h>
#include <Library/HobLib.h>
#include <Library/PcdLib.h>
#include <Library/UefiBootManagerLib.h>
#include <Library/UefiLib.h>
#include <Library/UefiRuntimeServicesTableLib.h>
#include <Protocol/BootManagerPolicy.h>
#include <Protocol/DevicePath.h>
#include <Protocol/EsrtManagement.h>
#include <Protocol/GraphicsOutput.h>
#include <Protocol/LoadedImage.h>
#include <Protocol/NonDiscoverableDevice.h>
#include <Protocol/PciIo.h>
#include <Protocol/PciRootBridgeIo.h>
#include <Protocol/PlatformBootManager.h>
#include <Guid/BootDiscoveryPolicy.h>
#include <Guid/EventGroup.h>
#include <Guid/NonDiscoverableDevice.h>
#include <Guid/TtyTerm.h>
#include <Guid/SerialPortLibVendor.h>
#include "PlatformBm.h"
#define DP_NODE_LEN(Type) { (UINT8)sizeof (Type), (UINT8)(sizeof (Type) >> 8) }
#pragma pack (1)
typedef struct {
VENDOR_DEVICE_PATH SerialDxe;
UART_DEVICE_PATH Uart;
VENDOR_DEFINED_DEVICE_PATH TermType;
EFI_DEVICE_PATH_PROTOCOL End;
} PLATFORM_SERIAL_CONSOLE;
#pragma pack ()
STATIC PLATFORM_SERIAL_CONSOLE mSerialConsole = {
//
// VENDOR_DEVICE_PATH SerialDxe
//
{
{ HARDWARE_DEVICE_PATH, HW_VENDOR_DP, DP_NODE_LEN (VENDOR_DEVICE_PATH) },
EDKII_SERIAL_PORT_LIB_VENDOR_GUID
},
//
// UART_DEVICE_PATH Uart
//
{
{ MESSAGING_DEVICE_PATH, MSG_UART_DP, DP_NODE_LEN (UART_DEVICE_PATH) },
0, // Reserved
FixedPcdGet64 (PcdUartDefaultBaudRate), // BaudRate
FixedPcdGet8 (PcdUartDefaultDataBits), // DataBits
FixedPcdGet8 (PcdUartDefaultParity), // Parity
FixedPcdGet8 (PcdUartDefaultStopBits) // StopBits
},
//
// VENDOR_DEFINED_DEVICE_PATH TermType
//
{
{
MESSAGING_DEVICE_PATH, MSG_VENDOR_DP,
DP_NODE_LEN (VENDOR_DEFINED_DEVICE_PATH)
}
//
// Guid to be filled in dynamically
//
},
//
// EFI_DEVICE_PATH_PROTOCOL End
//
{
END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE,
DP_NODE_LEN (EFI_DEVICE_PATH_PROTOCOL)
}
};
#pragma pack (1)
typedef struct {
USB_CLASS_DEVICE_PATH Keyboard;
EFI_DEVICE_PATH_PROTOCOL End;
} PLATFORM_USB_KEYBOARD;
#pragma pack ()
STATIC PLATFORM_USB_KEYBOARD mUsbKeyboard = {
//
// USB_CLASS_DEVICE_PATH Keyboard
//
{
{
MESSAGING_DEVICE_PATH, MSG_USB_CLASS_DP,
DP_NODE_LEN (USB_CLASS_DEVICE_PATH)
},
0xFFFF, // VendorId: any
0xFFFF, // ProductId: any
3, // DeviceClass: HID
1, // DeviceSubClass: boot
1 // DeviceProtocol: keyboard
},
//
// EFI_DEVICE_PATH_PROTOCOL End
//
{
END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE,
DP_NODE_LEN (EFI_DEVICE_PATH_PROTOCOL)
}
};
/**
Check if the handle satisfies a particular condition.
@param[in] Handle The handle to check.
@param[in] ReportText A caller-allocated string passed in for reporting
purposes. It must never be NULL.
@retval TRUE The condition is satisfied.
@retval FALSE Otherwise. This includes the case when the condition could not
be fully evaluated due to an error.
**/
typedef
BOOLEAN
(EFIAPI *FILTER_FUNCTION) (
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
);
/**
Process a handle.
@param[in] Handle The handle to process.
@param[in] ReportText A caller-allocated string passed in for reporting
purposes. It must never be NULL.
**/
typedef
VOID
(EFIAPI *CALLBACK_FUNCTION) (
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
);
/**
Locate all handles that carry the specified protocol, filter them with a
callback function, and pass each handle that passes the filter to another
callback.
@param[in] ProtocolGuid The protocol to look for.
@param[in] Filter The filter function to pass each handle to. If this
parameter is NULL, then all handles are processed.
@param[in] Process The callback function to pass each handle to that
clears the filter.
**/
STATIC
VOID
FilterAndProcess (
IN EFI_GUID *ProtocolGuid,
IN FILTER_FUNCTION Filter OPTIONAL,
IN CALLBACK_FUNCTION Process
)
{
EFI_STATUS Status;
EFI_HANDLE *Handles;
UINTN NoHandles;
UINTN Idx;
Status = gBS->LocateHandleBuffer (ByProtocol, ProtocolGuid,
NULL /* SearchKey */, &NoHandles, &Handles);
if (EFI_ERROR (Status)) {
//
// This is not an error, just an informative condition.
//
DEBUG ((EFI_D_VERBOSE, "%a: %g: %r\n", __FUNCTION__, ProtocolGuid,
Status));
return;
}
ASSERT (NoHandles > 0);
for (Idx = 0; Idx < NoHandles; ++Idx) {
CHAR16 *DevicePathText;
STATIC CHAR16 Fallback[] = L"<device path unavailable>";
//
// The ConvertDevicePathToText() function handles NULL input transparently.
//
DevicePathText = ConvertDevicePathToText (
DevicePathFromHandle (Handles[Idx]),
FALSE, // DisplayOnly
FALSE // AllowShortcuts
);
if (DevicePathText == NULL) {
DevicePathText = Fallback;
}
if (Filter == NULL || Filter (Handles[Idx], DevicePathText)) {
Process (Handles[Idx], DevicePathText);
}
if (DevicePathText != Fallback) {
FreePool (DevicePathText);
}
}
gBS->FreePool (Handles);
}
/**
This FILTER_FUNCTION checks if a handle corresponds to a PCI display device.
**/
STATIC
BOOLEAN
EFIAPI
IsPciDisplay (
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
)
{
EFI_STATUS Status;
EFI_PCI_IO_PROTOCOL *PciIo;
PCI_TYPE00 Pci;
Status = gBS->HandleProtocol (Handle, &gEfiPciIoProtocolGuid,
(VOID**)&PciIo);
if (EFI_ERROR (Status)) {
//
// This is not an error worth reporting.
//
return FALSE;
}
Status = PciIo->Pci.Read (PciIo, EfiPciIoWidthUint32, 0 /* Offset */,
sizeof Pci / sizeof (UINT32), &Pci);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "%a: %s: %r\n", __FUNCTION__, ReportText, Status));
return FALSE;
}
return IS_PCI_DISPLAY (&Pci);
}
/**
This FILTER_FUNCTION checks if a handle corresponds to a non-discoverable
USB host controller.
**/
STATIC
BOOLEAN
EFIAPI
IsUsbHost (
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
)
{
NON_DISCOVERABLE_DEVICE *Device;
EFI_STATUS Status;
Status = gBS->HandleProtocol (Handle,
&gEdkiiNonDiscoverableDeviceProtocolGuid,
(VOID **)&Device);
if (EFI_ERROR (Status)) {
return FALSE;
}
if (CompareGuid (Device->Type, &gEdkiiNonDiscoverableUhciDeviceGuid) ||
CompareGuid (Device->Type, &gEdkiiNonDiscoverableEhciDeviceGuid) ||
CompareGuid (Device->Type, &gEdkiiNonDiscoverableXhciDeviceGuid)) {
return TRUE;
}
return FALSE;
}
/**
This CALLBACK_FUNCTION attempts to connect a handle non-recursively, asking
the matching driver to produce all first-level child handles.
**/
STATIC
VOID
EFIAPI
Connect (
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
)
{
EFI_STATUS Status;
Status = gBS->ConnectController (
Handle, // ControllerHandle
NULL, // DriverImageHandle
NULL, // RemainingDevicePath -- produce all children
FALSE // Recursive
);
DEBUG ((EFI_ERROR (Status) ? EFI_D_ERROR : EFI_D_VERBOSE, "%a: %s: %r\n",
__FUNCTION__, ReportText, Status));
}
/**
This CALLBACK_FUNCTION retrieves the EFI_DEVICE_PATH_PROTOCOL from the
handle, and adds it to ConOut and ErrOut.
**/
STATIC
VOID
EFIAPI
AddOutput (
IN EFI_HANDLE Handle,
IN CONST CHAR16 *ReportText
)
{
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
DevicePath = DevicePathFromHandle (Handle);
if (DevicePath == NULL) {
DEBUG ((EFI_D_ERROR, "%a: %s: handle %p: device path not found\n",
__FUNCTION__, ReportText, Handle));
return;
}
Status = EfiBootManagerUpdateConsoleVariable (ConOut, DevicePath, NULL);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "%a: %s: adding to ConOut: %r\n", __FUNCTION__,
ReportText, Status));
return;
}
Status = EfiBootManagerUpdateConsoleVariable (ErrOut, DevicePath, NULL);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "%a: %s: adding to ErrOut: %r\n", __FUNCTION__,
ReportText, Status));
return;
}
DEBUG ((EFI_D_VERBOSE, "%a: %s: added to ConOut and ErrOut\n", __FUNCTION__,
ReportText));
}
STATIC
VOID
PlatformRegisterFvBootOption (
CONST EFI_GUID *FileGuid,
CHAR16 *Description,
UINT32 Attributes,
EFI_INPUT_KEY *Key
)
{
EFI_STATUS Status;
INTN OptionIndex;
EFI_BOOT_MANAGER_LOAD_OPTION NewOption;
EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions;
UINTN BootOptionCount;
MEDIA_FW_VOL_FILEPATH_DEVICE_PATH FileNode;
EFI_LOADED_IMAGE_PROTOCOL *LoadedImage;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
Status = gBS->HandleProtocol (
gImageHandle,
&gEfiLoadedImageProtocolGuid,
(VOID **) &LoadedImage
);
ASSERT_EFI_ERROR (Status);
EfiInitializeFwVolDevicepathNode (&FileNode, FileGuid);
DevicePath = DevicePathFromHandle (LoadedImage->DeviceHandle);
ASSERT (DevicePath != NULL);
DevicePath = AppendDevicePathNode (
DevicePath,
(EFI_DEVICE_PATH_PROTOCOL *) &FileNode
);
ASSERT (DevicePath != NULL);
Status = EfiBootManagerInitializeLoadOption (
&NewOption,
LoadOptionNumberUnassigned,
LoadOptionTypeBoot,
Attributes,
Description,
DevicePath,
NULL,
0
);
ASSERT_EFI_ERROR (Status);
FreePool (DevicePath);
BootOptions = EfiBootManagerGetLoadOptions (
&BootOptionCount, LoadOptionTypeBoot
);
OptionIndex = EfiBootManagerFindLoadOption (
&NewOption, BootOptions, BootOptionCount
);
if (OptionIndex == -1) {
Status = EfiBootManagerAddLoadOptionVariable (&NewOption, MAX_UINTN);
ASSERT_EFI_ERROR (Status);
Status = EfiBootManagerAddKeyOptionVariable (NULL,
(UINT16)NewOption.OptionNumber, 0, Key, NULL);
ASSERT (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED);
}
EfiBootManagerFreeLoadOption (&NewOption);
EfiBootManagerFreeLoadOptions (BootOptions, BootOptionCount);
}
STATIC
VOID
GetPlatformOptions (
VOID
)
{
EFI_STATUS Status;
EFI_BOOT_MANAGER_LOAD_OPTION *CurrentBootOptions;
EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions;
EFI_INPUT_KEY *BootKeys;
PLATFORM_BOOT_MANAGER_PROTOCOL *PlatformBootManager;
UINTN CurrentBootOptionCount;
UINTN Index;
UINTN BootCount;
Status = gBS->LocateProtocol (&gPlatformBootManagerProtocolGuid, NULL,
(VOID **)&PlatformBootManager);
if (EFI_ERROR (Status)) {
return;
}
Status = PlatformBootManager->GetPlatformBootOptionsAndKeys (
&BootCount,
&BootOptions,
&BootKeys
);
if (EFI_ERROR (Status)) {
return;
}
//
// Fetch the existent boot options. If there are none, CurrentBootCount
// will be zeroed.
//
CurrentBootOptions = EfiBootManagerGetLoadOptions (
&CurrentBootOptionCount,
LoadOptionTypeBoot
);
//
// Process the platform boot options.
//
for (Index = 0; Index < BootCount; Index++) {
INTN Match;
UINTN BootOptionNumber;
//
// If there are any preexistent boot options, and the subject platform boot
// option is already among them, then don't try to add it. Just get its
// assigned boot option number so we can associate a hotkey with it. Note
// that EfiBootManagerFindLoadOption() deals fine with (CurrentBootOptions
// == NULL) if (CurrentBootCount == 0).
//
Match = EfiBootManagerFindLoadOption (
&BootOptions[Index],
CurrentBootOptions,
CurrentBootOptionCount
);
if (Match >= 0) {
BootOptionNumber = CurrentBootOptions[Match].OptionNumber;
} else {
//
// Add the platform boot options as a new one, at the end of the boot
// order. Note that if the platform provided this boot option with an
// unassigned option number, then the below function call will assign a
// number.
//
Status = EfiBootManagerAddLoadOptionVariable (
&BootOptions[Index],
MAX_UINTN
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: failed to register \"%s\": %r\n",
__FUNCTION__, BootOptions[Index].Description, Status));
continue;
}
BootOptionNumber = BootOptions[Index].OptionNumber;
}
//
// Register a hotkey with the boot option, if requested.
//
if (BootKeys[Index].UnicodeChar == L'\0') {
continue;
}
Status = EfiBootManagerAddKeyOptionVariable (
NULL,
BootOptionNumber,
0,
&BootKeys[Index],
NULL
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: failed to register hotkey for \"%s\": %r\n",
__FUNCTION__, BootOptions[Index].Description, Status));
}
}
EfiBootManagerFreeLoadOptions (CurrentBootOptions, CurrentBootOptionCount);
EfiBootManagerFreeLoadOptions (BootOptions, BootCount);
FreePool (BootKeys);
}
STATIC
VOID
PlatformRegisterOptionsAndKeys (
VOID
)
{
EFI_STATUS Status;
EFI_INPUT_KEY Enter;
EFI_INPUT_KEY F2;
EFI_INPUT_KEY Esc;
EFI_BOOT_MANAGER_LOAD_OPTION BootOption;
GetPlatformOptions ();
//
// Register ENTER as CONTINUE key
//
Enter.ScanCode = SCAN_NULL;
Enter.UnicodeChar = CHAR_CARRIAGE_RETURN;
Status = EfiBootManagerRegisterContinueKeyOption (0, &Enter, NULL);
ASSERT_EFI_ERROR (Status);
//
// Map F2 and ESC to Boot Manager Menu
//
F2.ScanCode = SCAN_F2;
F2.UnicodeChar = CHAR_NULL;
Esc.ScanCode = SCAN_ESC;
Esc.UnicodeChar = CHAR_NULL;
Status = EfiBootManagerGetBootManagerMenu (&BootOption);
ASSERT_EFI_ERROR (Status);
Status = EfiBootManagerAddKeyOptionVariable (
NULL, (UINT16) BootOption.OptionNumber, 0, &F2, NULL
);
ASSERT (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED);
Status = EfiBootManagerAddKeyOptionVariable (
NULL, (UINT16) BootOption.OptionNumber, 0, &Esc, NULL
);
ASSERT (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED);
}
//
// BDS Platform Functions
//
/**
Do the platform init, can be customized by OEM/IBV
Possible things that can be done in PlatformBootManagerBeforeConsole:
> Update console variable: 1. include hot-plug devices;
> 2. Clear ConIn and add SOL for AMT
> Register new Driver#### or Boot####
> Register new Key####: e.g.: F12
> Signal ReadyToLock event
> Authentication action: 1. connect Auth devices;
> 2. Identify auto logon user.
**/
VOID
EFIAPI
PlatformBootManagerBeforeConsole (
VOID
)
{
//
// Signal EndOfDxe PI Event
//
EfiEventGroupSignal (&gEfiEndOfDxeEventGroupGuid);
//
// Dispatch deferred images after EndOfDxe event.
//
EfiBootManagerDispatchDeferredImages ();
//
// Locate the PCI root bridges and make the PCI bus driver connect each,
// non-recursively. This will produce a number of child handles with PciIo on
// them.
//
FilterAndProcess (&gEfiPciRootBridgeIoProtocolGuid, NULL, Connect);
//
// Find all display class PCI devices (using the handles from the previous
// step), and connect them non-recursively. This should produce a number of
// child handles with GOPs on them.
//
FilterAndProcess (&gEfiPciIoProtocolGuid, IsPciDisplay, Connect);
//
// Now add the device path of all handles with GOP on them to ConOut and
// ErrOut.
//
FilterAndProcess (&gEfiGraphicsOutputProtocolGuid, NULL, AddOutput);
//
// The core BDS code connects short-form USB device paths by explicitly
// looking for handles with PCI I/O installed, and checking the PCI class
// code whether it matches the one for a USB host controller. This means
// non-discoverable USB host controllers need to have the non-discoverable
// PCI driver attached first.
//
FilterAndProcess (&gEdkiiNonDiscoverableDeviceProtocolGuid, IsUsbHost, Connect);
//
// Add the hardcoded short-form USB keyboard device path to ConIn.
//
EfiBootManagerUpdateConsoleVariable (ConIn,
(EFI_DEVICE_PATH_PROTOCOL *)&mUsbKeyboard, NULL);
//
// Add the hardcoded serial console device path to ConIn, ConOut, ErrOut.
//
STATIC_ASSERT (FixedPcdGet8 (PcdDefaultTerminalType) == 4,
"PcdDefaultTerminalType must be TTYTERM");
STATIC_ASSERT (FixedPcdGet8 (PcdUartDefaultParity) != 0,
"PcdUartDefaultParity must be set to an actual value, not 'default'");
STATIC_ASSERT (FixedPcdGet8 (PcdUartDefaultStopBits) != 0,
"PcdUartDefaultStopBits must be set to an actual value, not 'default'");
CopyGuid (&mSerialConsole.TermType.Guid, &gEfiTtyTermGuid);
EfiBootManagerUpdateConsoleVariable (ConIn,
(EFI_DEVICE_PATH_PROTOCOL *)&mSerialConsole, NULL);
EfiBootManagerUpdateConsoleVariable (ConOut,
(EFI_DEVICE_PATH_PROTOCOL *)&mSerialConsole, NULL);
EfiBootManagerUpdateConsoleVariable (ErrOut,
(EFI_DEVICE_PATH_PROTOCOL *)&mSerialConsole, NULL);
//
// Register platform-specific boot options and keyboard shortcuts.
//
PlatformRegisterOptionsAndKeys ();
}
STATIC
VOID
HandleCapsules (
VOID
)
{
ESRT_MANAGEMENT_PROTOCOL *EsrtManagement;
EFI_PEI_HOB_POINTERS HobPointer;
EFI_CAPSULE_HEADER *CapsuleHeader;
BOOLEAN NeedReset;
EFI_STATUS Status;
DEBUG ((DEBUG_INFO, "%a: processing capsules ...\n", __FUNCTION__));
Status = gBS->LocateProtocol (&gEsrtManagementProtocolGuid, NULL,
(VOID **)&EsrtManagement);
if (!EFI_ERROR (Status)) {
EsrtManagement->SyncEsrtFmp ();
}
//
// Find all capsule images from hob
//
HobPointer.Raw = GetHobList ();
NeedReset = FALSE;
while ((HobPointer.Raw = GetNextHob (EFI_HOB_TYPE_UEFI_CAPSULE,
HobPointer.Raw)) != NULL) {
CapsuleHeader = (VOID *)(UINTN)HobPointer.Capsule->BaseAddress;
Status = ProcessCapsuleImage (CapsuleHeader);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: failed to process capsule %p - %r\n",
__FUNCTION__, CapsuleHeader, Status));
return;
}
NeedReset = TRUE;
HobPointer.Raw = GET_NEXT_HOB (HobPointer);
}
if (NeedReset) {
DEBUG ((DEBUG_WARN, "%a: capsule update successful, resetting ...\n",
__FUNCTION__));
gRT->ResetSystem (EfiResetCold, EFI_SUCCESS, 0, NULL);
CpuDeadLoop();
}
}
#define VERSION_STRING_PREFIX L"Tianocore/EDK2 firmware version "
/**
This functions checks the value of BootDiscoverPolicy variable and
connect devices of class specified by that variable. Then it refreshes
Boot order for newly discovered boot device.
@retval EFI_SUCCESS Devices connected successfully or connection
not required.
@retval others Return values from GetVariable(), LocateProtocol()
and ConnectDeviceClass().
**/
STATIC
EFI_STATUS
BootDiscoveryPolicyHandler (
VOID
)
{
EFI_STATUS Status;
UINT32 DiscoveryPolicy;
UINT32 DiscoveryPolicyOld;
UINTN Size;
EFI_BOOT_MANAGER_POLICY_PROTOCOL *BMPolicy;
EFI_GUID *Class;
Size = sizeof (DiscoveryPolicy);
Status = gRT->GetVariable (
BOOT_DISCOVERY_POLICY_VAR,
&gBootDiscoveryPolicyMgrFormsetGuid,
NULL,
&Size,
&DiscoveryPolicy
);
if (Status == EFI_NOT_FOUND) {
DiscoveryPolicy = PcdGet32 (PcdBootDiscoveryPolicy);
Status = PcdSet32S (PcdBootDiscoveryPolicy, DiscoveryPolicy);
if (Status == EFI_NOT_FOUND) {
return EFI_SUCCESS;
} else if (EFI_ERROR (Status)) {
return Status;
}
} else if (EFI_ERROR (Status)) {
return Status;
}
if (DiscoveryPolicy == BDP_CONNECT_MINIMAL) {
return EFI_SUCCESS;
}
switch (DiscoveryPolicy) {
case BDP_CONNECT_NET:
Class = &gEfiBootManagerPolicyNetworkGuid;
break;
case BDP_CONNECT_ALL:
Class = &gEfiBootManagerPolicyConnectAllGuid;
break;
default:
DEBUG ((
DEBUG_INFO,
"%a - Unexpected DiscoveryPolicy (0x%x). Run Minimal Discovery Policy\n",
__FUNCTION__,
DiscoveryPolicy
));
return EFI_SUCCESS;
}
Status = gBS->LocateProtocol (
&gEfiBootManagerPolicyProtocolGuid,
NULL,
(VOID **)&BMPolicy
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_INFO, "%a - Failed to locate gEfiBootManagerPolicyProtocolGuid."
"Driver connect will be skipped.\n", __FUNCTION__));
return Status;
}
Status = BMPolicy->ConnectDeviceClass (BMPolicy, Class);
if (EFI_ERROR (Status)){
DEBUG ((DEBUG_ERROR, "%a - ConnectDeviceClass returns - %r\n", __FUNCTION__, Status));
return Status;
}
//
// Refresh Boot Options if Boot Discovery Policy has been changed
//
Size = sizeof (DiscoveryPolicyOld);
Status = gRT->GetVariable (
BOOT_DISCOVERY_POLICY_OLD_VAR,
&gBootDiscoveryPolicyMgrFormsetGuid,
NULL,
&Size,
&DiscoveryPolicyOld
);
if ((Status == EFI_NOT_FOUND) || (DiscoveryPolicyOld != DiscoveryPolicy)) {
EfiBootManagerRefreshAllBootOption ();
Status = gRT->SetVariable (
BOOT_DISCOVERY_POLICY_OLD_VAR,
&gBootDiscoveryPolicyMgrFormsetGuid,
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS,
sizeof (DiscoveryPolicyOld),
&DiscoveryPolicy
);
}
return EFI_SUCCESS;
}
/**
Do the platform specific action after the console is ready
Possible things that can be done in PlatformBootManagerAfterConsole:
> Console post action:
> Dynamically switch output mode from 100x31 to 80x25 for certain scenario
> Signal console ready platform customized event
> Run diagnostics like memory testing
> Connect certain devices
> Dispatch additional option roms
> Special boot: e.g.: USB boot, enter UI
**/
VOID
EFIAPI
PlatformBootManagerAfterConsole (
VOID
)
{
EFI_STATUS Status;
EFI_GRAPHICS_OUTPUT_PROTOCOL *GraphicsOutput;
UINTN FirmwareVerLength;
UINTN PosX;
UINTN PosY;
EFI_INPUT_KEY Key;
FirmwareVerLength = StrLen (PcdGetPtr (PcdFirmwareVersionString));
//
// Show the splash screen.
//
Status = BootLogoEnableLogo ();
if (EFI_ERROR (Status)) {
if (FirmwareVerLength > 0) {
Print (VERSION_STRING_PREFIX L"%s\n",
PcdGetPtr (PcdFirmwareVersionString));
}
Print (L"Press ESCAPE for boot options ");
} else if (FirmwareVerLength > 0) {
Status = gBS->HandleProtocol (gST->ConsoleOutHandle,
&gEfiGraphicsOutputProtocolGuid, (VOID **)&GraphicsOutput);
if (!EFI_ERROR (Status)) {
PosX = (GraphicsOutput->Mode->Info->HorizontalResolution -
(StrLen (VERSION_STRING_PREFIX) + FirmwareVerLength) *
EFI_GLYPH_WIDTH) / 2;
PosY = 0;
PrintXY (PosX, PosY, NULL, NULL, VERSION_STRING_PREFIX L"%s",
PcdGetPtr (PcdFirmwareVersionString));
}
}
//
// Connect device specified by BootDiscoverPolicy variable and
// refresh Boot order for newly discovered boot devices
//
BootDiscoveryPolicyHandler ();
//
// On ARM, there is currently no reason to use the phased capsule
// update approach where some capsules are dispatched before EndOfDxe
// and some are dispatched after. So just handle all capsules here,
// when the console is up and we can actually give the user some
// feedback about what is going on.
//
HandleCapsules ();
//
// Register UEFI Shell
//
Key.ScanCode = SCAN_NULL;
Key.UnicodeChar = L's';
PlatformRegisterFvBootOption (&gUefiShellFileGuid, L"UEFI Shell", 0, &Key);
}
/**
This function is called each second during the boot manager waits the
timeout.
@param TimeoutRemain The remaining timeout.
**/
VOID
EFIAPI
PlatformBootManagerWaitCallback (
UINT16 TimeoutRemain
)
{
EFI_GRAPHICS_OUTPUT_BLT_PIXEL_UNION Black;
EFI_GRAPHICS_OUTPUT_BLT_PIXEL_UNION White;
UINT16 Timeout;
EFI_STATUS Status;
Timeout = PcdGet16 (PcdPlatformBootTimeOut);
Black.Raw = 0x00000000;
White.Raw = 0x00FFFFFF;
Status = BootLogoUpdateProgress (
White.Pixel,
Black.Pixel,
L"Press ESCAPE for boot options",
White.Pixel,
(Timeout - TimeoutRemain) * 100 / Timeout,
0
);
if (EFI_ERROR (Status)) {
Print (L".");
}
}
/**
The function is called when no boot option could be launched,
including platform recovery options and options pointing to applications
built into firmware volumes.
If this function returns, BDS attempts to enter an infinite loop.
**/
VOID
EFIAPI
PlatformBootManagerUnableToBoot (
VOID
)
{
EFI_STATUS Status;
EFI_BOOT_MANAGER_LOAD_OPTION BootManagerMenu;
EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions;
UINTN OldBootOptionCount;
UINTN NewBootOptionCount;
//
// Record the total number of boot configured boot options
//
BootOptions = EfiBootManagerGetLoadOptions (&OldBootOptionCount,
LoadOptionTypeBoot);
EfiBootManagerFreeLoadOptions (BootOptions, OldBootOptionCount);
//
// Connect all devices, and regenerate all boot options
//
EfiBootManagerConnectAll ();
EfiBootManagerRefreshAllBootOption ();
//
// Record the updated number of boot configured boot options
//
BootOptions = EfiBootManagerGetLoadOptions (&NewBootOptionCount,
LoadOptionTypeBoot);
EfiBootManagerFreeLoadOptions (BootOptions, NewBootOptionCount);
//
// If the number of configured boot options has changed, reboot
// the system so the new boot options will be taken into account
// while executing the ordinary BDS bootflow sequence.
// *Unless* persistent varstore is being emulated, since we would
// then end up in an endless reboot loop.
//
if (!PcdGetBool (PcdEmuVariableNvModeEnable)) {
if (NewBootOptionCount != OldBootOptionCount) {
DEBUG ((DEBUG_WARN, "%a: rebooting after refreshing all boot options\n",
__FUNCTION__));
gRT->ResetSystem (EfiResetCold, EFI_SUCCESS, 0, NULL);
}
}
Status = EfiBootManagerGetBootManagerMenu (&BootManagerMenu);
if (EFI_ERROR (Status)) {
return;
}
for (;;) {
EfiBootManagerBoot (&BootManagerMenu);
}
}